Nanoscale Prussian Blue and Its Analogues: Design and Applications in Infection Control, Wound Healing and Beyond
Abstract
:1. Introduction
2. Synthetic Strategies and Structural Refinement of PBNPs
2.1. Co-Precipitation Method
2.2. Microemulsion Method
2.3. Template Method
2.4. Hydrothermal Method
3. Synthesis of PB Analogues and Ion Doping
4. Synthesis of PB Nanocomposites
5. Application in Treatment of Topical Bacterial Infections and Cutaneous Wound Management
5.1. Photothermal Antibacterial Effects
5.2. PB with Conventional Antibiotics
5.3. Enzymatic Effects of PBNPs: PBzyme as Antibacterials
5.4. PB Analogues (PBAs) as Biocompatible Imaging Agents with PTT Antibacterial Effects
5.5. Silver Containing PB in Combating Microbial Resistance
6. Limitations and Challenges of PBNP Applications
6.1. Long-Term PB and PBA Toxicity
6.2. Scalability of PB NPs
6.3. Combination of Therapies on PB-Based Nanoplatforms
7. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Z.-Y.; Duan, Y.; Liu, J.-D.; Chen, Y.; Liu, X.-K.; Liu, W.; Ma, T.; Li, Y.; Zheng, X.-S.; Yao, T. Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nat. Commun. 2019, 10, 2799. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gang, Y.; Hu, Z.; Yan, Z.; Li, W.; Li, Y.; Gu, Q.-F.; Wang, Z.; Chou, S.-L.; Liu, H.-K. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Atzori, M.; Breslavetz, I.; Paillot, K.; Inoue, K.; Rikken, G.L.; Train, C. A chiral Prussian blue analogue pushes magneto-chiral dichroism limits. J. Am. Chem. Soc. 2019, 141, 20022–20025. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997–8018. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Li, Y.; Gu, N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv. Healthc. Mater. 2018, 7, 1800347. [Google Scholar] [CrossRef] [PubMed]
- Kraft, A. On the discovery and history of Prussian blue. Bull. Hist. Chem 2008, 33, 61–67. [Google Scholar]
- Keggin, J.; Miles, F. Structures and formulae of the Prussian blues and related compounds. Nature 1936, 137, 577–578. [Google Scholar] [CrossRef]
- Herren, F.; Fischer, P.; Ludi, A.; Hälg, W. Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3·xH2O. Location of water molecules and long-range magnetic order. Inorg. Chem. 1980, 19, 956–959. [Google Scholar] [CrossRef]
- Kumar, V.; Pathak, D.P.; Sandal, N. Toxicity and antidotal treatment by synthesized and optimized ferric(III) hexacyanoferrate(II) for thallium. Bull. Natl. Res. Cent. 2023, 47, 114. [Google Scholar] [CrossRef]
- Zakaria, M.B.; Chikyow, T. Recent advances in Prussian blue and Prussian blue analogues: Synthesis and thermal treatments. Coord. Chem. Rev. 2017, 352, 328–345. [Google Scholar] [CrossRef]
- Vaucher, S.; Li, M.; Mann, S. Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew. Chem. 2000, 112, 1863–1866. [Google Scholar] [CrossRef]
- Hegner, F.S.; Galán-Mascarós, J.R.N.; Lopez, N. A database of the structural and electronic properties of Prussian blue, Prussian white, and Berlin green compounds through density functional theory. Inorg. Chem. 2016, 55, 12851–12862. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Kim, M.; Lee, W.; Jeon, M.; Lee, C.; Kim, H.; Im, H.-J.; Piao, Y. Injectable biocompatible nanocomposites of Prussian blue nanoparticles and bacterial cellulose as a safe and effective photothermal cancer therapy. J. Nanobiotechnol. 2023, 21, 365. [Google Scholar] [CrossRef] [PubMed]
- Daneshi, M.; Farahbakhsh, Z.; Mehrgardi, M.A. Hollow Mesoporous Prussian Blue Nanoparticles for In Vivo Synergistic Chemo-Photothermal Cancer Therapy and Dual-Mode Magnetic Resonance/Fluorescence Imaging. ACS Appl. Nano Mater. 2024, 7, 6946–6957. [Google Scholar] [CrossRef]
- Estelrich, J.; Busquets, M.A. Prussian Blue: A Nanozyme with Versatile Catalytic Properties. Int. J. Mol. Sci. 2021, 22, 5993. [Google Scholar] [CrossRef]
- Lee, S.-H.; Huh, Y.-D. Preferential evolution of Prussian blue’s morphology from cube to hexapod. Bull. Korean Chem. Soc. 2012, 33, 1078–1080. [Google Scholar] [CrossRef]
- Ming, H.; Torad, N.L.; Chiang, Y.-D.; Wu, K.C.-W.; Yamauchi, Y. Size-and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm 2012, 14, 3387–3396. [Google Scholar] [CrossRef]
