Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thiolation of XGM
2.3. 1H NMR Analysis
2.4. Determination of Thiol Contents
2.5. Preparation of Nanoparticles
2.6. Size and Surface Charge Analysis
2.7. Loading and Entrapment Efficiency of MCZ
2.8. Release of MCZ from Nanoparticles
2.9. Characterization of Nanoparticles
2.9.1. Fourier Transforms Infrared Spectroscopy (FTIR)
2.9.2. Differential Scanning Calorimetry (DSC)
2.9.3. Thermogravimetric Analysis (TGA)
2.9.4. X-ray Diffraction Analysis (XRD)
2.9.5. Scanning Electron Microscopy (SEM)
2.10. Mucoadhesion Study
2.11. Permeation Study
2.12. Antifungal Activity of Nanoparticles Containing MCZ
2.13. In Vitro Cytocompatibility Studies
2.14. Stability Study of Nanoparticles
2.15. HPLC Method for MCZ Estimation
2.16. Pharmacokinetic Analysis
2.17. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Nanoparticles and Estimation of Thiol Contents
3.2. 1H NMR Analysis
3.3. Size and Surface Charge Analysis
3.4. Release and Kinetics of MCZ from Nanoparticles
3.5. Characterization of Nanoparticles
3.5.1. FTIR
3.5.2. DSC
3.5.3. TGA
3.5.4. XRD and SEM
3.6. Mucoadhesion Study
3.7. Permeation Study
3.8. Antifungal Activity of Nanoparticles Containing MCZ
3.9. In Vitro Cytocompatibility Studies
3.10. Stability of Nanoparticles Containing MCZ
3.11. HPLC Method for MCZ Estimation
3.12. Pharmacokinetic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira, A.D.R.; Quaresma, A.D.V.; Branquinho, R.T.; Santos, S.L.E.N.; De Magalhães, J.T.; Da Silva, F.H.R.; Marques, M.B.D.F.; De Moura, S.A.L.; Barboza, A.P.M.; Araújo, M.G.D.F. Miconazole-loaded nanoparticles coated with hyaluronic acid to treat vulvovaginal candidiasis. Eur. J. Pharm. Sci. 2023, 188, 106508. [Google Scholar] [CrossRef] [PubMed]
- Sharapova, A.; Blokhina, S.; Ol’khovich, M.; Perlovich, G. Thermodynamic analysis of solubility, distribution and solvation of antifungal miconazole in relevant pharmaceutical media. J. Mol. Liq. 2022, 347, 118248. [Google Scholar] [CrossRef]
- Tayah, D.Y.; Eid, A.M. Development of miconazole nitrate nanoparticles loaded in nanoemulgel to improve its antifungal activity. Saudi Pharm. J. 2023, 31, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Hajikhani, M.; Khanghahi, M.M.; Shahrousvand, M.; Mohammadi-Rovshandeh, J.; Babaei, A.; Khademi, S.M.H. Intelligent superabsorbents based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. Int. J. Biol. Macromol. 2019, 139, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Kobra, K.; Wong, S.Y.; Mazumder, M.A.J.; Li, X.; Arafat, M.T. Xanthan and gum acacia modified olive oil based nanoemulsion as a controlled delivery vehicle for topical formulations. Int. J. Biol. Macromol. 2023, 253, 126868. [Google Scholar] [CrossRef] [PubMed]
- Chanda, R.; Nath, L.K.; Mahapatra, S. Formulation Development of Oral Mucoadhesive CoatedTerbutaline Sulphate Tablets Using Some Natural MaterialsExtracted from Edible Fruits Available in India: Formulation of oral mucoadhesive terbutaline tablets. Iran. J. Pharm. Sci. 2009, 5, 3–12. [Google Scholar]
- Wu, Z.; Zhang, X.; Zheng, C.; Li, C.; Zhang, S.; Dong, R.; Yu, D. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur. J. Pharm. Sci. 2009, 37, 198–206. [Google Scholar] [CrossRef]
- Anitha, A.; Deepa, N.; Chennazhi, K.; Nair, S.; Tamura, H.; Jayakumar, R. Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydr. Polym. 2011, 83, 66–73. [Google Scholar] [CrossRef]
- Mueller, C.; Verroken, A.; Iqbal, J.; Bernkop-Schnuerch, A. Thiolated chitosans: In vitro comparison of mucoadhesive properties. J. Appl. Polym. Sci. 2012, 124, 5046–5055. [Google Scholar] [CrossRef]
