Clinical Pharmacokinetics of Fexofenadine: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Study Design
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Data Extraction and Study Selection
2.5. Quality Assessment
3. Results
3.1. Literature Search Results
3.2. Quality of Included Studies
3.3. Study Characteristics
3.4. Studies Including Healthy Population
3.4.1. Intravenous Administration
3.4.2. Oral Administration
3.4.3. Effect of Genes Encoding Drug Transporters
3.5. Studies with Diseased Population
3.6. Studies with Special Population
3.7. Drug–Drug Interactions (DDI) of Fexofenadine
3.7.1. Effect of Enantiomers on DDI of Fexofenadine
3.7.2. Effect of Genotypes on DDI of Fexofenadine
3.8. Drug–Food Interactions (DFI) of Fexofenadine
3.8.1. Interactions of Fexofenadine with Fruit Juices
3.8.2. Interactions of Fexofenadine with Green Tea Extract (GTE)
3.8.3. Effect of Enantiomers on DFI of Fexofenadine
3.8.4. Effect of Transporter Genotypes on DFI of Fexofenadine
3.9. Drug–Herb Interactions (DHI) of Fexofenadine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dicpinigaitis, P.V.; Gayle, Y.E. Effect of the second-generation antihistamine, fexofenadine, on cough reflex sensitivity and pul-monary function. Br. J. Clin. Pharmacol. 2003, 56, 501–504. [Google Scholar] [CrossRef]
- Ciprandi, G.; Tosca, M.A.; Cosentino, C.; Riccio, A.M.; Passalacqua, G.; Canonica, G.W. Effects of fexofenadine and other antihistamines on components of the allergic response: Adhesion molecules. J. Allergy Clin. Immunol. 2003, 112, S78–S82. [Google Scholar] [CrossRef]
- Handley, D.A. Advancement of the Third Generation of Antihistamines. Pediatr. Asthma Allergy Immunol. 1999, 13, 163–168. [Google Scholar] [CrossRef]
- Fischer, J.; Ganellin, C.R. Analogue-based drug discovery. Chem. Int. Newsmag. IUPAC 2010, 32, 12–15. [Google Scholar]
- Asha, P.K.; Raghu, M.S.; Devi, V.S.A. Properties of Potassium Permanganate as Oxidant in the Determination of Fexofenadine in Pharmaceuticals. Sens. Lett. 2020, 18, 64–68. [Google Scholar] [CrossRef]
- Barnett, A.A. FDA approves safer form of terfenadine. Lancet 1996, 348, 395. [Google Scholar] [CrossRef]
- Yamada, S.; Yasui-Furukori, N.; Akamine, Y.; Kaneko, S.; Uno, T. Effects of the P-glycoprotein inducer carbamazepine on fexofenadine phar-macokinetics. Ther. Drug Monit. 2009, 31, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Devillier, P.; Roche, N.; Faisy, C. Clinical Pharmacokinetics and Pharmacodynamics of Desloratadine, Fexofenadine and Levocetirizine: A comparative review. Clin. Pharmacokinet. 2008, 47, 217–230. [Google Scholar] [CrossRef]
- Axelrod, D.; Bielory, L. Fexofenadine hydrochloride in the treatment of allergic disease: A review. J. Asthma Allergy 2008, 1, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Team DSbHJ. Fexofenadine. Available online: https://healthjade.net/fexofenadine/ (accessed on 23 April 2024).
- Craun, K.L.; Schury, M.P. Fexofenadine: StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK556104/#_article-21720_s11_ (accessed on 23 April 2024).
- Helmy, S.A.; El-Bedaiwy, H.M.; El-Masry, S.M. Applying Biopharmaceutical Classification System Criteria to Predict the Potential Effect of Cremophor ® RH 40 on Fexofenadine Bioavailability at Higher Doses. Ther. Deliv. 2020, 11, 447–464. [Google Scholar] [CrossRef]
- Yamazaki, A.; Kumagai, Y.; Yamane, N.; Tozuka, Z.; Sugiyama, Y.; Fujita, T.; Yokota, S.; Maeda, M. Microdose study of a P-glycoprotein substrate, fexofenadine, using a non-radioisotope-labelled drug and LC/MS/MS. J. Clin. Pharm. Ther. 2010, 35, 169–175. [Google Scholar] [CrossRef]
- Simons, F.E.; Simons, K.J. Clinical pharmacology of new histamine H1 receptor antagonists. Clin. Pharmacokinet. 1999, 36, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Molimard, M.; Diquet, B.; Benedetti, M.S. Comparison of pharmacokinetics and metabolism of desloratadine, fexofenadine, levocetirizine and mizolastine in humans. Fundam. Clin. Pharmacol. 2004, 18, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Akamine, Y.; Miura, M.; Yasui-Furukori, N.; Kojima, M.; Uno, T. Carbamazepine differentially affects the pharmacokinetics of fexofenadine enantiomers. Br. J. Clin. Pharmacol. 2012, 73, 478–481. [Google Scholar] [CrossRef]
- Abilash, K.; Dinesh, G.; Janartanan, S.; Praveena, J.; Vanitha, G.; Gokul Manikandan, P.; Jeevanandham, S. Formulation and evaluation of mouth dissolving films of fexofenadine hydrocloride by solvent casting method. World J. Pharm. Res. 2022, 11, 1699–1721. [Google Scholar]
- Liu, S.; Beringer, P.M.; Hidayat, L.; Rao, A.P.; Louie, S.; Burckart, G.J.; Shapiro, B. Probenecid, but Not Cystic Fibrosis, Alters the Total and Renal Clearance of Fexofenadine. J. Clin. Pharmacol. 2008, 48, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Kusuhara, H.; Miura, M.; Yasui-Furukori, N.; Yoshida, K.; Akamine, Y.; Yokochi, M.; Fukizawa, S.; Ikejiri, K.; Kanamitsu, K.; Uno, T.; et al. Effect of Coadministration of Single and Multiple Doses of Rifampicin on the Pharmacokinetics of Fexofenadine Enantiomers in Healthy Subjects. Drug Metab. Dispos. 2013, 41, 206–213. [Google Scholar] [CrossRef]
- Valizadeh, H.; Leila, B.; Jalilian, H.; Islambulchilar, Z.; Zakeri-Milani, P. Bioequivalence of Fexofenadine Tablet Formulations Assessed in Healthy Iranian Volunteers. Arzneimittelforschung 2009, 59, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Lappin, G.; Shishikura, Y.; Jochemsen, R.; Weaver, R.J.; Gesson, C.; Houston, B.; Oosterhuis, B.; Bjerrum, O.J.; Rowland, M.; Garner, C. Pharmacokinetics of fexofenadine: Evaluation of a microdose and assessment of absolute oral bioavailability. Eur. J. Pharm. Sci. 2010, 40, 125–131. [Google Scholar] [CrossRef]
- Tannergren, C.; Petri, N.; Knutson, L.; Hedeland, M.; Bondesson, U.; Lennernäs, H. Multiple transport mechanisms involved in the intestinal absorption and first-pass extraction of fexofenadine. Clin. Pharmacol. Ther. 2003, 74, 423–436. [Google Scholar] [CrossRef]
- Kumar, L.; Alam, M.S.; Meena, C.L.; Jain, R.; Bansal, A.K. Fexofenadine Hydrochloride. Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 34, pp. 153–192. [Google Scholar]
- Pinto, L.; Moreira, F.d.L.; Nardotto, G.H.B.; Cavalli, R.C.; Moisés, E.C.D.; Duarte, G.; Lanchote, V.L. Chiral Discrimination of P-glycoprotein in Parturient Women: Effect of Fluoxetine on Maternal-Fetal Fexofenadine Pharmacokinetics. Pharm. Res. 2020, 37, 131. [Google Scholar] [CrossRef]
- Compalati, E.; Baena-Cagnani, R.; Penagos, M.; Badellino, H.; Braido, F.; Gómez, R.; Canonica, G.; Baena-Cagnani, C. Systematic Review on the Efficacy of Fexofenadine in Seasonal Allergic Rhinitis: A Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Clinical Trials. Int. Arch. Allergy Immunol. 2011, 156, 1–15. [Google Scholar] [CrossRef]
- Huang, C.-Z.; Jiang, Z.-H.; Wang, J.; Luo, Y.; Peng, H. Antihistamine effects and safety of fexofenadine: A systematic review and Meta-analysis of randomized controlled trials. BMC Pharmacol. Toxicol. 2019, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Mancano, M.A. ISMP Adverse Drug Reactions: Propofol-Related Infusion Syndrome (PRIS) 1, 2; Ivermectin-Induced Ste-vens-Johnson Syndrome; Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis From Fexofenadine; Memantine-Related Drug Eruption. Hosp. Pharm. 2018, 53, 220–222. [Google Scholar] [CrossRef]
- Meltzer, E.O.; Rosario, N.A.; Van Bever, H.; Lucio, L. Fexofenadine: Review of safety, efficacy and unmet needs in children with allergic rhinitis. Allergy, Asthma Clin. Immunol. 2021, 17, 113. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.; Jarvis, B. Fexofenadine: A review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs 2000, 59, 301–321. [Google Scholar] [CrossRef]
- Smith, S.M.; Gums, J.G. Fexofenadine: Biochemical, pharmacokinetic and pharmacodynamic properties and its unique role in allergic disorders. Expert. Opin. Drug Metab. Toxicol. 2009, 5, 813–822. [Google Scholar] [CrossRef]