- Adak, S.; Daemen, L.L.; Hartl, M.; Williams, D.; Summerhill, J.; Nakotte, H. Thermal expansion in 3d-metal Prussian Blue Analogs—A survey study. J. Solid State Chem. 2011, 184, 2854–2861. [Google Scholar] [CrossRef]
- Kim, D.S.; Zakaria, M.B.; Park, M.-S.; Alowasheeir, A.; Alshehri, S.M.; Yamauchi, Y.; Kim, H. Dual-textured Prussian Blue nanocubes as sodium ion storage materials. Electrochim. Acta 2017, 240, 300–306. [Google Scholar] [CrossRef]
- Roy, X.; Thompson, L.K.; Coombs, N.; MacLachlan, M.J. Mesostructured Prussian blue analogues. Angew. Chem. 2008, 120, 521–524. [Google Scholar] [CrossRef]
- Hu, M.; Torad, N.L.; Yamauchi, Y. Preparation of various prussian blue analogue hollow nanocubes with single crystalline shells. Eur. J. Inorg. Chem. 2012, 2012, 4795–4799. [Google Scholar] [CrossRef]
- Cao, M.; Wu, X.; He, X.; Hu, C. Shape-controlled synthesis of Prussian blue analogue Co3[Co(CN)6]2 nanocrystals. Chem. Commun. 2005, 17, 2241–2243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, L.; Li, J. Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer. Electrochim. Acta 2008, 53, 3050–3055. [Google Scholar] [CrossRef]
- Hu, M.; Jiang, J.-S.; Zeng, Y. Prussian blue microcrystals prepared by selective etching and their conversion to mesoporous magnetic iron (III) oxides. Chem. Commun. 2010, 46, 1133–1135. [Google Scholar] [CrossRef]
- Zakaria, M.B.; Hu, M.; Imura, M.; Salunkhe, R.R.; Umezawa, N.; Hamoudi, H.; Belik, A.A.; Yamauchi, Y. Single-Crystal-like Nanoporous Spinel Oxides: A Strategy for Synthesis of Nanoporous Metal Oxides Utilizing Metal-Cyanide Hybrid Coordination Polymers. Chem.–Eur. J. 2014, 20, 17375–17384. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.B.; Li, C.; Pramanik, M.; Tsujimoto, Y.; Hu, M.; Malgras, V.; Tominaka, S.; Yamauchi, Y. Nanoporous Mn-based electrocatalysts through thermal conversion of cyano-bridged coordination polymers toward ultra-high efficiency hydrogen peroxide production. J. Mater. Chem. A 2016, 4, 9266–9274. [Google Scholar] [CrossRef]
- Zakaria, M.; Hu, M.; Salunkhe, R.; Pramanik, M.; Takai, K.; Malgras, V.; Choi, S.; Dou, S.; Kim, J.; Imura, M. Cover Profile. Chem. Eur. J. 2015, 21, 3510–3520. [Google Scholar]
- Zakaria, M.B.; Hu, M.; Tsujimoto, Y.; Sakka, Y.; Suzuki, N.; Kamachi, Y.; Imura, M.; Ishihara, S.; Ariga, K.; Yamauchi, Y. Controlled crystallization of cyano-bridged Cu-Pt coordination polymers with two-dimensional morphology. Chem. Asian J. 2014, 9, 1511–1514. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.B. Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction. RSC Adv. 2016, 6, 10341–10351. [Google Scholar] [CrossRef]
- Wan, P.; Xie, H.; Zhang, N.; Zhu, S.; Wang, C.; Yu, Z.; Chu, W.; Song, L.; Wei, S. Stepwise Hollow Prussian Blue Nanoframes/Carbon Nanotubes Composite Film as Ultrahigh Rate Sodium Ion Cathode. Adv. Funct. Mater. 2020, 30, 2002624. [Google Scholar] [CrossRef]
- Li, X.; Shang, Y.; Yan, D.; Guo, L.; Huang, S.; Yang, H.Y. Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. ACS Nano 2022, 16, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Wang, J.-L.; Gu, Q.-F.; Liu, H.-K.; Dou, S.-X. Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy 2015, 13, 200–207. [Google Scholar] [CrossRef]
- Quan, J.; Xu, E.; Chang, Y.; Zhu, Y.; Li, P.; Wang, L.; Sun, Z.; Yu, D.; Jiang, Y. Interface Engineering of a Sandwich Flexible Electrode PAn@CoHCF Rooted in Carbon Cloth for Enhanced Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2021, 13, 23794–23802. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Ren, W.; Jiang, R.; Li, Q.; Yao, X.; Wang, S.; You, Y.; Mai, L. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. ACS Appl. Mater. Interfaces 2021, 13, 3999–4007. [Google Scholar] [CrossRef]
- Niu, L.; Chen, L.; Zhang, J.; Jiang, P.; Liu, Z. Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and sodium-ion intercalation mechanism. J. Power Sources 2018, 380, 135–141. [Google Scholar] [CrossRef]