- Mahmood, A.; Lanthaler, M.; Laffleur, F.; Huck, C.W.; Bernkop-Schnürch, A. Thiolated chitosan micelles: Highly mucoadhesive drug carriers. Carbohydr. Polym. 2017, 167, 250–258. [Google Scholar] [CrossRef]
- Naskar, S.; Sharma, S.; Kuotsu, K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J. Drug Deliv. Sci. Technol. 2019, 49, 66–81. [Google Scholar] [CrossRef]
- Bhatia, M.; Ahuja, M.; Mehta, H. Thiol derivatization of Xanthan gum and its evaluation as a mucoadhesive polymer. Carbohydr. Polym. 2015, 131, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Ma, K.; Ma, L.; Bai, J.; Li, X.; Song, H.; Guo, H. 3-Mercaptobutyric acid as an effective capping agent for highly luminescent CdTe quantum dots: New insight into the selection of mercapto acids. J. Phys. Chem. C 2012, 116, 12346–12352. [Google Scholar] [CrossRef]
- Naveen, N.R.; Gopinath, C.; Kurakula, M. Okra-Thioglycolic acid conjugate—Synthesis, characterization, and evaluation as a mucoadhesive polymer. Processes 2020, 8, 316. [Google Scholar] [CrossRef]
- Pedroso-Santana, S.; Fleitas-Salazar, N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym. Int. 2020, 69, 443–447. [Google Scholar] [CrossRef]
- Przybylska, D.; Grzyb, T. Production of highly stable upconverting nanoparticles modified with xanthan gum and their long-term studies. J. Alloys Compd. 2023, 933, 167708. [Google Scholar] [CrossRef]
- Lu, M.; Ma, L.; Li, J.; Li, J.; Tong, M.; Dai, F.; Song, F.; Zhang, X.; Qiu, T. Construction of carboxymethyl chitosan-based nanoparticles of hypoxia response for co-loading doxorubicin and tanshinone IIA. Int. J. Biol. Macromol. 2023, 244, 125362. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, D.; Sulaeman, U.; Istiqomah, A.; Aboul-Enein, H. Development of high performance liquid chromatography method for miconazole analysis in powder sample. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 11th Joint Conference on Chemistry in Conjunction with the 4th Regional Biomaterials Scientific Meeting, Purwokerto, Indonesia, 15–16 September 2016; IOP Publishing Ltd.: Bristol, UK, 2017; p. 012011. [Google Scholar]
- Javed, S.; Abbas, G.; Shah, S.; Rasul, A.; Irfan, M.; Saleem, A.; Hosny, K.M.; Bukhary, S.M.; Safhi, A.Y.; Sabei, F.Y. Tobramycin-loaded nanoparticles of thiolated chitosan for ocular drug delivery: Preparation, mucoadhesion and pharmacokinetic evaluation. Heliyon 2023, 9, e19877. [Google Scholar] [CrossRef]
- Emikpe, B.O.; Oyebanji, V.O.; Odeniyi, M.A.; Salaam, A.M.; Oladele, O.A.; Jarikre, T.A.; Akinboade, O.A. Ex-vivo evaluation of the mucoadhesive properties of Cedrela odorata and Khaya senegalensis gums with possible applications for veterinary vaccine delivery. SpringerPlus 2016, 5, 1289. [Google Scholar] [CrossRef]
- Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Boselli, C.; Caramella, C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: In vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. Aaps Pharmscitech 2010, 11, 362–371. [Google Scholar] [CrossRef]
- Rasool, M.; Mazhar, D.; Afzal, I.; Zeb, A.; Khan, S.; Ali, H. In vitro and in vivo characterization of Miconazole Nitrate loaded transethosomes for the treatment of Cutaneous Candidiasis. Int. J. Pharm. 2023, 647, 123563. [Google Scholar] [CrossRef]