- Carnovale, C.; Battini, V.; Gringeri, M.; Volonté, M.; Uboldi, M.C.; Chiarenza, A.; Passalacqua, G. Safety of fexofenadine and other second-generation oral antihistamines before and after the removal of the prescription requirement in Italy and other European countries: A real-world evidence study and systematic review. World Allergy Organ. J. 2022, 15, 100658. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S.; Ben Van Den, A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Clark, H.D.; Wells, G.A.; Huët, C.; McAlister, F.A.; Salmi, L.R.; Fergusson, D.; Laupacis, A. Assessing the quality of randomized trials: Reliability of the Jadad scale. Control. Clin. Trials 1999, 20, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Al-Dirini, R.M.A.; Thewlis, D.; Paul, G. A Comprehensive Literature Review of the Pelvis and the Lower Extremity FE Human Models under Quasi-static Conditions. Work. 2012, 41 (Suppl. S1), 4218–4229. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.B.E.; Pawluk, S.A.; Wilby, K.J.; Rachid, O. The use of a modified Delphi technique to develop a critical appraisal tool for clinical pharmacokinetic studies. Int. J. Clin. Pharm. Weekbl. 2022, 44, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Simons, F.E.R.; Bergman, J.N.; Watson, W.T.A.; Simons, K. The clinical pharmacology of fexofenadine in children. J. Allergy Clin. Immunol. 1996, 98, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
- Russell, T.; Stoltz, M.; Weir, S. Pharmacokinetics, pharmacodynamics, and tolerance of single- and multiple-dose fexofenadine hydrochloride in healthy male volunteers. Clin. Pharmacol. Ther. 1998, 64, 612–621. [Google Scholar] [CrossRef]
- Robbins, D.K.; Castles, M.A.; Pack, D.J.; Bhargava, V.O.; Weir, S.J. Dose proportionality and comparison of single and multiple dose pharmacokinetics of fexofenadine (MDL 16455) and its enantiomers in healthy male volunteers. Biopharm Drug Dispos 1998, 19, 455–463. [Google Scholar] [CrossRef]
- Drescher, S.; Schaeffeler, E.; Hitzl, M.; Hofmann, U.; Schwab, M.; Brinkmann, U.; Eichelbaum, M.; Fromm, M.F. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofena-dine. Br. J. Clin. Pharmacol. 2002, 53, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, U.; Seiler, M.; Drescher, S.; Fromm, M.F. Determination of fexofenadine in human plasma and urine by liquid chromatog-raphy-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 766, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.Y.; Hong, K.S.; Lim, H.S.; Chung, J.Y.; Oh, D.S.; Kim, J.R.; Jung, H.R.; Cho, J.Y.; Yu, K.S.; Jang, I.J.; et al. A variant 2677A allele of the MDR1 gene affects fexofenadine disposition. Clin Pharmacol Ther 2004, 76, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.; Ridout, F.; Meadows, R.; Johnsen, S.; Hindmarch, I. Suppression of the histamine-induced wheal and flare response by fexofenadine HCl 60 mg twice daily, loratadine 10 mg once daily and placebo in healthy Japanese volunteers. Curr. Med. Res. Opin. 2005, 21, 1495–1504. [Google Scholar] [CrossRef]
- Mendoza, L.; Begany, P.; Dyrhonova, M.; Emritte, N.; Svobodova, X. Bioequivalence of two fexofenadine formulations in healthy human volunteers after single oral administration. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc 2007, 151, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Uno, T.; Tateishi, T.; Suzuki, T. Pharmacokinetics of fexofenadine enantiomers in healthy subjects. Chirality 2007, 19, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Teng, G.; Teng, L.; Wu, Y.; Tang, Y.; Liu, L.; Gu, J. Rapid and Sensitive LC-MS/MS Method for Quantification of Fexofenadine in Human Plas-ma—Application to a Bioequivalence Study in Chinese Volunteers. Chem. Res. Chin. Univ. 2007, 23, 514–517. [Google Scholar] [CrossRef]
- Bharathi, V.D.; Radharani, K.; Jagadeesh, B.; Ramulu, G.; Bhushan, I.; Naidu, A.; Mullangi, R. LC–MS–MS Assay for Simultaneous Quantification of Fexofenadine and Pseudoephedrine in Human Plasma. Chromatographia 2008, 67, 461–466. [Google Scholar] [CrossRef]
- Segall, N.; Grubbe, R.E.; Levy, A.L.; Maloney, M.J.; Nayak, A.S.; Kittner, B.; Quesada, J.T. Pharmacokinetics, safety and tolerability of an oral suspension of fexofenadine for children with allergic rhinitis. Allergy Asthma Proc. 2008, 29, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Nolin, T.D.; Frye, R.F.; Le, P.; Sadr, H.; Naud, J.; Leblond, F.A.; Pichette, V.; Himmelfarb, J. ESRD Impairs Nonrenal Clearance of Fexofenadine but not Midazolam. J. Am. Soc. Nephrol. 2009, 20, 2269–2276. [Google Scholar] [CrossRef]
- Akamine, Y.; Miura, M.; Sunagawa, S.; Kagaya, H.; Yasui-Furukori, N.; Uno, T. Influence of drug-transporter polymorphisms on the pharmacokinetics of fexofenadine enantiomers. Xenobiotica 2010, 40, 782–789. [Google Scholar] [CrossRef]
- Guo, D.; Zou, J.; Zhu, Y.; Lou, S.; Fan, H.; Qin, Q. Measurement of fexofenadine concentration in micro-sample human plasma by a rapid and sensitive LC-MS/MS employing protein precipitation: Application to a clinical pharmacokinetic study. Biomed. Chromatogr. 2010, 24, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Muppavarapu, R.; Guttikar, S.; Rajappan, M.; Kamarajan, K.; Mullangi, R. Sensitive LC-MS/MS-ESI method for simultaneous determination of montelukast and fexofenadine in human plasma: Application to a bioequivalence study. Biomed. Chromatogr. 2014, 28, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-A.; Hsu, K.-Y. Pharmacokinetics of fexofenadine in healthy Taiwanese volunteers. Pak. J. Pharm. Sci. 2014, 27, 1261–1264. [Google Scholar] [PubMed]
- Joy, M.S.; Frye, R.F.; Nolin, T.D.; Roberts, B.V.; La, M.K.; Wang, J.; Brouwer, K.L.; Dooley, M.A.; Falk, R.J. In Vivo Alterations in Drug Metabolism and Transport Pathways in Patients with Chronic Kidney Diseases. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 114–122. [Google Scholar] [CrossRef]
- Yehia, S.A.; El-Ridi, M.S.; Tadros, M.I.; El-Sherif, N.G. Phenylalanine-free taste-masked orodispersible tablets of fexofenadine hydrochloride: Development, in vitro evaluation and in vivo estimation of the drug pharmacokinetics in healthy human volunteers. Pharm. Dev. Technol. 2015, 20, 528–539. [Google Scholar] [CrossRef]
- Thomson, B.K.; Nolin, T.D.; Velenosi, T.J.; Feere, D.A.; Knauer, M.J.; Asher, L.J.; House, A.A.; Urquhart, B.L. Effect of CKD and Dialysis Modality on Exposure to Drugs Cleared by Nonrenal Mechanisms. Am. J. Kidney Dis. 2015, 65, 574–582. [Google Scholar] [CrossRef]
- Helmy, S.A.; El Bedaiwy, H.M. HPLC Determination of Fexofenadine in Human Plasma for Therapeutic Drug Monitoring and Pharmacokinetic Studies. Biomed. Chromatogr. 2016, 30, 1059–1064. [Google Scholar] [CrossRef]
- Calvo, E.; Lee, J.; Kim, S.; Moreno, V.; Carpeno, J.D.; Weilert, D.; Laus, G.; Mann, H.; Vishwanathan, K. Modulation of Fexofenadine Pharmacokinetics by Osimertinib in Patients with Advanced EGFR-Mutated Non–Small Cell Lung Cancer. J. Clin. Pharmacol. 2019, 59, 1099–1109. [Google Scholar] [CrossRef]
- Cusinato, D.A.C.; Filgueira, G.C.d.O.; Rocha, A.; Cintra, M.A.C.; Lanchote, V.L.; Coelho, E.B. LC-MS/MS analysis of the plasma concentrations of a cocktail of 5 cytochrome P450 and P-glycoprotein probe substrates and their metabolites using subtherapeutic doses. J. Pharm. Biomed. Anal. 2019, 164, 430–441. [Google Scholar] [CrossRef]
- Pinto, L.S.R.; Vale, G.T.D.; Moreira, F.d.L.; Marques, M.P.; Coelho, E.B.; Cavalli, R.C.; Lanchote, V.L. Direct chiral LC-MS/MS analysis of fexofenadine enantiomers in plasma and urine with application in a maternal-fetal pharmacokinetic study. J. Chromatogr. B 2020, 1145, 122094. [Google Scholar] [CrossRef] [PubMed]
- Egeland, E.J.; Witczak, B.J.; Zaré, H.K.; Christensen, H.; Åsberg, A.; Robertsen, I. Chronic Inhibition of CYP3A is Temporarily Reduced by Each Hemodialysis Session in Patients with End-Stage Renal Disease. Clin. Pharmacol. Ther. 2020, 108, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Everardo, P.G.; Magdalena, G.S.; Elena, G.P.M.; Vanessa, C.M.; Gabriela, S.C. Bioavailability assessment of fexofenadine and montelukast in a fixed-dose combination tablet versus the components administered simultaneously. Allergol. Immunopathol. 2021, 49, 15–25. [Google Scholar]
- Rauch, C.; Lucio, L.; De Fer, B.B.; Lheritier-Barrand, M. Bioequivalence of 2 Pediatric Formulations of Fexofenadine Hydrochloride Oral Suspension. Clin. Pharmacol. Drug Dev. 2023, 12, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Chretien, M.L.; Bailey, D.G.; Asher, L.; Parfitt, J.; Driman, D.; Gregor, J.; Dresser, G.K. Severity of coeliac disease and clinical management study when using a non-metabolised medication: A phase I pharmacokinetic study. BMJ Open 2023, 13, e057151. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Banfield, C.; Kantesaria, B.; Marino, M.; Clement, R.; Affrime, M.; Batra, V. Pharmacokinetic and safety profile of desloratadine and fexofenadine when coad-ministered with azithromycin: A randomized, placebo-controlled, parallel-group study. Clin. Ther. 2001, 23, 451–466. [Google Scholar] [CrossRef]