- Chen, X.; Wu, G.; Tang, J.; Zhou, L.; Wei, S. Ytterbium–Doped Prussian blue: Fabrication, photothermal performance and antibacterial activity. Inorg. Chem. Commun. 2020, 114, 107821. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kotcherlakota, R.; Haque, S.; Das, S.; Nuthi, S.; Bhattacharya, D.; Madhusudana, K.; Chakravarty, S.; Sistla, R.; Patra, C.R. Silver Prussian Blue Analogue Nanoparticles: Rationally Designed Advanced Nanomedicine for Multifunctional Biomedical Applications. ACS Biomater. Sci. Eng. 2020, 6, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Zhong, X.; Yang, Y.; Liu, X.; Zhong, G.; Xiao, C.; Liu, B.; Wang, W.; Yang, X. PB@PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials 2020, 243, 119936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Chen, L.; Lu, D.; Xie, X.; Wu, J.; Jiang, Z.; Li, Q.; Shi, X. Triple synergistic sterilization of Prussian blue nanoparticle-doped chitosan/gelatin packaging film for enhanced food preservation. Int. J. Biol. Macromol. 2024, 278, 134606. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Y.; Wang, C.; Shen, Y.; Liu, L.; Zhou, S.; Cui, P.-F.; Hu, H.; Jiang, P.; Ni, X.; et al. Mild Hyperthermia Induced by Hollow Mesoporous Prussian Blue Nanoparticles in Alliance with a Low Concentration of Hydrogen Peroxide Shows Powerful Antibacterial Effect. Mol. Pharm. 2022, 19, 819–830. [Google Scholar] [CrossRef]
- Cano-Mejia, J.; Bookstaver, M.L.; Sweeney, E.E.; Jewell, C.M.; Fernandes, R. Prussian blue nanoparticle-based antigenicity and adjuvanticity trigger robust antitumor immune responses against neuroblastoma. Biomater. Sci. 2019, 7, 1875–1887. [Google Scholar] [CrossRef] [PubMed]
- Da, J.; Li, Y.; Zhang, K.; Ren, J.; Wang, J.; Liu, X.; Liu, X.; Zhang, J.; Liu, L.; Zhang, W. Functionalized prussian blue nanozyme as dual-responsive drug therapeutic nanoplatform against maxillofacial infection via macrophage polarization. Int. J. Nanomed. 2022, 17, 5851. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Huang, W.; Yang, J.; Fu, X.; Jing, W.; Zhou, Y.; Cai, Y.; Yang, Z. Copper-rich multifunctional Prussian blue nanozymes for infected wound healing. Int. J. Biol. Macromol. 2023, 227, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Xu, P.; Zhu, Z.; Zhang, Y.; Cai, C.; Zhang, Y.; Shao, J.; Jin, F.; Li, Q.; You, J.; et al. Inflammation-Responsive Hydrogel Accelerates Diabetic Wound Healing through Immunoregulation and Enhanced Angiogenesis. Adv. Healthc. Mater. 2024, 2400150. [Google Scholar] [CrossRef] [PubMed]
- Bu, F.-X.; Du, C.-J.; Zhang, Q.-H.; Jiang, J.-S. One-pot synthesis of Prussian blue superparticles from reverse microemulsion. CrystEngComm 2014, 16, 3113–3120. [Google Scholar] [CrossRef]
- Li, Y.; Pan, F.; Yin, S.; Tong, C.; Zhu, R.; Li, G. Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of L-ascorbic acid. Microchem. J. 2022, 177, 107278. [Google Scholar] [CrossRef]
- Yang, R.; Qian, Z.; Deng, J. Electrochemical deposition of Prussian blue from a single ferricyanide solution. J. Electrochem. Soc. 1998, 145, 2231. [Google Scholar] [CrossRef]
- Uemura, T.; Kitagawa, S. Prussian blue nanoparticles protected by poly (vinylpyrrolidone). J. Am. Chem. Soc. 2003, 125, 7814–7815. [Google Scholar] [CrossRef] [PubMed]
- Shou, P.; Yu, Z.; Wu, Y.; Feng, Q.; Zhou, B.; Xing, J.; Liu, C.; Tu, J.; Akakuru, O.U.; Ye, Z. Zn2+ doped ultrasmall prussian blue nanotheranostic agent for breast cancer photothermal therapy under MR imaging guidance. Adv. Healthc. Mater. 2020, 9, 1900948. [Google Scholar] [CrossRef] [PubMed]
- Shiba, F.J.C.; Physicochemical, S.A.; Aspects, E. Preparation of monodisperse Prussian blue nanoparticles via reduction process with citric acid. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 178–182. [Google Scholar] [CrossRef]
- Liao, Z.; Li, J.; Ni, W.; Zhan, R.; Xu, X. Co-delivery of antimicrobial peptide and Prussian blue nanoparticles by chitosan/polyvinyl alcohol hydrogels. Carbohydr. Polym. 2025, 348, 122873. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Huang, J.; Wei, W.; Wu, Z.; Shi, X. A multimode biosensor based on prussian blue nanoparticles loaded with gold nanoclusters for the detection of aflatoxin B1. Anal. Methods 2024, 16, 3088–3098. [Google Scholar] [CrossRef]