- Hamman, M.A.; Bruce, M.A.; Haehner-Daniels, B.D.; Hall, S.D. The effect of rifampin administration on the disposition of fexofenadine. Clin. Pharmacol. Ther. 2001, 69, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hamman, M.A.; Huang, S.M.; Lesko, L.J.; Hall, S.D. Effect of St John’s wort on the pharmacokinetics of fexofenadine. Clin. Pharmacol. Ther. 2002, 71, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Banfield, C.; Gupta, S.; Marino, M.; Lim, J.; Affrime, M. Grapefruit Juice Reduces the Oral Bioavailability of Fexofenadine But Not Desloratadine. Clin. Pharmacokinet. 2002, 41, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Dresser, G.K.; Bailey, D.G.; Leake, B.F.; Schwarz, U.I.; Dawson, P.A.; Freeman, D.J.; Kim, R.B. Fruit juices inhibit organic anion transporting polypeptide–mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther. 2002, 71, 11–20. [Google Scholar] [CrossRef]
- Dresser, G.K.; Schwarz, U.I.; Wilkinson, G.R.; Kim, R.B. Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clin. Pharmacol. Ther. 2003, 73, 41–50. [Google Scholar] [CrossRef]
- Shon, J.H.; Yoon, Y.R.; Hongm, W.S.; Nguyen, P.M.; Lee, S.S.; Choi, Y.G.; Cha, I.J.; Shin, J.G. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of fexofenadine in relation to the MDR1 genetic polymorphism. Clin. Pharmacol. Ther. 2005, 78, 191–201. [Google Scholar] [CrossRef]
- Xie, R.; Tan, L.H.; Polasek, E.C.; Hong, C.; Teillol-Foo, M.; Gordi, T.; Sharma, A.; Nickens, D.J.; Arakawa, T.; Knuth, D.W.; et al. CYP3A and P-glycoprotein activity induction with St. John’s Wort in healthy volunteers from 6 ethnic populations. J. Clin. Pharmacol. 2005, 45, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Yasuifurukori, N.; Uno, T.; Sugawara, K.; Tateishi, T. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin. Pharmacol. Ther. 2005, 77, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Dresser, G.K.; Kim, R.B.; Bailey, D.G. Effect of Grapefruit Juice Volume on the Reduction of Fexofenadine Bioavailability: Possible Role of Organic Anion Transporting Polypeptides*. Clin. Pharmacol. Ther. 2005, 77, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Rolf, P.G.; Heeswijk, v.; Bourbeau, M.; Campbell, P.; Seguin, I.; Chauhan, B.M.; Foster, B.C.; Cameron, D.W. Time-Dependent Interaction Between Lopinavir/Ritonavir and Fexofenadine. J. Clin. Pharmacol. 2006, 46, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Lemma, G.L.; Wang, Z.; Hamman, M.A.; Zaheer, N.A.; Gorski, J.C.; Hall, S.D. The effect of short- and long-term administration of verapamil on the disposition of cytochrome P450 3A and P-glycoprotein substrates. Clin. Pharmacol. Ther. 2006, 79, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Uno, T.; Sugawara, K.; Tateishi, T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br. J. Clin. Pharmacol. 2006, 61, 538–544. [Google Scholar] [CrossRef]
- Uno, T.; Shimizu, M.; Sugawara, K.; Tateishi, T. Lack of Dose-Dependent Effects of Itraconazole on the Pharmacokinetic Interaction with Fexofenadine. Drug Metab. Dispos. 2006, 34, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Uno, T.; Sugawara, K.; Tateishi, T. Effects of single and multiple doses of itraconazole on the pharmacokinetics of fexofen-adine, a substrate of P-glycoprotein. Br. J. Clin. Pharmacol. 2006, 62, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.G.; Dresser, G.K.; Leake, B.F.; Kim, R.B. Naringin is a major and selective clinical inhibitor of organic anion-transporting poly-peptide 1A2 (OATP1A2) in grapefruit juice. Clin. Pharmacol. Ther. 2007, 81, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.M.; Davey, R.T.; Voell, J.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharma-cokinetics in healthy subjects. Curr. Med. Res. Opin. 2008, 24, 591–599. [Google Scholar] [CrossRef]
- Kharasch, E.D.; Bedynek, P.S.; Walker, A.; Whittington, D.; Hoffer, C. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmaco-dynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities. Clin. Pharmacol. Ther. 2008, 84, 506–512. [Google Scholar] [CrossRef]
- Tateishi, T.; Miura, M.; Suzuki, T.; Uno, T. The different effects of itraconazole on the pharmacokinetics of fexofenadine enantiomers. Br. J. Clin. Pharmacol. 2008, 65, 693–700. [Google Scholar] [CrossRef]
- Kharasch, E.D.; Walker, A.; Whittington, D.; Hoffer, C.; Bedynek, P.S. Methadone metabolism and clearance are induced by nelfinavir despite inhibition of cytochrome P4503A (CYP3A) activity. Drug Alcohol. Depend. 2009, 101, 158–168. [Google Scholar] [CrossRef]
- Kim, K.-A.; Park, P.-W.; Park, J.-Y. Short-term effect of quercetin on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein, in healthy volunteers. Eur. J. Clin. Pharmacol. 2009, 65, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, E.D.; Hoffer, C.; Whittington, D.; Walker, A.; Bedynek, P.S. Methadone pharmacokinetics are independent of cytochrome P4503A (CYP3A) activity and gastrointestinal drug transport: Insights from methadone interactions with ritonavir/indinavir. Anesthesiology 2009, 110, 660–672. [Google Scholar] [CrossRef]
- Sakugawa, T.; Miura, M.; Hokama, N.; Suzuki, T.; Tateishi, T.; Uno, T. Enantioselective disposition of fexofenadine with the P-glycoprotein inhibitor vera-pamil. Br. J. Clin. Pharmacol. 2009, 67, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.A.; Park, J.Y. Effect of metronidazole on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy male volunteers. Eur. J. Clin. Pharmacol. 2010, 66, 721–725. [Google Scholar] [CrossRef]
- Penzak, S.R.; Robertson, S.M.; Hunt, J.D.; Chairez, C.; Malati, C.Y.; Alfaro, R.M.; Stevenson, J.M.; Kovacs, J.A. Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir-ritonavir exposure in healthy subjects. Pharmacotherapy 2010, 30, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Imanaga, J.; Kotegawa, T.; Imai, H.; Tsutsumi, K.; Yoshizato, T.; Ohyama, T.; Shirasaka, Y.; Tamai, I.; Tateishi, T.; Ohashi, K.; et al. The effects of the SLCO2B1 c.1457C > T polymorphism and apple juice on the pharma-cokinetics of fexofenadine and midazolam in humans. Pharmacogenet Genom. 2011, 21, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Malati, C.Y.; Robertson, S.M.; Hunt, J.D.; Chairez, C.; Alfaro, R.M.; Kovacs, J.A.; Penzak, S.R. Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) Activity in Healthy Participants. J. Clin. Pharmacol. 2012, 52, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Saruwatari, J.; Yasui-Furukori, N.; Niioka, T.; Akamine, Y.; Takashima, A.; Kaneko, S.; Uno, T. Different Effects of the Selective Serotonin Reuptake Inhibitors Fluvoxamine, Paroxetine, and Sertraline on the Pharmacokinetics of Fexofenadine in Healthy Volunteers. J. Clin. Psychopharmacol. 2012, 32, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, E.D.; Bedynek, P.S.; Hoffer, C.; Walker, A.; Whittington, D. Lack of Indinavir Effects on Methadone Disposition Despite Inhibition of Hepatic and Intestinal Cytochrome P4503A (CYP3A). Anesthesiology 2012, 116, 432–447. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.; Keely, B.; Morris, I.; Tann, L.; Lappin, G. Predicting Drug Candidate Victims of Drug-Drug Interactions, using Microdosing. Clin. Pharmacokinet. 2012, 51, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, E.D.; Stubbert, K. Cytochrome P4503A Does Not Mediate the Interaction between Methadone and Ritonavir-Lopinavir. Drug Metab. Dispos. 2013, 41, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Won, C.S.; Lan, T.; VanderMolen, K.M.; Dawso, P.A.; Oberlies, N.H.; Widner, W.W.; Scarlett, Y.V.; Paine, M.F. A Modified Grapefruit Juice Eliminates Two Compound Classes as Major Mediators of the Grapefruit Juice–Fexofenadine Interaction: An In Vitro–In Vivo “Connect”. J. Clin. Pharmacol. 2013, 53, 982–990. [Google Scholar] [CrossRef]
- Zhou, Q.; Ye, Z.; Ruan, Z.; Zeng, S. Investigation on modulation of human P-gp by multiple doses of Radix Astragali extract granules using fexofenadine as a phenotyping probe. J. Ethnopharmacol. 2013, 146, 744–749. [Google Scholar] [CrossRef]
- Ieiri, I.; Tsunemitsu, S.; Maeda, K.; Ando, Y.; Izumi, N.; Kimura, M.; Yamane, N.; Okuzono, T.; Morishita, M.; Kotani, N.; et al. Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; mi-cro/small dosing tests using midazolam (CYP3A4), fexofenadine (p-glycoprotein), and pravastatin (OATP1B1) as probe drugs. J. Clin. Pharmacol. 2013, 53, 654–661. [Google Scholar] [CrossRef]
- Bedada, S.K.; Yakkanti, S.A.; Neerati, P. Resveratrol enhances the bioavailability of fexofenadine in healthy human male volunteers: Involvement of P-glycoprotein inhibition. J. Bioequiv Avail. 2014, 6, 158–163. [Google Scholar] [CrossRef]
- Akamine, Y.; Miura, M.; Komori, H.; Saito, S.; Kusuhara, H.; Tamai, I.; Ieiri, I.; Uno, T.; Yasui-Furukori, N. Effects of one-time apple juice ingestion on the pharmacokinetics of fexofenadine en-antiomers. Eur. J. Clin. Pharmacol. 2014, 70, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Zeng, J.; Liu, S.; He, M.; Zhu, L.; Ye, Y.; Miao, P.; Shen, S.; Jiang, J. Effects of Danshen Ethanol Extract on the Pharmacokinetics of Fexofenadine in Healthy Volunteers. Evidence-Based Complement. Altern. Med. 2014, 2014, 473213. [Google Scholar] [CrossRef] [PubMed]
- Tomaru, A.; Takeda-Morishita, M.; Maeda, K.; Banba, H.; Takayama, K.; Kumagai, Y.; Kusuhara, H.; Sugiyama, Y. Effects of Cremophor EL on the absorption of orally administered saquinavir and fexofenadine in healthy subjects. Drug Metab. Pharmacokinet. 2015, 30, 221–226. [Google Scholar] [CrossRef]
- Akamine, Y.; Miura, M.; Yasui-Furukori, N.; Ieiri, I.; Uno, T. Effects of multiple-dose rifampicin 450 mg on the pharmacokinetics of fexof-enadine enantiomers in Japanese volunteers. J. Clin. Pharm. Ther. 2015, 40, 98–103. [Google Scholar] [CrossRef]
- Akamine, Y.; Miura, M.; Komori, H.; Tamai, I.; Ieiri, I.; Yasui-Furukori, N.; Uno, T. The change of pharmacokinetics of fexofenadine enantiomers through the single and simultaneous grapefruit juice ingestion. Drug Metab. Pharmacokinet. 2015, 30, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Kullak-Ublick, G.A.; Gubler, C.; Spanaus, K.; Ismair, M.G.; da Silva, T.C.; Jetter, A. No major effects of vitamin D3 (1,25 dihydroxyvitamin D3) on absorption and pharmacokinetics of folic acid and fexofenadine in healthy volunteers. Eur. J. Clin. Pharmacol. 2016, 72, 797–805. [Google Scholar] [CrossRef]
- Kim, M.G.; Kim, Y.; Jeon, J.Y.; Kim, D.S. Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br. J. Clin. Pharmacol. 2016, 82, 1580–1590. [Google Scholar] [CrossRef]
- Luo, J.; Imai, H.; Ohyama, T.; Hashimoto, S.; Hasunuma, T.; Inoue, Y.; Kotegawa, T.; Ohashi, K.; Uemura, N. The Pharmacokinetic Exposure to Fexofenadine is Volume-Dependently Reduced in Healthy Subjects Following Oral Administration With Apple Juice. Clin. Transl. Sci. 2016, 9, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Bedada, S.K.; Boga, P.K.; Kotakonda, H.K. The effect of diosmin on the pharmacokinetics of fexofenadine in healthy human vol-unteers. Xenobiotica 2017, 47, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Bedada, S.K.; Boga, P.K. The influence of piperine on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers. Eur. J. Clin. Pharmacol. 2017, 73, 343–349. [Google Scholar] [CrossRef]
- Cusinato, D.A.; Martinez, E.Z.; Cintra, M.T.; Filgueira, G.C.; Berretta, A.A.; Lanchote, V.L.; Coelho, E.B. Evaluation of potential herbal-drug interactions of a standardized propolis extract (EPP-AF®) using an in vivo cocktail approach. J. Ethnopharmacol. 2019, 245, 112174. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Magliocco, G.; Desmeules, J.; Samer, C.; Daali, Y. Interaction between Fexofenadine and CYP Phenotyping Probe Drugs in Geneva Cocktail. J. Pers. Med. 2019, 9, 45. [Google Scholar] [CrossRef]
- Zhao, Y.; Miao, Z.; Jiang, M.; Zhou, X.; Lai, Y. Effects of breviscapine and C3435T MDR1 gene polymorphism on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers. Xenobiotica 2021, 51, 366–372. [Google Scholar] [CrossRef]
- Misaka, S.; Ono, Y.; Taudte, R.V.; Hoier, E.; Ogata, H.; Ono, T.; König, J.; Watanabe, H.; Fromm, M.F.; Shimomura, K. Exposure of Fexofenadine, but Not Pseudoephedrine, Is Markedly Decreased by Green Tea Extract in Healthy Volunteers. Clin. Pharmacol. Ther. 2022, 112, 627–634. [Google Scholar] [CrossRef]
Sr | Population | Age (Years) | Drug | Dose (mg) | Frequency | Dosage Form | Analytical Method | Refs |
---|---|---|---|---|---|---|---|---|
1 | Healthy | 9.8 ± 1.8 | Fexo | 30, 60 | SD | Susp | N/N | [38] |
2 | Healthy | 18–51 a | Fexo | 10, 20, 40, 80, 130, 200, 280, 360, 480, 640, 800 a | SD | Tab | HPLC-FD | [39] |
20–47 b | 20, 40, 80, 160, 260, 390, 520, 690 b | BID | ||||||
3 | Healthy | 19–45 | Fexo | 20, 60, 120, 240 | OD c | Tab | HPLC-MS | [40] |
BID d | ||||||||
4 | Healthy | 28–32.4 | Fexo | 180 | SD | Tab | LC-MS | [41] |
5 | Healthy | N/N | Fexo | 180 | SD | Tab | LC-MS | [42] |
6 | Healthy | 21–39 | Fexo | 180 | SD | Tab | HPLC-FD | [43] |
7 | Healthy | 20–53 | Fexo | 60 | BID | Tab | LC-MS-MS | [44] |
8 | Healthy | 18–50 | Fexo | 180 | SD | Tab | HPLC | [45] |
9 | Healthy | 20–22 | Fexo | 60 | SD | Tab | HPLC | [46] |
10 | Healthy | N/N | Fexo | 120 | SD | Tab | LC-MS-MS | [47] |
11 | Healthy | N/N | Fexo | 180 | SD | Tab | LC-MS-MS | [48] |
12 | Healthy | 2–5 | Fexo | 30 | SD | Susp | LC-MS-MS | [49] |
13 | Healthy | 29–38 | Fexo | 180 | SD | Tab | LC-MS | [18] |
Diseased (Cystic fibrosis) | 25–28 | Probenecid | 1000 | BID | ||||
14 | Healthy | 20–37 | Fexo | 180 | SD | Tab | HPLC | [20] |
15 | Healthy | 45.9 ± 13.2 | Fexo | 120 | SD | Tab | LC–MS–MS | [50] |
Diseased (End stage renal disease) | 51.5 ± 15.6 | |||||||
16 | Healthy | 22–36 | Fexo | 60 | SD | Tab | HPLC | [51] |
17 | Healthy | 18–27 | Fexo | 60, 120 | SD | Tab | LC-MS-MS | [52] |
18 | Healthy | 20–34 | Fexo | 100 e | SD | Sol | LC-MS-MS | [13] |
60 | Tab | |||||||
19 | Healthy | 18–55 | Fexo | 120 | N/N | Tab | HPLC-FD | [21] |
100 e | IV | |||||||
20 | Healthy | N/N | Fexo | 120 | SD | Tab | LC-MS-MS-ESI | [53] |
21 | Healthy | 23.5 ± 2.9 | Fexo | 180 | SD | Tab | HPLC | [54] |
22 | Diseased (Glomerulonephritis) | 41 ± 17 | Fexo | 60 | SD | Tab | LC–MS-MS | [55] |
23 | Healthy | 24–30 | Fexo | 30 | N/N | Tab | HPLC | [56] |
24 | Healthy + Diseased (Kidney Disease) | >18 | Fexo | 120 | SD | Tab | N/N | [57] |
25 | Healthy | 21–29 | Fexo | 120 | SD | Tab | HPLC | [58] |
26 | Diseased (EFGR mutated Non-Small-Cell-Lung-Cancer) | 44–87 | Fexo | 120 | SD | Tab | RP-HPLC-MS-MS | [59] |
Osimertinib | 80 | SD, MD | ||||||
27 | Healthy | 30 ± 5 | Fexo | 10 | SD | Sol | LC–MS-MS | [60] |
28 | Healthy (Parturient women) | N/N | Fexo | 60 | SD | Tab | LC-MS-MS | [61] |
29 | Diseased (Hemodialysis Patients) | 47–78 | Fexo | 120 | SD | Tab | UPLC-MS-MS | [62] |
30 | Healthy | 18–55 | Fexo | 120 | SD | Tab | HPLC-MS-MS | [63] |
31 | Healthy | 18–55 | Fexo | 30 | SD | Susp | N/N | [64] |
32 | Diseased (Coeliac disease) | 17–79 | Fexo | 120 | SD | Tab | HPLC | [65] |
33 | Healthy | 19–46 | Fexo | 60 | BID | Tab | LC-MS-MS | [66] |
Azithromycin | 500 | OD | ||||||
34 | Healthy | 22–35 f | Fexo | 60 | OD | Tab | HPLC-FD | [67] |
65–76 g | Rifampin | 600 | ||||||
35 | Healthy | 32 ± 7 | Fexo | 60 | SD | Tab | HPLC-FD | [68] |
St John’s wort | 900 | |||||||
36 | Healthy | 19–44 | Fexo | 60 | SD | Tab | LC-MS-MS | [69] |
37 | Healthy | 19–40 h | Fexo | 60 | SD | Tab | HPLC | [70] |
19–28 i | ||||||||
38 | Healthy | 22–34 | Fexo | 40 | N/N | Tab | HPLC-UV | [22] |
Verapamil | 100 | |||||||
39 | Healthy | 19–31 h | Fexo | 180 | SD | Tab | HPLC | [71] |
20–55 i | St John’s wort | 300 | TID | |||||
40 | Healthy | 21–28 | Fexo | 180 | SD | Tab | UV | [72] |
Itraconazole | 200 | |||||||
41 | Healthy | 19–51 | Fexo | 60 | SD | Tab | HPLC (LC-MS-MS) | [73] |
St John’s wort | 300 | TID | ||||||
42 | Healthy | 20–40 | Fexo | 120 | SD | Tab | HPLC | [74] |
Verapamil | 240 | TID | ||||||
Cimetidine | 800 | BID | ||||||
Probenecid | 2000 | BID | ||||||
43 | Healthy | 23–47 | Fexo | 120 | SD | Tab | HPLC | [75] |
44 | Healthy | 19–48 | Fexo | 120 | SD | Tab | LC-MS-MS | [76] |
Lopinavir | 40 | |||||||
Ritonavir | 100 | |||||||
45 | Healthy | 29 ± 9 | Fexo | 60 | SD | Tab | HPLC-MS | [77] |
Verapamil | 240 | |||||||
46 | Healthy | 21–25 | Fexo | 120 | SD | Tab | HPLC | [78] |
Itraconazole | 50 | BID | ||||||
Diltiazem | 100 | |||||||
47 | Healthy | 20–24 | Fexo | 60 | SD | Tab | HPLC | [79] |
Itraconazole | 50, 100, 200 | |||||||
48 | Healthy | 21–34 | Fexo | 60 | OD | Tab | HPLC | [80] |
Itraconazole | 200 | |||||||
49 | Healthy | 19–51 j | Fexo | 120 | SD | Tab | HPLC | [81] |
20–52 k | ||||||||
50 | Healthy | 23–48 | Fexo | 120 | SD | Tab | LC-MS-MS | [82] |
Ginkgo biloba extract | 120 | |||||||
51 | Healthy | 19–34 | Fexo | 60 | N/N | Tab | SPE-LC-MS | [83] |
Ritonavir | 200 | |||||||
52 | Healthy | 21–24 | Fexo | 60 | SD | Tab | HPLC | [84] |
Itraconazole | 200 | |||||||