- Liu, J.; Jia, B.; Li, Z.; Li, W.J. Reactive oxygen species-responsive polymer drug delivery systems. Front. Bioeng. 2023, 11, 1115603. [Google Scholar] [CrossRef]
- Vasudevan, M.; Perumal, V.; Karuppanan, S.; Ovinis, M.; Bothi Raja, P.; Gopinath, S.C.; Immanuel Edison, T.N.J. A comprehensive review on biopolymer mediated nanomaterial composites and their applications in electrochemical sensors. Crit. Rev. Anal. Chem. 2024, 54, 1871–1894. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, P.A.; Gonçales, V.R.; Ponzio, E.A.; de Torresi, S.I.C. Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chem. Commun. 2005, 3, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cao, M.; Hu, C.; He, X. Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst. Growth Des. 2006, 6, 26–28. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Mu, T.; Du, J.; Liu, Z.; Han, B.; Chen, J. Preparation of polyvinylpyrrolidone-protected Prussian blue nanocomposites in microemulsion. Colloids Surf. A Physicochem. Eng. Asp. 2004, 243, 63–66. [Google Scholar] [CrossRef]
- Liang, G.; Xu, J.; Wang, X. Synthesis and Characterization of Organometallic Coordination Polymer Nanoshells of Prussian Blue Using Miniemulsion Periphery Polymerization (MEPP). J. Am. Chem. Soc. 2009, 131, 5378–5379. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Furukawa, S.; Ohtani, R.; Sukegawa, H.; Nemoto, Y.; Reboul, J.; Kitagawa, S.; Yamauchi, Y. Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching. Angew. Chem. Int. Ed. 2012, 51, 984–988. [Google Scholar] [CrossRef]
- Zakaria, M.B.; Hu, M.; Hayashi, N.; Tsujimoto, Y.; Ishihara, S.; Imura, M.; Suzuki, N.; Huang, Y.-Y.; Sakka, Y.; Ariga, K.; et al. Thermal Conversion of Hollow Prussian Blue Nanoparticles into Nanoporous Iron Oxides with Crystallized Hematite Phase. Eur. J. Inorg. Chem. 2014, 2014, 1137–1141. [Google Scholar] [CrossRef]
- Cai, X.; Gao, W.; Zhang, L.; Ma, M.; Liu, T.; Du, W.; Zheng, Y.; Chen, H.; Shi, J. Enabling Prussian Blue with Tunable Localized Surface Plasmon Resonances: Simultaneously Enhanced Dual-Mode Imaging and Tumor Photothermal Therapy. ACS Nano 2016, 10, 11115–11126. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; He, J.; Sun, L.; Wang, Y.; Li, Z.; Wang, Q.; Sun, Y.; Wang, W.; Yu, M. Highly efficient photothermal sterilization of water mediated by Prussian blue nanocages. Environ. Sci. Nano 2018, 5, 1161–1168. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Li, Z.; Aslan, H.; Sun, L.; Sun, Y.; Wang, W.; Yu, M. Prussian blue-encapsulated Fe3O4 nanoparticles for reusable photothermal sterilization of water. J. Colloid Interface Sci. 2019, 540, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Liu, K.; Sun, X.; Wang, X.; Li, Y.; Cheng, L.; Liu, Z. Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. ACS Appl. Mater. Interfaces 2015, 7, 11575–11582. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Su, Y.; Tian, Y.; Wang, S.; Su, X.; Liu, Y.; Zhang, Y.; Tang, Y.; Ni, Q.; Liu, W.; et al. Periodic Mesoporous Organosilica Coated Prussian Blue for MR/PA Dual-Modal Imaging-Guided Photothermal-Chemotherapy of Triple Negative Breast Cancer. Adv Sci 2017, 4, 1600356. [Google Scholar] [CrossRef]
- Ma, Z.-W.; Li, W.-R.; Zhang, J.-Y.; Yang, W.-X.; Tan, S.; Cai, J.-Y.; Deng, S.-P. Prussian Blue Nanocubes Decorated with Ag Nanoparticles for Near-Infrared Triggered Release of Bactericidal Ag+, Fe2+, and Fe3+ Ions. ACS Appl. Nano Mater. 2022, 5, 9401–9414. [Google Scholar] [CrossRef]
- Peng, X.; Wang, R.; Wang, T.; Yang, W.; Wang, H.; Gu, W.; Ye, L. Carbon Dots/Prussian Blue Satellite/Core Nanocomposites for Optical Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 2018, 10, 1084–1092. [Google Scholar] [CrossRef]
- Chen, X.; Wang, R.; Liu, D.; Tian, Y.; Ye, L. Prussian Blue Analogue Islands on BiOCl-Se Nanosheets for MR/CT Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl. Bio Mater. 2019, 2, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Tian, Q.; Yang, S. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Adv. 2017, 7, 37887–37897. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Q.; Cheng, C.; Lin, S.; Lin, T.; Liu, C.; Han, X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. Sensors 2020, 20, 6905. [Google Scholar] [CrossRef]