53 | Healthy | 19–34 | Fexo | 60 | N/N | Tab | SPE-LC-MS | [85] |
Nelfinavir | 1250 | BID | ||||||
54 | Healthy | 24–31 | Fexo | 60 | SD | Tab | HPLC | [86] |
Quercetin | 500 | TID | ||||||
55 | Healthy | 18–34 | Fexo | 60 | SD | Tab | MS | [87] |
Ritonavir | 100 | BID | ||||||
Indinavir | 800 | |||||||
56 | Healthy | 22–36 | Fexo | 120 | SD | Tab | HPLC | [88] |
Verapamil | 80 | TID | ||||||
57 | Healthy | 21–39 | Fexo | 60 | SD | Tab | HPLC | [7] |
Carbamazepine | 100 | TID | ||||||
58 | Healthy | 22–30 | Fexo | 120 | SD | Tab | HPLC | [89] |
Metronidazole | 500 | TID | ||||||
59 | Healthy | 18–50 | Fexo | 120 | SD | Tab | UPLC-MS-MS | [90] |
Echinacea purpurea | 500 | TID | ||||||
60 | Healthy | 20–40 | Fexo | 60 | SD | Tab | HPLC-SPE | [91] |
61 | Healthy | 18–50 | Fexo | 120 | SD | Tab | UPLC-MS-MS | [92] |
Panax ginseng | 500 | BID | ||||||
62 | Healthy | 28.6 | Fexo | 60 | SD | Tab | HPLC | [93] |
Fluvoxamine | 50 | OD | ||||||
Paroxetine | 20 | |||||||
Sertraline | 50 | |||||||
63 | Healthy | 25.2 ± 5.9 | Fexo | 60 | SD | Tab | HPLC | [16] |
Carbamazepine | 100 | TID | ||||||
64 | Healthy | 18–31 | Fexo | 60 | SD | Tab | SPE- LC-MS | [94] |
Indinavir | 800 | TID | ||||||
65 | Healthy | 26–51 | Fexo | 25 e | SD | Tab | HPLC-AMS | [95] |
Fluvoxamine/Ketoconazole | 400/100 | |||||||
66 | Healthy | 20–40 | Fexo | 60 | SD | Tab | SPE- LC-MS | [96] |
Lopinavir | 400 | BID | ||||||
Ritonavir | 100 | |||||||
67 | Healthy | 23–54 h | Fexo | 120 | SD | Tab | HPLC-MS | [97] |
23–60 i | ||||||||
68 | Healthy | 25–28 | Fexo | 120 | SD | Tab | LC-FD | [98] |
Radix Astragali extract | 4000 | BID | Gran | |||||
69 | Healthy | 20–41 | Fexo | 60 | SD | Tab | LC-MS-MS | [19] |
Rifampin | 600 | OD | ||||||
70 | Healthy | 22–27 | Fexo | 100 e | SD | Tab | LC-MS-MS | [99] |
Ritonavir | 20, 100 | |||||||
71 | Healthy | 26–31 | Fexo | 120 | SD | Tab | LC-MS-MS | [100] |
Resveratrol | 500 | OD | ||||||
72 | Healthy | 20–42 | Fexo | 60 | SD | Tab | HPLC | [101] |
73 | Healthy | 25–30 | Fexo | 60 | SD | Tab | LC-MS-MS | [102] |
Danshen ethanol extract | 1000 | TID | ||||||
74 | Healthy | 20–40 | Fexo | 50 e | N/N | Tab | LC-MS-MS | [103] |
Cremophor EL | 720, 1440 | |||||||
75 | Healthy | 21–39 | Fexo | 60 | SD | Tab | HPLC | [104] |
Rifampin | 450 | OD | ||||||
76 | Healthy | 25.0 ± 4.9 | Fexo | 60 | SD | Tab | HPLC | [105] |
77 | Healthy | 26 ± 2 | Fexo | 120 | OD | Tab | LC-MS-MS | [106] |
Vitamin D3 | 0.5 e | |||||||
78 | Healthy | 25.6 ± 2.6 | Fexo | 30 | SD | Tab | LC-MS-MS | [107] |
Fermented red ginseng | 70 l | OD | ||||||
79 | Healthy | 20–35 | Fexo | 60 | SD | Tab | HPLC | [108] |
80 | Healthy | 27–32 | Fexo | 120 | SD | Tab | LC-MS-MS | [109] |
Diosmin | 500 | |||||||
81 | Healthy | 26–32 | Fexo | 120 | SD | Tab | LC-MS-MS | [110] |
Piperine | 20 | OD | ||||||
82 | Healthy | 31.5 ± 5 | Fexo | 10 | SD | Tab | LC-MS-MS | [111] |
Propolis extract | 125 | TID | ||||||
83 | Healthy | 18–36 | Fexo | 25 | SD | Tab | HPLC-MS-MS | [112] |
84 | Healthy | 20–28 | Fexo | 120 | SD | Tab | UHPLC-MS-MS | [113] |
Breviscapine | 120 | OD | ||||||
85 | Healthy | 21–45 | Fexo | 60 | SD | Tab | UPLC-FD | [114] |
Sr. | Dosage (mg) | Cmax (ng/mL) | Tmax (h) | t1/2 (h) | AUC0–∞ (ng.h/mL) | CL/F (L/h) | CLR (L/h) | Refs | |
---|---|---|---|---|---|---|---|---|---|
Intravenous administration | |||||||||
1 | 100 a | 4.7 (11) | 0.5 (0) | 8.10 (25) | 7.96(18) | 13 (12) q | N/N | [21] | |
100 a + 120 b | 3.97 (24) | 0.50 (0) | 10 (27) | 7.37(24) | 16 (24) q | N/N | |||
Oral administration | |||||||||
2 | 10 c | 45.6 (88.8) | 1.17 (22.13) | N/N | 22.9 (65.5) | 55.96 (46.9) | N/N | [39] | |
20 c | 72.8 (28.9) | 1.08 (18.8) | N/N | 415.3 (37.6) | 53.34 (54.3) | N/N | |||
40 c | 176.4 (28.3) | 1.00 (31.6) | N/N | 866.1 (18.1) | 44.33 (19.2) | N/N | |||
80 c | 502.3 (36.8) | 1.08 (18.8) | N/N | 2400 (37.8) | 34.86 (37.8) | N/N | |||
130 c | 846.2 (34.7) | 1.17 (22.1) | N/N | 3747 (28.4) | 34.47 (26.4) | N/N | |||
200 c | 1267 (34.7) | 1.17 (22.1) | N/N | 5994 (29.0) | 33.36 (28.4) | N/N | |||
280 c | 1908 (41.9) | 0.98 (6.3) | N/N | 8156 (34.5) | 36.55 (46.9) | N/N | |||
360 c | 31344 (48.3) | 1.17 (22.1) | 9.4 (23.2) | 13,814 (43.5) | 27.67 (35.2) | N/N | |||
480 c | 3258 (41.2) | 1.00 (0.00) | 11.2 (23.4) | 14,075 (33.3) | 34.44 (28.3) | N/N | |||
640 c | 4028 (26.1) | 1.25 (21.9) | 14.0 (12.1) | 18,070 (25.1) | 34.71 (23.7) | N/N | |||
800 c | 6383 (48.4) | 1.33 (30.6) | 7.7 (19.2) | 28,396 (47.5) | 29.84 (31.3) | N/N | |||
20 d | 57.9 (59.5) | 1.17 (65.5) | N/N | N/N | 85.39 (64.7) | N/N | |||
40 d | 219.6 (73.2) | 0.83 (69.3) | N/N | N/N | 41.73 (45.5) | N/N | |||
80 d | 327.0 (12.8) | 1.33 (21.7) | N/N | N/N | 43.33 (6.3) | N/N | |||
160 d | 785.3 (38.6) | 1.17 (24.7) | 10.53 (69.4) | N/N | 43.44 (20.1) | N/N | |||
260 d | 1567 (25.0) | 1.00 (0.00) | 12.41 (71.0) | N/N | 39.74 (29.4) | N/N | |||
390 d | 3369 (16.2) | 1.00 (0.00) | 12.11 (19.2) | N/N | 25.53 (21.8) | N/N | |||
520 d | 3075 (75.0) | 1.00 (0.00) | 12.92 (38.1) | N/N | 48.54 (49.3) | N/N | |||
690 d | 4677 (21.0) | 1.17 (24.7) | 8.80 (35.9) | N/N | 31.83 (30.7) | N/N | |||
3 | 20 c | 57 (46) | 1.35 (53) | 16.2 (51) | 416 (36) | 50.4 (35) | N/N | [40] | |
60 c | 209 (45) | 1.42 (50) | 13.1 (30) | 1348 (41) | 50.6 (53) | N/N | |||
120 c | 427 (40) | 1.44 (47) | 13.1 (43) | 2682 (34) | 47.8 (42) | N/N | |||
240 c | 1119 (49) | 1.52 (41) | 14.0 (46) | 6571 (35) | 38.0 (33) | N/N | |||
20 d | 93 (45) | 1.08 (32) | 14.7 (39) | N/N | 42.2 (34) | N/N | |||
60 d | 286 (50) | 1.31 (45) | 14.4 (39) | N/N | 43.6 (45) | N/N | |||
120 d | 602 (42) | 1.33 (45) | 11.3 (33) | N/N | 39.0 (30) | N/N | |||
240 d | 1530 (36) | 1.02 (35) | 14.0 (40) | N/N | 35.4 (30) | N/N | |||
4 | 180 | 734.5 ± 261.3 n | 1.5 ± 0.6 | 19.1 ± 7.0 | 4107.5 ± 1837.4 | 51.468 ± 26.016 | N/N | [42] | |
5 | 60 | 255.91 (145.39) | 2.00 (0.71) | N/N | N/N | N/N | N/N | [44] | |
6 | 60 | 152.62 ± 74.18 | 4.10 ± 0.88 | 11.14 ± 4.95 | 978.19 ± 411.06 | 72.24 ± 31.01 | N/N | [52] | |
120 | 365.98 ± 168.02 | 3.58 ± 1.17 | 9.29 ± 3.61 | 2437.5 ± 885.9 | 55.64 ± 21.32 | N/N | |||
7 | 100 e | 0.632 ± 0.245 | 1.5 (0.5–2.0) | 3.2 ± 0.4 | N/N | N/N | N/N | [13] | |
60 | 275 ± 145 | 2.0 (1.0–4.0) | 2.9 ±0.3 | N/N | N/N | N/N | |||
8 | 180 | 703.76 ± 298.94 | 1.90 ± 0.81 | 12.18 ± 3.61 | 4582.52 ± 1812.59 | N/N | N/N | [54] | |
9 | 60 | 179.083 ± 27.064 | 2.666 ± 0.516 | 5.229 ± 3.699 | 1628.622 ± 928.477 | N/N | N/N | [56] | |
60 f | 199.297 ± 29.071 | 1.833 ± 0.408 | 6.639 ± 2.830 | 1856.098 ± 692.314 | N/N | N/N | |||
10 | 120 | 300 ± 50 | 1.5 ± 0.7 | 12.0 ± 4.3 | 1800 ± 810 | 73.0 ± 29.5 m | N/N | [58] | |
11 | 100 e | 0.31 (21) | 1.2 (59) | 16 (45) | 2.77 (18) | N/N | N/N | [21] | |
100 a + 120 b | 318 (32) | 2.7 (70) | 12 (27) | 2210 (33) | N/N | N/N | |||
Bioequivalence Studies | |||||||||
12 | 180 | TF | 625 | 1.84 ± 0.87 | 2.97 ± 0.32 | 2954 | N/N | N/N | [45] |
RF | 629.5 | 1.86 ± 0.77 | 2.94 ± 0.29 | 3012 | N/N | N/N | |||
13 | 120 | TF | 507.5 ± 151.5 | 2.6 ± 0.8 | 7.85 ± 2.0 5 | 2699 ± 737 | N/N | N/N | [47] |
RF | 475.3 ± 209.8 | 2.4 ± 0.9 | 7.48 ± 1.13 | 2725 ± 950 | N/N | N/N | |||
14 | 180 | TF | 1206.3 ± 619.0 | 2.6 ± 1.7 | 7.2 ± 4.0 | 8911.4 ± 3870.0 | N/N | N/N | [20] |
RF | 1172.6 ± 493.7 | 2.0 ± 1.0 | 9.9 ± 3.1 | 9363.9 ± 2668.0 | N/N | N/N | |||
15 | 120 | TF g | 453 ± 168 | 3.74 ± 1.28 | 10.7 ± 2.53 | 3164 ± 1388 | N/N | N/N | [53] |
RF g | 463 ± 182 | 3.72 ± 1.23 | 10.7 ± 3.29 | 3175 ± 1118 | N/N | N/N | |||
16 | 120 | RF g | 376.441 ± 202.552 | 2.66 | 5.326 | 2228.951 ± 1094.014 | N/N | N/N | [63] |
TF g | 368.247 ± 190.075 | 3 | 5.044 | 2080.045 ± 988.172 | N/N | N/N | |||
Bioequivalence Study of Fasted state and Fed state | |||||||||
17 | 180 i | TF h | 655 ± 395 | 2.00 ± 1.14 | 6.94 ± 4.13 | 4323 ± 1578 | N/N | N/N | [48] |
RF | 763 ± 454 | 1.67 ± 0.85 | 6.60 ± 4.39 | 4938 ± 2133 | N/N | N/N | |||
180 j | TF h | 464 ± 252 | 2.50 ± 1.18 | 5.11 ± 6.55 | 3188 ± 2289 | N/N | N/N | ||
RF | 404 ± 185 | 2.75 ± 1.59 | 3.95 ± 1.32 | 2453 ± 770 | N/N | N/N | |||
Enantiomers | |||||||||
18 | 60 | R (+) | 153 ± 17 | 2.4 ± 1.1 | 3.4 ± 0.6 | 843 ± 153 a | 0.648 ± 0.174 m | 0.084 ± 0.024 | [46] |
S (−) | 101 ± 27 | 2.4 ± 1.1 | 2.9 ± 0.8 | 496 ± 131 | 1.122 ± 0.3 m | 0.162 ± 0.048 | |||
Genotypes encoding drug transporters | |||||||||
19 | 180 | G2677T (Exon 21) k | [41] | ||||||
GG | 701.9 ± 308.0 | 0.6/1.5/3.0 | 14.6 ± 5.7 | 3864.3 ± 1531.6 | 81.948 ± 23.376 | 4.152 ± 0.846 | |||
GT | 450.0 ± 127.4 | 1.5/2.5/5.0 | 15.6 ± 2.6 | 2969.1 ± 1175.2 | 66.168 ± 25.974 | 5.16 ± 1.17 | |||
TT | 663.4 ± 252.6 | 0.5/2.0/3.0 | 15.9 ± 4.7 | 4114.9 ± 2137.2 | 49.464 ± 18.144 | 3.834 ± 0.396 | |||
C3435T (Exon 26) k | |||||||||
CC | 642.7 ± 308.8 | 0.6/1.3/3.0 | 14.2 ± 5.2 | 3567.1 ± 1535.5 | 57.462 ± 26.478 | 4.482 ± 1.014 | |||
TT | 620.3 ± 222.9 | 0.5/2.0/5.0 | 16.0 ± 4.2 | 3910.1 ± 1894.8 | 50.472 ± 16.998 | 4.188 ± 0.96 | |||
20 | 180 | G2677T/C3435T (Exon 21/Exon 26) k | [43] | ||||||
GG/CC | 628 ± 189 | 2.4 ± 1.2 | 5.0 ± 0.9 | N/N | N/N | N/N | |||
GT/CT | 927 ± 128 | 2.0 ± 1.1 | 4.2 ± 1.2 | N/N | N/N | N/N | |||
TT/TT | 958 ± 408 | 2.4 ± 2.1 | 4.5 ± 0.5 | N/N | N/N | N/N | |||
GA/CC | 782 ± 280 | 1.4 ± 0.6 | 4.7 ± 0.7 | N/N | N/N | N/N | |||
TA/CT | 829 ± 255 | 2.3 ± 1.2 | 5.6 ± 1.7 | N/N | N/N | N/N | |||
AA/CC | 494 ± 81 | 1.7 ± 0.3 | 4.8 ± 0.6 | N/N | N/N | N/N | |||
C3435T (Exon 26) k | |||||||||
CC | 673 ± 242 | 1.8 ± 0.9 | 4.8 ± 0.7 | N/N | N/N | N/N | |||
CT | 878 ± 199 | 2.2 ± 1.1 | 4.9 ± 1.6 | N/N | N/N | N/N | |||
TT | 958 ± 408 | 2.4 ± 2.1 | 4.5 ± 0.5 | N/N | N/N | N/N | |||
21 | 10 | CYP EM | 8.12 | N/N | N/N | 48.58 | 205.87 | N/N | [60] |
CYP2C9 PM | 5.44 | N/N | N/N | 34.06 | 293.56 | N/N | |||
CYP2D6 PM | 14.39 | N/N | N/N | 94.15 | 106.21 | N/N | |||
22 | 60 R (+) | SLCO1B1 l | |||||||
1a/1a + 1a/1b + 1b/1b | 144 (40–269) o | N/N | 3.3 (2.5–5.7) | 812 (241–1366) p | N/N | N/N | [51] | ||
1a/*15 + 1b/*15 + *15/*15 | 136 (61–159) | N/N | 4.5 (2.8–6.2) | 848 (592–1004) p | N/N | N/N | |||
SLCO1B3 l | |||||||||
334T/T + T/G | 138 (40–269) | N/N | 3.7 (2.5–5.3) | 832 (241–1328) p | N/N | N/N | |||
334G/G | 140 (76–182) | N/N | 3.5 (2.5–6.2) | 860 (493–1366) p | N/N | N/N | |||
SLCO2B1 l | |||||||||
*1/*1 | 148 (40–269) | N/N | 3.3 (2.5–5.7) | 764 (241–1113) p | N/N | N/N | |||
*1/*3 + *3/*3 | 133 (61–179) | N/N | 4 (2.5–6.2) | 916 (496–1366) p | N/N | N/N | |||
60 S (−) | SLCO1B1 l | ||||||||
1a/1a + 1a/1b + 1b/1b | 104 (27–186) | N/N | 2.8 (1.8–4.9) | 469 (112–1081) p | N/N | N/N | |||
1a/*15 + 1b/*15 + *15/*15 | 122 (50–135) | N/N | 3.6 (2.4–7.7) | 546 (310–1123) p | N/N | N/N | |||
SLCO1B3 l | |||||||||
334T/T + T/G | 122 (27–186) | N/N | 3.3 (2.2–4.9) | 519 (112–777) p | N/N | N/N | |||
334G/G | 104 (49–152) | N/N | 3.1 (1.8–7.7) | 424 (298–1123) p | N/N | N/N | |||
SLCO2B1 l | |||||||||
*1/*1 | 111 (27–186) | N/N | 2.6 (2.0–4.9) | 446 (112–643) p | N/N | N/N | |||
*1/*3 + *3/*3 | 113 (53–152) | N/N | 3.6 (1.8–7.7) | 675 (298–1123) p | N/N | N/N |
Sr. | Dose (mg) | Population | Cmax (ng/mL) | Tmax (h) | t1/2 (h) | AUC0–∞ (ng.h/mL) | CL/F (L/h) | CLR (L/h) | Refs |
---|---|---|---|---|---|---|---|---|---|
1 | 180 | Healthy | 390 (300–650) | 2 (1.4–3.0) | N/N | N/N | 73.27 (50.50–123.20) | 5 (4.28–6.27) j | [18] |
Cystic fibrosis a | 500 (320–630) | 2 (2.0–3.0) | N/N | N/N | 81.16 (72.04–106.0) | 5.47 (3.90–6.32) j | |||
Cystic fibrosis a+b | 700 (470–1210) | 2 (1.5–2.5) | N/N | N/N | 53.31 (34.02–69.09) | 1.69 (1.10–2.20) j | |||
2 | 120 | Healthy | 267.2 ± 130.3 i | 2 (1–4) | 3.4 ± 0.9 | 1380.2 ± 674.1 | 102.8 ± 37.9 | N/N | [50] |
ESRD | 464.2 ± 194.7 | 2 (1–6) | 4.6 ± 1.3 | 3926.2 ± 1842.8 | 37.9 ± 19.5 | N/N | |||
3 | 60 | Glomerulonephritis | 140 ± 83 | 4.6 ± 3.0 | 11.5 ± 5.6 | 1351 ± 723 | 58.8 ± 34.4 | N/N | [55] |
4 | 120 | ESRD c | 320 (222–761) | 3 (1.5–7.0) | N/N | 2355 (1516–67497) | 72.7 (33.4–152.8) | N/N | [62] |
ESRD d | 267 (157–618) | 2 | N/N | 2785 (1274–11945) | 78.6 (37.1–164.6) | N/N | |||
5 | 120 | Healthy | 453 ± 32 | 2.1 ± 0.2 | 3.0 ± 0.2 | 2508 ± 190 | N/N | N/N | [65] |
Coeliac disease e | 440 ± 73 | 2.0 ± 0.3 | 3.1 ± 0.3 | 2558 ± 354 | N/N | N/N | |||
Coeliac disease f | 513 ± 96 | 2.7 ± 0.4 | 4.0 ± 0.6 | 3256 ± 684 | N/N | N/N | |||
Coeliac disease g | 523 ± 104 | 3.2 ± 0.5 | 4.4 ± 0.8 | 2997 ± 596 | N/N | N/N | |||
6 | 120 | Healthy | 246.7 ± 135.2 | 1.8 (1.0–5.0) | N/N | N/N | N/N | N/N | [57] |
NDD-CKD | 591.0 ± 278.8 | 2.5 (1.5–5.0) | N/N | N/N | N/N | N/N | |||
Hemodialysis | 531.1 ± 406.2 | 4.0 (1.0–8.0) | N/N | N/N | N/N | N/N | |||
Peritoneal dialysis | 413.9 ± 170.5 | 4 (2.0–6.0) | N/N | N/N | N/N | N/N | |||
7 | 120 | NSCLC a | 497.7 (66.9) | 2 (0.97–8.00) | 12.6 ± 7.6 | 3291 (56.9) | 38.6 ± 19.3 | N/N | [59] |
NSCLC a+h | 890.9 (55.6) | 2.96 (1.08–6.02) | 9.7 ± 5.6 | 5081 (53.1) | 24.5 ± 10.7 | N/N | |||
NSCLC a+h | 615 (39.6) | 2.93(1.00–8.13) | 8.7 ± 4.8 | 3996 (33.5) | 29.4 ± 9.4 | N/N |
Sr. | Dose (mg) | Cmax (ng/mL) | Tmax (h) | t1/2 (h) | AUC0–∞ (ng.h/mL) | CL/F (L/h) | CLR (L/h) | Refs | |
---|---|---|---|---|---|---|---|---|---|
1. Children | |||||||||
1 | 30 | 178 ± 22 | 2.4 ± 0.2 | 18.3 ± 2.0 | 1090 ± 125 | 14.4 ± 2 a | N/N | [38] | |
60 | 286 ± 34 | 2.4 ± 0.2 | 17.6 ± 1.0 | 1892 ± 129 | 18.4 ± 2.4 a | N/N | |||
2 | 30 | 224 (110–437) d | 1 (1.0–4.0) | N/N | N/N | N/N | N/N | [49] | |
3 | TF | 30 b | 123 (64) | 1 (0.49–3.95) | 12.7 (6.2) | 685 (326) | N/N | N/N | [64] |
30 c | 109 (56) | 0.98 (0.48–1.99) | 12.7 (6.2) | 635 (288) | N/N | N/N | |||
RF | 30 b | 108 (58) | 0.99 (0.49–3.11) | 11.6 (4.9) | 610 (277) | N/N | N/N | ||
30 c | 102 (53) | 0.99 (0.47–3.02) | 12.4 (5.8) | 587 (258) | N/N | N/N | |||
2. Parturient Women (Enantiomers) | |||||||||
4 | S (−) | 60 | 22.81 (13.87–36.02) | 3.07 (2.04–4.07) | 3.8 (2.59–5.37) | 267.67 (156.79–302.68) | 105.05 (92.65–182.89) | 8.57 (5.87–8.87) | [61] |
R (+) | 60 | 36.53 (24.62–53.66) | 2.47 (2.02–3.23) | 3.89 (2.99–5.59) | 423.2 (265.21–458.23) | 66.2 (61.18–111.26) | 5.06 (3.73–5.61) |
Sr. | Fexo Dose (mg) | Drugs | Cmax (ng/mL) | Tmax (h) | t1/2 (h) | AUC0–∞ (ng.h/mL) | CL/F (L/h) | CLR (L/h) | Refs | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 60 | Fexo | 199 (52) | N/N | N/N | N/N | N/N | N/N | [66] | |
Fexo + Azithromycin | 349 (56) → ↑75% | N/N | N/N | N/N | N/N | N/N | ||||
2 | 40 | Fexo | N/N | N/N | 2.23 ± 0.31 | 161 ± 181 t | N/N | N/N | [22] | |
Fexo + Verapamil | N/N | N/N | N/N | 664 ± 537 s→ ↑3-fold | N/N | N/N | ||||
3 | 120 | Fexo | 611 ± 206 | 1.5 | 11.0 ± 5.1 | 3637 ± 1199 | N/N | 13.8 ± 4.68 | [74] | |
Fexo + Verapamil | 1807 ± 692 → ↑2-fold | 1.5 | 7.9 ± 2.4 | 9136 ± 3573 → ↑1.5-fold | N/N | 13.44 ± 5.58 | ||||
Fexo + Cimetidine | 609 ± 318 | 2 | 9.7 ± 3.1 | 4124 ± 2019 | N/N | 9.12 ± 4.2 | ||||
Fexo + Probenecid | 767 ± 490 → ↑25% | 2 | 8.5 ± 1.6 | 6150 ± 3972 → ↑69% | N/N | 4.44 ± 3.12 | ||||
4 | 120 | Fexo | 289 | 2.5 | 5.1 | 1568 | 77 | N/N | [76] | |
Fexo + Ritonavir | 635 → ↑1.2-fold | 2 | 5.7 | 4208 → ↑1.7-fold | 29 → ↓62% | N/N | ||||
Fexo + Lopinavir/Ritonavir e | 1115 → ↑3-fold | 2 | 4.9 | 6498 → ↑3-fold | 18 → ↓77% | N/N | ||||
Fexo + Lopinavir/Ritonavir f | 888 → ↑2-fold | 2.3 | 5 | 5456 → ↑2.5-fold | 22 → ↓71% | N/N | ||||
5 | 60 | Fexo | 114 ± 45 | 2.3 ± 0.6 | 3.1 ± 1.2 | N/N | 156 ± 69 | 12 ± 5.1 | [77] | |
Fexo + Verapamil (Day 1) | 165 ± 42 → ↑45% | 2.4 ± 0.7 | 3 ± 0.5 | N/N | 98 ± 54 → ↓37% | 9.8 ± 4.8 | ||||
Fexo + Verapamil (Day 10) | 148 ± 39 → ↑30% | 2.7 ± 0.9 | 2.9 ± 0.5 | N/N | 102 ± 40 → ↓35% | 14.5 ± 5.7 | ||||
Fexo + Verapamil (Day 38) | 126 ± 43 → ↑11% | 2.3 ± 0.3 | 2.9 ± 0.6 | N/N | 129 ± 89 → ↓17% | 16.6 ± 9.6 | ||||
6 | 120 | Fexo | N/N | 1 (0.5–6) | 10.1 ± 5.3 | N/N | 0.5916 ± 0.236 t | N/N | [78] | |
Fexo + Diltiazem | N/N | 1 (1–4) | 10.4 ± 4.4 | N/N | 0.554 ± 0.2576 t | N/N | ||||
Fexo + Itraconazole | N/N | 2 (1–4) | 10.3 ± 4.3 | N/N | 0.2234 ± 0.112 t → ↓62% | N/N | ||||
7 | 60 | Fexo | 292 ± 173 | 2 (1–4) | 6.2 ± 2.7 | 1701 ± 960 | 0.819 ± 0.402 t | 63.5 ± 15.8 | [79] | |
Fexo + Itraconazole g | 525 ± 168 → ↑80% | 2 (1–4) | 6.5 ± 2.0 | 3554 ± 1220 → ↑50% | 0.344 ± 0.155 t → ↓58% | 58.9 ± 19.6 | ||||
Fexo + Itraconazole h | 598 ± 194 → ↑1-fold | 2 (1–4) | 6.6 ± 1.7 | 4308 ± 1517 → ↑1.5-fold | 0.275 ± 0.90 t → ↓66% | 65.9 ± 27.0 | ||||
Fexo + Itraconazole i | 592 ± 185 → ↑1-fold | 2 (1–4) | 6.9 ± 2.0 | 4107 ± 1363 → ↑1.4-fold | 0.280 ± 0.89 t → ↓66% | 64.1 ± 24.6 | ||||
8 | 60 | Fexo | 332 ± 252 | 2 (0.5–4) | 6.6 ± 3.1 | 1801 ± 979 | 0.75 ± 0.47 t | 55.6 ± 21.8 | [80] | |
Fexo + Itraconazole (Day 1) | 709 ± 287 → ↑1.13-fold | 2 (1–4) | 4.9 ± 0.8 | 4108 ± 1429→↑1.3-fold | 0.28 ± 0.14 t → ↓63% | 50.4 ± 27.3 | ||||
Fexo + Itraconazole (Day 3) | 679 ± 167 → ↑1-fold | 2(1.5–4) | 4.6 ± 0.4 | 4231 ± 75 → ↑1.3-fold | 0.24 ± 0.05 t → ↓68% | 53.4 ± 24.3 | ||||
Fexo + Itraconazole (Day 6) | 595 ± 257 → ↑79% | 2.5(1–4) | 5.3 ± 0.8 | 3859 ± 1057 → ↑1-fold | 0.28 ± 0.08 t → ↓63% | 58.6 ± 23.9 | ||||
9 | 60 | Fexo | 194 ± 116 | N/N | 10.6 ± 1.9 | 1010 ± 460 | 0.93 ± 0.336 t | N/N | [83] | |
Fexo + Ritonavir j | 311 ± 102 → ↑60% | N/N | 11.3 ± 2.5 | 2780 ± 920 → ↑1.75-fold | 0.324 ± 0.114 t → ↓65% | N/N | ||||