- Roy, A.; Somani, S.; Nene, A.; Kunchiraman, B.; Somani, P. Antibacterial Activity of Prussian Blue. J. Green Sci. Technol. 2013, 1, 27–29. [Google Scholar] [CrossRef]
- Maaoui, H.; Jijie, R.; Pan, G.H.; Drider, D.; Caly, D.; Bouckaert, J.; Dumitrascu, N.; Chtourou, R.; Szunerits, S.; Boukherroub, R. A 980nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles. J. Colloid Interface Sci. 2016, 480, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Dacarro, G.; Grisoli, P.; Borzenkov, M.; Milanese, C.; Fratini, E.; Ferraro, G.; Taglietti, A.; Pallavicini, P. Self-assembled monolayers of Prussian blue nanoparticles with photothermal effect. Supramol. Chem. 2017, 29, 823–833. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Zhang, H.; Li, F.; Hu, J.; Qian, J.; Wang, Y.; Zhang, J.; Wu, Z. Dental Caries Management with Antibacterial Silver-Doped Prussian Blue Hydrogel by the Combined Effects of Photothermal Response and Ion Discharge. ACS Appl. Mater. 2024, 16, 28172–28183. [Google Scholar] [CrossRef]
- Su, Z.; Kong, L.; Dai, Y.; Tang, J.; Mei, J.; Qian, Z.; Ma, Y.; Li, Q.; Ju, S.; Wang, J. Bioresponsive nano-antibacterials for H2S-sensitized hyperthermia and immunomodulation against refractory implant–related infections. Sci. Adv. 2022, 8, eabn1701. [Google Scholar] [CrossRef]
- Borzenkov, M.; D’Alfonso, L.; Polissi, A.; Sperandeo, P.; Collini, M.; Dacarro, G.; Taglietti, A.; Chirico, G.; Pallavicini, P. Novel photo-thermally active polyvinyl alcohol-Prussian blue nanoparticles hydrogel films capable of eradicating bacteria and mitigating biofilms. Nanotechnology 2019, 30, 295702. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Qian, J.; Yang, S.; Kuang, L.; Hua, D. Acetylcysteine-decorated Prussian blue nanoparticles for strong photothermal sterilization and focal infection treatment. Colloids Surf. B Biointerfaces 2019, 181, 31–38. [Google Scholar] [CrossRef]
- Han, D.; Li, Y.; Liu, X.; Li, B.; Han, Y.; Zheng, Y.; Yeung, K.W.K.; Li, C.; Cui, Z.; Liang, Y.; et al. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chem. Eng. J. 2020, 396, 125194. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Liu, X.; Tan, L.; Cui, Z.; Feng, X.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; et al. Dual Metal–Organic Framework Heterointerface. ACS Cent. Sci. 2019, 5, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Lin, X.; Li, J.; Yin, Y.; Gao, X.; Wang, S.; Liu, Y. Multifunctional nanoplatform for dual-mode sensitive detection of pathogenic bacteria and the real-time bacteria inactivation. Biosens. Bioelectron. 2021, 173, 112789. [Google Scholar] [CrossRef]
- Gao, X.; Yin, Y.; Wu, H.; Hao, Z.; Li, J.; Wang, S.; Liu, Y. Integrated SERS Platform for Reliable Detection and Photothermal Elimination of Bacteria in Whole Blood Samples. Anal. Chem. 2021, 93, 1569–1577. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.; Li, W.; Fu, Q.; Wang, L.; Lai, E.; Zhao, W.; Zhang, K. Synthesis of Prussian Blue Nanoparticles and Their Antibacterial, Antiinflammation and Antitumor Applications. Pharmaceuticals 2022, 15, 769. [Google Scholar] [CrossRef]
- Sahu, A.; Jeon, J.; Lee, M.S.; Yang, H.S.; Tae, G. Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111596. [Google Scholar] [CrossRef]
- Oh, H.; Son, D.; Lee, J.S.; Kim, M.; Sung, D.; Lee, H.; Choi, W.I. Reactive oxygen species scavenging nanofibers with chitosan-stabilized Prussian blue nanoparticles for enhanced wound healing efficacy. Int. J. Biol. Macromol. 2022, 219, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Liu, L.; Liu, M.; Chen, X.; Zhou, S.; Cui, P.; Du, X.; Qiu, L.; Wang, J.; et al. Antimicrobial nanozyme-enzyme complex catalyzing cascade reaction of glucose to hydroxyl radical to combat bacterial infection. J. Drug Deliv. Sci. Technol. 2022, 75, 103695. [Google Scholar] [CrossRef]
- Wang, D.; Wu, H.; Lim, W.Q.; Phua, S.Z.F.; Xu, P.; Chen, Q.; Guo, Z.; Zhao, Y. A mesoporous nanoenzyme derived from metal–organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy. Adv. Mater. 2019, 31, 1901893. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, N.; Jha, D.; Gautam, H.K.; Roy, I. Peroxidase-like behavior and photothermal effect of chitosan-coated Prussian-blue nanoparticles: Dual-modality antibacterial action with enhanced bioaffinity. Mater. Adv. 2020, 1, 774–782. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, X.; Huang, L.; Qian, H.; Liu, W. Mechanism of pyroptosis in neurodegenerative diseases and its therapeutic potential by traditional Chinese medicine. Front. Pharmacol. 2023, 14, 1122104. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Hao, J.; Wu, J.; Li, Y.; Cai, X.; Zheng, Y. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv. Mater. 2022, 34, 2106723. [Google Scholar] [CrossRef] [PubMed]
- Hegedűs, N.; Forgách, L.; Kiss, B.; Varga, Z.; Jezsó, B.; Horváth, I.; Kovács, N.; Hajdrik, P.; Padmanabhan, P.; Gulyás, B.; et al. Synthesis and preclinical application of a Prussian blue-based dual fluorescent and magnetic contrast agent (CA). PLoS ONE 2022, 17, e0264554. [Google Scholar] [CrossRef]
- Busquets, M.A.; Estelrich, J. Prussian blue nanoparticles: Synthesis, surface modification, and biomedical applications. Drug Discov. Today 2020, 25, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Long, Y.; Fan, J.; Xiao, C.; Tong, C.; Guo, C.; Chen, X.; Liu, B.; Yang, X. Biosafety and biocompatibility assessment of Prussian blue nanoparticles in vitro and in vivo. Nanomedicine 2020, 15, 2655–2670. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, B.; Alamri, H.; Yarabarla, S.; Kim, M.H.; Huang, S.D. KCa(H(2) O)(2) [Fe(III) (CN)(6) ]⋅H(2) O Nanoparticles as an Antimicrobial Agent against Staphylococcus aureus. Angew. Chem. (Int. Ed. Engl.) 2018, 57, 2214–2218. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K.W.K.; et al. Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 2019, 10, 4490. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, W.; Shen, A.-G.; Hu, J.-M. Rational synthesis of Three-Layered plasmonic nanocomposites of copper Sulfide/Gold/Zinc-Doped Prussian blue analogues for improved photothermal disinfection and wound healing. J. Colloid Interface Sci. 2022, 610, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Das, S.; Nuthi, S.; Patra, C.R. Biocompatible nickel-prussian blue@silver nanocomposites show potent antibacterial activities. Future Sci. OA 2017, 3, Fso233. [Google Scholar] [CrossRef]
- Sharma, S.; Chakraborty, N.; Jha, D.; Gautam, H.K.; Roy, I. Robust dual modality antibacterial action using silver-Prussian blue nanoscale coordination polymer. Mater. Sci. C 2020, 113, 110982. [Google Scholar] [CrossRef] [PubMed]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, J.; Yang, J.; Peng, Q.; Wu, Z.; Liu, R.; Luo, M.; Qiu, Y.; Cao, R. Bufotalin-Loaded Biomimetic Prussian Blue Nanoparticles For Colorectal Cancer Chemo-Photothermal Ferroptosis Therapy. Nanomedicine 2024, 19, 109–125. [Google Scholar] [CrossRef]
- Qiu, M.; Singh, A.; Wang, D.; Qu, J.; Swihart, M.; Zhang, H.; Prasad, P.N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today 2019, 25, 135–155. [Google Scholar] [CrossRef]
- Yang, G.; Phua, S.Z.F.; Bindra, A.K.; Zhao, Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 2019, 31, 1805730. [Google Scholar] [CrossRef] [PubMed]
- Shokouhimehr, M.; Soehnlen, E.S.; Hao, J.; Griswold, M.; Flask, C.; Fan, X.; Basilion, J.P.; Basu, S.; Huang, S.D. Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T 1-weighted MRI contrast and small molecule delivery agents. J. Mater. Chem. 2010, 20, 5251–5259. [Google Scholar] [CrossRef]
- Ballou, B.; Lagerholm, B.C.; Ernst, L.A.; Bruchez, M.P.; Waggoner, A.S. Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 2004, 15, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Breen, A.; Pillai, S.C. Toxicity of nanomaterials: Exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. 2018, 4, 2237–2275. [Google Scholar] [CrossRef]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, S.; Yin, J.-J.; He, W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865. [Google Scholar] [CrossRef]