Fexo + Ritonavir k | 191 ± 95 | N/N | 10.4 ± 3.9 | 1400 ± 700 → ↑39% | 0.642 ± 0.39 t → ↓31% | N/N | ||||
10 | 180 | Fexo | 390 (300–650) | 2(1.4–3.0) | N/N | N/N | 73.2 (50.50–123.20)u | 5 (4.28–6.27) u | [18] | |
Fexo + Probenecid | 510 (330–850) → ↑31% | 2 (2.0–2.0) | N/N | N/N | 42.11 (26.88–80.78) u → ↓42% | 1.31 (1.03–2.63) u | ||||
11 | 60 | Fexo | 133 ± 67 | N/N | 11.1 ± 3.5 | 744 ± 282 | 1.368 ± 0.618 t | N/N | [85] | |
Fexo + Nelfinavir | 100 ± 43 → ↓25% | N/N | 8.2 ± 2.7 | 737 ± 192 | 1.296 ± 0.54 t | N/N | ||||
12 | 60 | Fexo | 164 ± 125 | N/N | 12.4 ± 2.2 | 859 ± 438 | 1.248 ± 0.498 t | N/N | [87] | |
Fexo + Ritonavir/Indinavir l | 404 ± 191 → ↑1.5-fold | N/N | 8.3 ± 3.2 | 4160 ± 1510 → ↑3.8-fold | 0.132 ± 0.24 t → ↓89% | N/N | ||||
Fexo + Ritonavir/Indinavir m | 464 ± 228 → ↑1.8-fold | N/N | 7.5 ± 0.7 | 3540 ± 1530 → ↑3-fold | 0.12 ± 0.396 t → ↓90% | N/N | ||||
13 | 60 | Fexo | 176.6 ± 82.1 | 1.5 (1–4) | 3.4 ± 0.7 | 1058.4 ± 528.7 | 67.3 ± 24.8 | 8.8 ± 3.5 | [7] | |
Fexo + Carbamazepine | 103.2 ± 33.6 → ↓41% | 1.5 (0.5–1.5) | 3.0 ± 0.9 | 604.8 ± 255.9 → ↓43% | 117.8 ± 55.5→↑75% | 9.2 ± 6.9 | ||||
14 | 60 | Fexo | 304.4 ± 139.6 | 2.2 ± 1.1 | 4.7 ± 1.0 | 2159.2 ± 573.0 | 60.1 ± 19.7 | N/N | [89] | |
Fexo + Metronidazole | 293.2 ± 137.7 | 2.4 ± 1.1 | 5.4 ± 2.8 | 2141.7 ± 538.2 | 59.7 ± 17.5 | N/N | ||||
15 | 60 | Fexo | 147.2 (63.3) | 2 (1.0–4.0) | 3.4 (0.83) | 807.8 (338.5) | 74.3 (29.9) | 8.2 (3.4) | [93] | |
Fexo + Fluvoxamine | 231.0 (96.6) → ↑57% | 2 (0.5–4.0) | 3.3 (2.91) | 1434.0 (666.1) → ↑77% | 41.8 (24.0) → ↓44% | 7.8 (6.3) | ||||
Fexo+ Paroxetine | 195.0 (90.3) → ↑33% | 1.5 (0.5–4.0) | 4.8 (3.02) | 1114.4 (626.6) → ↑38% | 53.8 (30.4) → ↓28% | 8.4 (6.6) | ||||
Fexo + Sertraline | 127.1 (56.3) → ↓16% | 1.25 (0.5–6.0) | 2.5 (0.95) | 675.6 (390.0) → ↓16% | 88.8 (73.1) → ↑20% | 10.0 (12.2) | ||||
16 | 60 | Fexo | 134 ± 61 | N/N | 13.6 ± 2.7 | 729 ± 185 | 1.176 ± 0.336 t | N/N | [94] | |
Fexo + Indinavir | 453 ± 298 → ↑2.4-fold | N/N | 10.3 ± 3.6 | 2413 ± 1344 → ↑2.3-fold | 0.438 ± 0.21 t → ↓63% | N/N | ||||
17 | 25 n | Fexo | 0.11 ± 0.03 | 1.00 ± 0.55 | 5.75 ± 2.10 | 0.50 ± 0.17 | N/N | N/N | [95] | |
Fexo + Fluvoxamine/Ketoconazole | 0.28 ± 0.15→↑1.5-fold | 0.88 ± 0.14 | 13.78 ± 9.68 | 1.58 ± 0.46 | N/N | N/N | ||||
18 | 60 | Fexo | 172 ± 90 | N/N | 9.6 ± 4.8 | 1180 ± 620 | 0.864 ± 0.366 t | N/N | [96] | |
Fexo + Ritonavir/Lopinavir o | 440 ± 192 → ↑1.6-fold | N/N | 7.8 ± 2.7 | 4420 ± 2180 → ↑2.7-fold | 0.24 ± 0.114 t → ↓72% | N/N | ||||
Fexo + Ritonavir/Lopinavir p | 303 ± 175 → ↑76% | N/N | 10.1 ± 3.0 | 2470 ± 1360 | 0.444 ± 0.228 t→↓49% | N/N | ||||
19 | 100 n | Fexo | 0.489 ± 0.183 | 1.13 ± 0.23 | 7.75 ± 1.59 | N/N | 28.6 ± 4.87 | N/N | [99] | |
Fexo + Ritonavir (2 mg) | 0.761 ± 0.281 → ↑56% | 1.13 ± 0.44 | 7.03 ± 1.43 | N/N | 22.0 ± 7.26→↓23% | N/N | ||||
Fexo + Ritonavir (100 mg) | 1.250 ± 0.452 → ↑1.6-fold | 1.31 ± 0.46 | 7.03 ± 0.88 | N/N | 13.8 ± 3.35→↓52% | N/N | ||||
20 | 50 | Fexo | 0.195 ± 0.0840 | 1 | N/N | N/N | N/N | N/N | [103] | |
Fexo + Cremophor EL (1440 mg) | 0.240 ± 0.0881 → ↑23% | 1 | N/N | N/N | N/N | N/N | ||||
Fexo + Cremophor EL (720 mg) | 0.302 ± 0.123 i → ↑55% | 1.5 | N/N | N/N | N/N | N/N | ||||
21 | 120 | Fexo | 169.8 | 1.9 (1.4) | 5.2 (0.8) | 1313.6 | N/N | N/N | [106] | |
Fexo + Vitamin D3 | 222.5 → ↑31% | 2.1 (1.0) | 4.9 (0.7) | 1521.3 | N/N | N/N | ||||
22 | 25 | Fexo | 59.6 ± 27.0 | 1.60 ± 0.66 | 2.46 ± 0.30 | 270.4 ± 102.3 | 103.9 ± 33.7 | N/N | [112] | |
Fexo + Geneva Cocktail | 32.9 ± 21.8 → ↓45% | 2.01 ± 0.98 | 2.64 ± 0.55 | 165.7 ± 84.4 → ↓39% | 189.1 ± 95.1 → ↑82% | N/N | ||||
23 | 120 | Fexo | 710 ± 331 | 1.0 (0.5–2.5) | 6.12 ± 5.76 | 3460.5 ± 2630.4 | 49.6 ± 26.3 | N/N | [113] | |
Fexo + Breviscapine | 699 ± 321 | 1.0 (0.5–3.0) | 6.06 ± 4.17 | 2972.5 ± 1965.3 | 51.3 ± 23.8 | N/N | ||||
Effect of Age and Gender | ||||||||||
24 | 60 | Fexo a | 77 ± 31 | 2.167± 0.383 | 3.217 ± 0.533 | N/N | 177.3 ± 90.96 l | 5.7 ± 3.06 | [67] | |
Fexo b | 72 ± 19 | 2.75 ± 0.39 | 3.25 ± 0.633 | N/N | 157.92 ± 59.76 | 8.4 ± 1.14 | ||||
Fexo c | 106 ± 42 | 2.833 ± 0.55 | 3.833 ± 0.795 | N/N | 105.6 ± 42.5 l | 5.82 ± 2.4 | ||||
Fexo d | 76 ± 23 | 3.417± 0.667 | 3.017 ± 0.617 | N/N | 132.6 ± 33.24 l | 6.06 ± 1.92 | ||||
Fexo + Rifampicin a | 52 ± 17 → ↓32% | 2.75 ± 0.25 | 3.033 ± 1.167 | N/N | 331.44 ± 204.6 → ↑1.5-fold | 7.68 ± 3.78 | ||||
Fexo + Rifampicin b | 36 ± 14 → ↓50% | 2.917± 0.783 | 3.017 ± 1.433 | N/N | 425.46 ± 3227.4 → ↑3-fold | 9.18 ± 4.32 | ||||
Fexo + Rifampicin c | 52 ± 14 → ↓1-fold | 2.583± 0.567 | 2.867 ± 0.556 | N/N | 276.48 ± 68.22 → ↑1-fold | 7.74 ± 3 | ||||
Fexo + Rifampicin d | 46 ± 19 → ↓39% | 3 ± 0.733 | 2.5 ± 0.967 | N/N | 290.7 ± 96.0 → ↑1.2-fold | 5.76 ± 1.92 | ||||
Enantiomers | ||||||||||
25 | 60 | R (+) | Fexo | 160 (75, 245) w | 1.5 (1–4) | 3.9 (3.3, 4.5) | N/N | 50 (32, 68) | 4.6 (3.4, 5.7) | [84] |
Fexo + Itraconazole | 290 (195, 384) → ↑81% | 3.0 (1.5–4) | 4.2 (3.7, 4.8) | N/N | 17 (13, 21) → ↓66% | 4.4 (3.3, 5.5) | ||||
S (−) | Fexo | 111 (39, 182) | 2.0 (1–4) | 3.4 (2.7, 4.2) | N/N | 95 (55, 135) | 9.0 (6.4, 11.7) | |||
Fexo + Itraconazole | 236 (147, 326) → ↑1-fold | 3.0 (1–4) | 3.4 (3.0, 3.9) | N/N | 25 (19, 31) → ↓74% | 8.4 (6.1,10.8) | ||||
26 | 120 | R (+) | Fexo | 223 (194, 252) | 1.5 (0.5–4) | 3.3 (2.8, 3.7) | 1202 (1007,1396) | 56 (47, 64) | N/N | [88] |
Fexo + Verapamil | 480 (359, 600) → ↑54% | 1.0 (1–4) | 3.4 (2.8, 4.0) | 2632 (2131, 3132) → ↑1.2-fold | 26 (20, 32) → ↓53% | N/N | ||||
S (−) | Fexo | 179 (149, 209) | 1.8 (0.5–4) | 3.0 (2.4, 3.7) | 700 (577, 823) | 93 (70, 116) | N/N | |||
Fexo + Verapamil | 392 (263, 520) → ↑1.2-fold | 1.5 (1–4) | 3.5 (2.8, 3.7) | 2006 (1617, 2394) → ↑1.9-fold | 33 (27, 39) → ↓65% | N/N | ||||
27 | 60 | R (+) | Fexo | 132 (103, 161) | 1.4 (1.1–1.7) | 4.2 (3.4, 4.9) | 749 (656, 842) | 42 (36, 48) | 4.7 (3.3, 6.0) | [16] |
Fexo + Carbamazepine | 85 (64, 107) → ↓35% | 1.1 (0.8–1.5) | 3.3 (2.8, 3.9) | 359 (303, 415) → ↓52% | 86 (63, 108) → ↑1-fold | 6.1(4.5, 7.7) | ||||
S (−) | Fexo | 100 (83, 118) | 1.5 (1.0–2.0) | 3.7 (2.7, 4.7) | 481 (410, 552) | 67 (56, 77) | 7.5 (5.5, 9.6) | |||
Fexo + Carbamazepine | 68 (47, 88) → ↓32% | 1.1 (0.7–1.4) | 2.5 (2.1, 2.8) | 187 (153, 222) → ↓61% | 174 (145, 202) → ↑1.6-fold | 13.6 (10.0, 17.3) | ||||
28 | 60 | R (+) | Fexo | 160 (117–202) | 1.8 (0.5–4.0) | 3.8 (3.3–4.4) | 1011 (695–1327) | 37 (28–46) | 3.9 (2.5–5.4) | [19] |
Fexo + Rifampicin q | 502 (427–577) → ↑2-fold | 2.0 (1.0–4.0) | 3.5 (3.2–3.9) | 3243 (2759–3727) → ↑2.2-fold | 10 (8–12) → ↓79% | 1.5 (1.1–2.0) | ||||
Fexo + Rifampicin r | 331 (261–401) → ↑1-fold | 2.0 (1.0–4.0) | 3.2 (2.7–3.6) | 1922 (1635–2210) → ↑90% | 16 (14–19) → ↓57% | 1.8 (1.3–2.2) | ||||
S (−) | Fexo | 127 (92–163) | 1.8 (1.0–4.0) | 3.3 (2.8–3.8) | 698 (459–937) | 56 (41–70) | 6.6 (4.2–8.9) | |||
Fexo + Rifampicin q | 443 (371–515) → ↑2.5-fold | 1.8 (1.0–3.0) | 3.1 (2.8–3.5) | 2489 (2100–2877) → ↑2.6-fold | 13 (10–17) → ↓77% | 2.5 (1.6–3.4) | ||||
Fexo + Rifampicin r | 318 (252–385) → ↑1.5-fold | 2.0 (1.0–4.0) | 2.9 (2.5–3.3) | 1674 (1400–1949) → ↑1.4-fold | 19 (16–22) → ↓66% | 3.0 (2.3–3.7) | ||||
29 | 60 | R (+) | Fexo | 126 (100, 152) | 1.4 (0.5–3.0) | 4.1 (3.3, 5.0) | 739 (638, 840) v | 43 (36, 49) | 4.5 (3.0, 6.0) | [104] |
Fexo + Rifampicin | 364 (300, 428) → ↑1.9-fold | 1.8 (1.0–4.0) | 3.5 (2.9, 4.0) | 2205 (1386, 3023) v → ↑2-fold | 17 (12, 22) → ↓60% | 1.4 (1.0, 1.7) | ||||
S (−) | Fexo | 104 (83, 125) | 1.6 (1.0, 4.0) | 3.4 (2.3, 4.5) | 522 (366, 677) v | 67 (52, 82) | 7.3 (4.5, 10.1) | |||
Fexo + Rifampicin | 326 (266, 387) → ↑2-fold | 1.8 (1.0, 4.0) | 2.8 (2.5, 3.0) | 1563 (1069, 2057) v → ↑2-fold | 23 (17, 30) → ↓66% | 2.4 (1.6, 3.1) | ||||
Genotypes | ||||||||||
30 | 180 | Fexo (2677GG/3435CC) | 510.8 ± 262.6 | 3.0 ± 1.6 | 5.0 ± 1.7 | 4040.4 ± 1832.2 | 0.8060 ± 0.3553 t | 0.0357 ± 0.030.0 t | [72] | |
Fexo (2677TT/3435TT) | 713.8 ± 311.4 | 3.5 ± 2.0 | 5.0 ± 0.8 | 5194.0 ± 1910.8 | 0.5309 ± 0.1911 t | 0.0288 ± 0.0253 t | ||||
Fexo + Itraconazole (2677GG/3435CC) | 1376.3 ± 340.5 → ↑1.7-fold | 3.4 ± 0.9 | 4.4 ± 0.6 | 9252.9 ± 2044.1 → ↑78% | 0.2923 ± 0.0422 t → ↓64% | 0.0258 ± 0.0155 t | ||||
Fexo + Itraconazole (2677TT/3435TT) | 2136.2 ± 897.9 → ↑2-fold | 3.1 ± 1.5 | 4.6 ± 0.6 | 15,630.6 ± 5070.0 → ↑2-fold | 0.167.0 ± 0.0333 t → ↓69% | 0.0242 ± 0.0219 t | ||||
31 | 120 | MDR1 C3435T genotype group | [113] | |||||||
Fexo (CC) | 753 ± 408 | 1 (0.5–1.5) | 7.52 ± 6.74 | 4365.3 ± 3958.1 | 47.4 ± 34.0 | N/N | ||||