S. No. | Modified PBNPs | Synthetic Strategies | Composition | Shape | References |
---|---|---|---|---|---|
1 | PB analogues Fe4[Fe(CN)6]3 | Chemical coprecipitation | Poly(vinylpyrrolidone) (PVP) and K3[Fe(CN)6]·3H2O | Nanocubes | [16,17,18,19] |
Mesostructured Zn3[Fe(CN)5NH3]2·3H2O | Ligand-assisted template | octadecylpyrazinium bromide Na3[Fe(CN)5NH3]·3H2O, and Zn(NO3)2 (linking agent) | Hexagonal mesostructured framework | [20] | |
Monocrystalline Co3[Fe(CN)6]2·12H2O | Controlled chemical etching | Cobalt chloride, sodium citrate, PVP, and K3[Fe(CN)6] | Solid and Hollow nanocubes | [21] | |
Co3[Co(CN)6]2 | Microemulsion | K3[Co(CN)6], n-pentanol, cyclohexane and CTAB | Cubes and rods, polyhedral truncated nanocubes | [22] | |
Multimetal CoNi-HCF@Ni-HCF | Coprecipitation | CoCl2, NiCl2, sodium citrate, Na4Fe(CN)6, and PVP | Nanocubes | [23] | |
2 | PB microcrystals Fe4[Fe(CN)6]3 | Selective chemical etching and thermal decomposition | K4[Fe(CN)6] and Cetyltrimethylammonium bromide (CTAB) | Elongated nanocubes | [24] |
3 | PBNPs and Nanocrystal superlattices FeII3[FeIII(CN)6]2 | Reverse microemulsions | Ammonium iron(iii) oxalate (NH4)3 [Fe(C2O4)3], and ammonium ferricyanide solutions (NH4)3[Fe(CN)6] | Square (cubic) superlattices | [11] |
4 | Chitosan-PB nanocomposites K2FeII[FeII(CN)6] | Coprecipitation | K3Fe(CN)6, and chitosan (protective matrix) | Spherical NPs | [23] |
5 | Nanoporous metal oxides FeII3[CoIII(CN)6]2KCoII4 [FeIII(CN)6]3 | Coprecipitation | FeCl2⋅4 H2O, trisodium citrate dihydrate, and K3[Co(CN)6] | Nanocubes | [25] |
6 | Nanoporous Mn-based PBNPs Mn2[Ru(CN)6].xH2OMn3[Co(CN)6]2.xH2OMn3[Mn(CN)6]2·xH2O Cu(H2O)2[Pt(CN)4]·4H2O | Coprecipitation | Trisodium citrate dihydrate (TSCD), manganese (II) acetate aqueous solution, K4[Ru(CN)6], K3[Co(CN)6], and K3[Mn(CN)6] | Nanocubes | [26] |
7 | Nanoporous Nickel Oxide PBNPs Ni(H2O)2[Ni(CN)4]·4H2O | Coprecipitation | NiCl2⋅6 H2O, TSCD, and K2[Ni(CN)4]⋅x H2O | Nanoflakes | [27] |
8 | Cyano-Bridged Cu–Pt PBNPs Cu(H2O)2[Pt(CN)4]·4H2O | Coprecipitation | copper(II) acetate, trisodium citrate, and potassium tetracyanoplatinate(II)[(K2Pt(CN)4] | Nanoflakes | [28] |
9 | PB solid nanospheres with multi-shells PdCo/Pd-Co(CN)6]x·nH2O | Selective chemical etching | PVP, and K3[Fe(CN)6] | Solid Nanocubes | [29] |
10 | PB nanoframes FeHCFe | Hydrothermal | PB Nanocubes and benzoic acid | Nanoframes | [30] |
11 | Potassium manganese hexacyanoferrate superstructures K2Mn[Fe(CN)6] | Coprecipitation | Manganese(II) acetate tetrahydrate (MnAc2·4H2O), K2EDTA·2H2O, PVP and K3Fe(CN)6 | Octahedra | [31] |
12 | ClO4-doped polypyrrole-coated nanocomposite NMHFC@PPy | Coprecipitation | Manganese acetate, Na4Fe(CN)6 10H2O, dimethyl carbonate, and sodium citrate | Irregular NPs | [32] |
13 | Carbon cloth PB analogue@polyaniline C@PAn@CoHCF | Coprecipitation | Carbon cloth (CC), (NH4)2S2O8, trisodium citrate, CoCl2, Na4Fe(CN)6 | Cubes | [33] |
14 | Crystallized PBNPs Na2Fe4[Fe(CN)6]3 | Hydrothermal | Fe3+ and [Fe(CN)6]4− | Microsphere | [34] |
15 | Zinc hexacyanoferrate Zn3[Fe(CN)6]2 | Coprecipitation | ZnSO4, Na2C2O4, and K3[Fe(CN)6] | Nanocubes | [35] |
S. No | Nanoscale Modifications of PBNPs | Target Bacteria | Routes of Administration of PBNPs and Its Derivatives | Mechanism of Action | Results | References |
---|---|---|---|---|---|---|
1 | Fabrication of Ytterbium—doped PBNPs (PB-Yb) | E. coli | NIR irradiation of bacterial colonies containing nanostructured PBNPs | Stimulates photothermal mediated disruption of bacterial membrane integrity due to ROS generation | Enhanced photothermal effect leads to better bactericidal property | [36] |
2 | Silver hexacyanoferrate PBNPs stabilized with poly(N-vinyl-2-pyrrolidone) (SPBANPs) | E. coli, K. pneumonia, P. aeruginosa and B. subtilis | Intraperitoneal injections | Generation of ROS due to release of silver ions leading to loss of membrane integrity | Enhanced antibacterial efficacy | [37] |
3 | Functionalization of polydopamine with silver NPs on the PBNPs surface (PB@PDA@Ag) | E. coli, S. aureus | Topical administration followed by NIR (808 nm) | Synergistic production of ROS, mitigating ATP production and interference with bacterial metabolism | NIR-assisted PB analogue enhanced bactericidal efficiency in a sorter interval | [38] |
4 | PBNPs doped with chitosan and gelatin-packing film (CS/Gel/PB) | S. aureus, E. coli | Direct mixing of the cancer cell line with nanostructured PBNPs | The electrostatic interaction between the PBNPs films and bacterial cell membrane disrupts the membrane’s potential, causing leakage of cellular contents, ultimately leading to bacterial death | Enhanced antioxidant, thermal, mechanical and water resistance properties, increased adhesion to bacteria leading to sustained antibacterial activity | [39] |
5 | Association of hydrogen peroxide on hollow mesoporous PBNPs (HMPBNPs) | S. aureus, MRSA | Topical administration | Photothermal-assisted bacterial destruction | Effective bacterial eradication and elimination of biofilm via mild hyperthermia induced by HMPBNPs | [40] |
S. No | Nanoscale Modifications of PBNPs | Routes of Administration of PBNPs and Its Derivatives | Application | Mechanism of Action | Outcome | References |
---|---|---|---|---|---|---|
1 | Surface coating of CpG oligodeoxynucleotide on PBNPs (CpG-PBNPs) | Intratumoral administration | Nanoimmunotherapy | Enhanced the adjuvanticity and antigenicity of treated tumours, effectively generating immunological memory | Persistent regression of tumour and concurrent adjuvant, antigenic and cytotoxic effects to long-term immunological response | [41] |
2 | Surface functionalization with polydopamine on hollow mesoporous PBNPs loaded with curcumin (HMPB@Cur@PDA) | Subgingival administration | Treatment of dual responsive maxillofacial infection by acting as anti-inflammatory and ROS regulator | Act as a ROS scavenger and anti-inflammatory agent, and stimulates macrophage polarization | Sustained drug release, decreased inflammatory response, and enhanced tissue recovery | [42] |
3 | Modified copper-hyaluronic acid PB nanozymes (HPP@Cu NZs) | Topical administration | Anti-inflammatory and wound healing | Exhibits NIR-assisted bactericidal properties by acting as ROS scavenger as well as promotes cell proliferation and migration | Exhibits faster vascularization, epithelialization, and collagen deposition | [43] |
4 | Functionalized PBNPs with polydopamine and curcumin (HMPB@Cur@PDA) | Subgingival administration | Maxillofacial infection | Modulates immune response by synergistically regulating inflammatory microenvironment and scavenging ROS | Lowered periodontal inflammatory response and improved tissue repair | [42] |
5 | Nano formulation of PBNPs hydrogel modified with growth factors | Systemic administration | Wound healing | Mitigate oxidative stress effectively by modulating the immune microenvironment and promoting angiogenesis and tissue repair | Accelerates angiogenic efficacy of VEGF, promotes wound closure, and reduces scarring | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, N.; Roy, I.; Kumar, P.; Singh, S.; Pathak, R.; Gautam, V.; Gautam, H.K. Nanoscale Prussian Blue and Its Analogues: Design and Applications in Infection Control, Wound Healing and Beyond. Pharmaceutics 2024, 16, 1616. https://doi.org/10.3390/pharmaceutics16121616
Chakraborty N, Roy I, Kumar P, Singh S, Pathak R, Gautam V, Gautam HK. Nanoscale Prussian Blue and Its Analogues: Design and Applications in Infection Control, Wound Healing and Beyond. Pharmaceutics. 2024; 16(12):1616. https://doi.org/10.3390/pharmaceutics16121616
Chicago/Turabian StyleChakraborty, Nayanika, Indrajit Roy, Pradeep Kumar, Swati Singh, Rajiv Pathak, Vibhav Gautam, and Hemant K. Gautam. 2024. "Nanoscale Prussian Blue and Its Analogues: Design and Applications in Infection Control, Wound Healing and Beyond" Pharmaceutics 16, no. 12: 1616. https://doi.org/10.3390/pharmaceutics16121616
APA StyleChakraborty, N., Roy, I., Kumar, P., Singh, S., Pathak, R., Gautam, V., & Gautam, H. K. (2024). Nanoscale Prussian Blue and Its Analogues: Design and Applications in Infection Control, Wound Healing and Beyond. Pharmaceutics, 16(12), 1616. https://doi.org/10.3390/pharmaceutics16121616