Fexo (CT) | 675 ± 366 | 1 (0.5–2.0) | 5.69 ± 2.54 | 3004.0 ± 2209.8 | 56.6 ± 29.7 | N/N | ||||
Fexo (TT) | 702 ± 263 | 1.75 (0.5–2.5) | 4.01 ± 1.45 | 3012.3 ± 1225.1 | 44.8 ± 15.3 | N/N | ||||
Fexo + Breviscapine (CC) | 647 ± 288 → ↓14% | 1.25 (0.5–1.5) | 7.86 ± 6.85 | 3713.6 ± 3254.0 → ↓15% | 49.6 ± 29.6 | N/N | ||||
Fexo + Breviscapine (CT) | 571 ± 376 → ↓15% | 1.25 (0.5–3.0) | 5.30 ± 2.01 | 2226.6 ± 943.5 → ↓26% | 62.9 ± 26.8 | N/N | ||||
Fexo + Breviscapine (TT) | 879 ± 254 → ↑25% | 1 (0.5–1.5) | 5.02 ± 1.49 | 2977.3 ± 571.6 | 41.5 ± 7.4 | N/N |
Sr. | Fexo Dose (mg) | Treatment Groups | Cmax (ng/mL) | Tmax (h) | t1/2 (h) | AUC0–∞ (ng.h/mL) | CL/F (L/h) | Refs | |
---|---|---|---|---|---|---|---|---|---|
1 | 60 | Fexo + Water | 201 (66) | 2.28 (53) | 11.0 (44) | N/N | N/N | [69] | |
Fexo + GFJ | 128 (35) → ↓36% | 2.57 (27) | 14.6 (58) | N/N | N/N | ||||
2 | 60 | Fexo + Water | 288 ± 24 | 2.4 ± 0.3 | 2.6 ± 0.3 | 1617 ± 120 | N/N | [70] | |
Fexo + 25% GFJ | 228 ± 28 | 2.6 ± 0.2 | 2.7 ± 0.2 | 1244 ± 111 → ↓23% | N/N | ||||
Fexo + GFJ | 110 ± 14 → ↓62% | 3.2 ± 0.4 | 3.1 ± 0.2 | 593 ± 67 → ↓63% | N/N | ||||
Fexo + OJ | 96 ± 7 → ↓58% | 2.7 ± 0.5 | 3.4 ± 0.3 | 494 ± 16 → ↓69% | N/N | ||||
Fexo + AJ | 81 ± 13 → ↓64% | 3.1 ± 0.5 | 3.5 ± 0.4 | 434 ± 53 → ↓73% | N/N | ||||
3 | 120 | Fexo + 300 mL Water | 436 ± 74 a | 2.0 ± 0.4 | 3.0 ± 0.5 | 2167 ± 283 | N/N | [75] | |
Fexo + 1200 mL Water | 326 ± 37 | 2.1 ± 0.3 | 3.2 ± 0.2 | 1747 ± 184 | N/N | ||||
Fexo + 300 mL GFJ | 233 ± 25 → ↓46% | 3.3 ± 0.6 | 3.1 ± 0.2 | 491 ± 28 → ↓77% | N/N | ||||
Fexo + 1200 mL GFJ | 109 ± 8 → ↓66% | 2.9 ± 0.4 | 3.5 ± 0.2 | 677 ± 41 → ↓61% | N/N | ||||
4 | 120 | Fexo + Water a | 463 ± 62 | 2.3 ± 0.3 | 2.9 ± 0.2 | 2545 ± 327 | N/N | [81] | |
Fexo + GFJ a | 269 ± 47 → ↓42% | 2.6 ± 0.3 | 2.9 ± 0.2 | 1465 ± 196 → ↓42% | N/N | ||||
Fexo + Naringin a | 380 ± 60 → ↓18% | 1.8 ± 0.3 | 3.1 ± 0.3 | 1993 ± 278 → ↓22% | N/N | ||||
Fexo + Water b | 456 ± 62 | 1.8 ± 0.3 | 2.4 ± 0.2 | 2516 ± 373 | N/N | ||||
Fexo + GFJ b | 276 ± 39 → ↓39% | 2.8 ± 0.3 | 2.6 ± 0.2 | 1490 ± 140 → ↓41% | N/N | ||||
Fexo+ Furanocoumarin (0 h) b | 474 ± 49 | 2.4 ± 0.4 | 2.6 ± 0.2 | 2464 ± 243 | N/N | ||||
Fexo + Furanocoumarin (−2 h) b | 433 ± 57 | 2.2 ± 0.4 | 2.2 ± 0.2 | 2379 ± 304 | N/N | ||||
5 | 120 | Fexo + Water | 0.57 (52.2)c | 3 (1–6) | 11.9 (36.5) | 4.22 (40.0) d | 52.8 (40.0) | [97] | |
Fexo + GFJ | 0.45 (43.7) c → ↓21% | 3.5 (1.5–5) | 10.3 (37.6) | 3.22 (33.5) d → ↓24% | 69.3 (33.5) → ↑31% | ||||
Fexo + mGFJ | 0.44 (32.4) c | 4 (2–6) | 10.3 (29.7) | 3.15 (28.6) d → ↓25% | 70.9 (29.6) → ↑34% | ||||
6 | 60 | Fexo + Water | 303 ± 132 | 2.0 (1.5–6.0) | N/N | 1736 ± 462 | 0.6 ± 0.2 e | [108] | |
Fexo + 150 mL AJ | 257 ± 119 → ↓15% | 2.5 (1.5–6.0) | N/N | 1598 ± 496 | 0.7 ± 0.1 e → ↑17% | ||||
Fexo + 300 mL AJ | 158 ± 56 → ↓48% | 3.0 (2.0–6.0) | N/N | 1072 ± 429 | 1.1 ± 0.4 e → ↑83% | ||||
Fexo + 600 mL AJ | 108 ± 31 → ↓64% | 3.0 (3.0–6.0) | N/N | 668 ± 163 → ↓61% | 1.7 ± 0.3 e → ↑1.8-fold | ||||
7 | 60 | Fexo + Water | 278.7 | 2 | 5.2 | 1765 | N/N | [114] | |
Fexo + GTE | 82.6 → ↓70% | 2 | 5.7 | 521.9 → ↓70% | N/N | ||||
Enantiomers | |||||||||
8 | 60 | R (+) | Fexo + Water | 131 | 1.5 | 3.8 | 774 g | 41 | [101] |
Fexo + AJ | 62 → ↓53% | 2.9 | 3.8 | 364 g → ↓53% | 95 → ↑1.3-fold | ||||
S (−) | Fexo + Water | 110 | 1.6 | 3 | 530 g | 64 | |||
Fexo + AJ | 41 → ↓63% | 2.8 | 2.7 | 185 g → ↓65% | 205 → ↑2.2-fold | ||||
9 | 60 | R (+) | Fexo + Water | 131 | 1.4 | 4 | 777 g | 41 | [105] |
Fexo + GFJ | 68 → ↓48% | 2 | 4.3 | 461 g → ↓41% | 75 → ↑83% | ||||
S (−) | Fexo + Water | 110 | 1.5 | 3.3 | 562 g | 62 | |||
Fexo + GFJ | 45 → ↓59% | 2.1 | 3.5 | 244 g→↓57% | 143 → ↑1.3-fold | ||||
Genotypes | |||||||||
10 | 60 | SLCO2B1 c.1457C > T genotype | [91] | ||||||
Fexo | CC | 343 ± 127 f | 1.5 | 3.2 ± 0.6 | 1762 ± 542 | 0.6 ± 0.2 | |||
CT | 224 ± 139 | 1.5 | 3.0 ± 0.4 | 1088 ± 449 | 1.0 ± 0.4 | ||||
TT | 179 ± 42.0 | 1.8 | 3.9 ± 1.1 | 1136 ± 225 | 0.8 ± 0.2 | ||||
CT + TT | 204 ± 104 | 1.5 | 3.4 ± 0.9 | 1110 ± 347 | 0.9 ± 0.3 | ||||
Fexo + AJ | CC | 43.6 ± 9.8 → ↓87% | 2.5 | 3.9 ± 1.1 | 263 ± 33.2 → ↓85% | 3.7 ± 0.5 → ↑5-fold | |||
CT | 44.7 ± 16.4 → ↓80% | 1.5 | 4.0 ± 1.1 | 253 ± 79.8 → ↓77% | 3.9 ± 1.0 → ↑2.9-fold | ||||
TT | 46.2 ± 18.6 → ↓74% | 1.8 | 4.7 ± 0.9 | 352 ± 92.8 → ↓69% | 2.6 ± 0.3 → ↑2.2 fold | ||||
CT + TT | 45.4 ± 16.3 → ↓78% | 1.5 | 4.3 ± 1.0 | 297 ± 95.8 → ↓73% | 3.3 ± 1.0 → ↑2.66 fold |
Sr. | Fexo Dose (mg) | Treatment Groups | Cmax (ng/mL) | Tmax (h) | t1/2 (h) | AUC0–∞ (ng.h/mL) | CL/F (L/h) | CLR (L/h) | Refs |
---|---|---|---|---|---|---|---|---|---|
1 | 60 | Fexo | 163 ± 43 | 2.5 (2–3) | 3.5 ± 0.9 | 965 ± 325 | 77 ± 23 | 3.3 ± 1.1 | [68] |
Fexo + St John’s Wort a | 236 ± 96 → ↑45% | 2.5 (1–3) | 3.6 ± 1.6 | 1261 ± 507 → ↑31% | 62 ± 26 → ↓19% | 3.4 ± 1.7 | |||
Fexo + St John’s Wort b | 154 ± 75 | 3 (2–3) | 3.7 ± 1.2 | 871 ± 447 | 91 ± 32 → ↑18% | 3.2 ± 2.2 | |||
2 | 180 | Fexo | 330 ± 144 | N/N | 4.8 ± 1.3 | N/N | 117.66 ± 43.56 | N/N | [71] |
Fexo + St John’s Wort | 202 ± 101 → ↓39% | N/N | 5.3 ± 2.0 | N/N | 219.66 ± 115.56 → ↑87% | N/N | |||
3 | 120 | Fexo | 179 | 2.5 | 5.44 | 1121 | 107 | N/N | [82] |
Fexo + Gingko Biloba Extract | 175 | 2 | 5.98 | 925 → ↓18% | 130 | N/N | |||
4 | 60 | Fexo | 295.3 ± 135.4 | 2.0 (0.5–5) | 4.5 ± 0.8 | N/N | 61.4 ± 18.4 | 4.72 ± 1.13 | [86] |
Fexo + Quercetin | 480.3 ± 163.7 → ↑63% | 2 (1.5–3) | 4.7 ± 1.5 | N/N | 38.7 ± 8.3 → ↓36% | 4.29 ± 1.40 | |||
5 | 120 | Fexo | 256 | 2 | 5.6 | 1569 | 0.076 | N/N | [90] |
Fexo + Echinacea purpurea | 232 | 2 | 5.5 | 1543 | 0.078 | N/N | |||
6 | 120 | Fexo | 305 | 2.3 | 5.2 | 2036 | 0.059 | N/N | [92] |
Fexo + Panax Ginseng | 258 → ↓15% | 2.8 | 4.8 | 1860 | 0.065 | N/N | |||
7 | 120 | Fexo | 745.11 ± 137.41 | 2.25 ± 0.47 | 3.75 ± 1.47 | 3993.84 ± 912.97 | N/N | N/N | [98] |
Fexo + Radix Astragali Extract | 709.44 ± 170.03 | 2.21 ± 0.51 | 4.00 ± 1.24 | 3983.53 ± 1019.83 | N/N | N/N | |||
8 | 120 | Fexo | 415.08 ± 67.63 | 2.37 ± 0.37 | 8.27 ± 1.82 | 2541.65 ± 527.18 | 49.46 ± 12.27 | N/N | [100] |
Fexo + Resveratrol | 685.58 ± 184.24 → ↑65% | 2.41 ± 0.36 | 8.48 ± 2.15 | 4512.33 ± 1265.17 → ↑78% | 28.37 ± 7.03 → ↓43% | N/N | |||
9 | 30 | Fexo | 71.851 | 2 | 4.899 | 467.806 | N/N | N/N | [107] |
Fexo + Fermented red Ginseng | 84.767 → ↑18% | 2 | 4.725 | 611.566 → ↑30% | N/N | N/N | |||
10 | 60 | Fexo | 223.92 ± 74.36 | 3 | 5.97 ± 0.82 | 1717.66 ± 815.21 | 44.35 ± 25.57 | N/N | [102] |
Fexo + Danshen Ethanol Extract | 48.05 ± 60.93 → ↓78% | 2 | 5.96 ± 1.00 | 889.99 ± 353.11 → ↓48% | 77.88 ± 31.20 → ↑75% | N/N | |||
11 | 120 | Fexo | 523.28 ± 173.52 | 2.21 ± 1.03 | 9.26 ± 1.62 | 3507.80 ± 972.56 | 37.03 ± 11.67 | 6.41 ± 2.16 | [109] |
Fexo + Diosmin | 780.63 ± 150.41 → ↑49% | 2.62 ± 0.98 | 9.45 ± 1.89 | 5815.76 ± 1430.72 → ↑66% | 21.75 ± 5.04 → ↓41% | 6.73 ± 3.02 | |||
12 | 120 | Fexo | 406.9 ± 71.4 | 2.4 ± 0.4 | 12.1 ± 3.2 | 3571.1 ± 882.7 | 35.4 ± 8.1 | 6.2 ± 2.1 | [110] |
Fexo + Piperine | 767.0 ± 149.0 → ↑88% | 2.4 ± 0.4 | 13.1 ± 1.8 | 6086.8 ± 1390.2 → ↑70% | 20.7 ± 4.7 → ↓42% | 6.5 ± 2.9 | |||
13 | 10 | Fexo | 11.12 | N/N | N/N | 62.2 | 161 | N/N | [111] |
Fexo + propolis extract | 10.05 | N/N | N/N | 51 → ↓18% | 196 → ↑22% | N/N | |||
Oral clearance (CL/F) across six different ethnic groups | |||||||||
Sr. | PK | Treatment | African/American | Caucasian | Hispanic | Chinese | Indian | Malay | Refs |
14 | Cl/F (L/h) | Fexo | 91 ± 47 | 108 ± 47 | 74 ± 26 | 75 ± 27 | 62 ± 17 | 55 ± 12 | [73] |
Cl/F (L/h) | Fexo + St John’s Wort | 158 ± 92 → ↑74% | 195 ± 46 | 141 ± 58 | 112 ± 54 → ↑49% | 86 ± 14 → ↑39% | 98 ± 49 → ↑78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, M.; Zamir, A.; Alqahtani, F.; Ahmad, T.; Saeed, H.; Rasool, M.F. Clinical Pharmacokinetics of Fexofenadine: A Systematic Review. Pharmaceutics 2024, 16, 1619. https://doi.org/10.3390/pharmaceutics16121619
Batool M, Zamir A, Alqahtani F, Ahmad T, Saeed H, Rasool MF. Clinical Pharmacokinetics of Fexofenadine: A Systematic Review. Pharmaceutics. 2024; 16(12):1619. https://doi.org/10.3390/pharmaceutics16121619
Chicago/Turabian StyleBatool, Maryam, Ammara Zamir, Faleh Alqahtani, Tanveer Ahmad, Hamid Saeed, and Muhammad Fawad Rasool. 2024. "Clinical Pharmacokinetics of Fexofenadine: A Systematic Review" Pharmaceutics 16, no. 12: 1619. https://doi.org/10.3390/pharmaceutics16121619
APA StyleBatool, M., Zamir, A., Alqahtani, F., Ahmad, T., Saeed, H., & Rasool, M. F. (2024). Clinical Pharmacokinetics of Fexofenadine: A Systematic Review. Pharmaceutics, 16(12), 1619. https://doi.org/10.3390/pharmaceutics16121619