- Mendes, A.; Silva, A.C.; Catita, J.A.M.; Cerqueira, F.; Gabriel, C.; Lopes, C.M. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids Surf. B Biointerfaces 2013, 111, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Martien, R.; Loretz, B.; Sandbichler, A.M.; Schnuerch, A.B. Thiolated chitosan nanoparticles: Transfection study in the Caco-2 differentiated cell culture. Nanotechnology 2008, 19, 045101. [Google Scholar] [CrossRef] [PubMed]
- Sakhi, M.; Khan, A.; Khan, I.; Khan, S.A.; Khan, S.I.; Khattak, M.A.; Uddin, M.N.; Kazi, M.; Nasir, F. Effect of polymeric stabilizers on the size and stability of PLGA paclitaxel nanoparticles. Saudi Pharm. J. 2023, 31, 101697. [Google Scholar] [CrossRef] [PubMed]
- Jadav, M.; Solanki, R.; Patel, S.; Pooja, D.; Kulhari, H. Development of thiolated xanthan gum-stearylamine conjugate based mucoadhesive system for the delivery of biochanin-A to melanoma cells. Int. J. Biol. Macromol. 2023, 257, 128693. [Google Scholar] [CrossRef]
- Tong, W.Y.; Tan, W.-N.; Azizi, M.A.K.; Leong, C.R.; El Azab, I.H.; Lim, J.W.; Mahmoud, M.; Dailin, D.J.; Ibrahim, M.M.; Chuah, L.F. Nanoparticle-laden contact lens for controlled release of vancomycin with enhanced antibiotic efficacy. Chemosphere 2023, 338, 139492. [Google Scholar] [CrossRef]
- Huang, C.; Peng, L.; Xu, X.; Lu, Y.; Wang, X.; Lan, Z.; Chen, J.; Zhou, Y. Preparation and characteristics of a thermosensitive in situ gel loaded with chitosan nanoparticles for optimal ocular delivery of chloramphenicol. J. Drug Deliv. Sci. Technol. 2023, 89, 104962. [Google Scholar] [CrossRef]
- Onugwu, A.L.; Attama, A.A.; Nnamani, P.O.; Onugwu, S.O.; Onuigbo, E.B.; Khutoryanskiy, V.V. Development and optimization of solid lipid nanoparticles coated with chitosan and poly (2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. J. Drug Deliv. Sci. Technol. 2022, 74, 103527. [Google Scholar] [CrossRef]
- Pandit, J.; Sultana, Y.; Aqil, M. Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration. Carbohydr. Polym. 2021, 267, 118217. [Google Scholar] [CrossRef]
- Zhu, X.; Su, M.; Tang, S.; Wang, L.; Liang, X.; Meng, F.; Hong, Y.; Xu, Z. Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol. Vis. 2012, 18, 1973. [Google Scholar]
- Rezk, A.I.; Kim, Y.-H.; Chun, S.; Park, C.H.; Kim, C.S. Thermo-responsive-polymeric-gates of poly (N-isopropylacrylamide)/N-(hydroxymethyl) acrylamide coated magnetic nanoparticles as a synergistic approach to cancer therapy: Drug release and kinetics models of chemothermal magnetic nanoparticles. Mater. Des. 2023, 234, 112350. [Google Scholar] [CrossRef]
- Asghar, Z.; Jamshaid, T.; Sajid-ur-Rehman, M.; Jamshaid, U.; Gad, H.A. Novel Transethosomal Gel Containing Miconazole Nitrate; Development, Characterization, and Enhanced Antifungal Activity. Pharmaceutics 2023, 15, 2537. [Google Scholar] [CrossRef] [PubMed]
- Batista, R.A.; Espitia, P.J.; Vergne, D.M.; Vicente, A.A.; Pereira, P.A.; Cerqueira, M.A.; Teixeira, J.A.; Jovanovic, J.; Severino, P.; Souto, E.B. Development and evaluation of superabsorbent hydrogels based on natural polymers. Polymers 2020, 12, 2173. [Google Scholar] [CrossRef] [PubMed]
- Umeyor, C.E.; Okoye, I.; Uronnachi, E.; Okeke, T.; Kenechukwu, F.; Attama, A. Repositioning miconazole nitrate for malaria: Formulation of sustained release nanostructured lipid carriers, structure characterization and in vivo antimalarial evaluation. J. Drug Deliv. Sci. Technol. 2021, 61, 102125. [Google Scholar] [CrossRef]
- Drozd, K.V.; Manin, A.N.; Boycov, D.E.; Perlovich, G.L. Simultaneous Improvement of Dissolution Behavior and Oral Bioavailability of Antifungal Miconazole via Cocrystal and Salt Formation. Pharmaceutics 2022, 14, 1107. [Google Scholar] [CrossRef] [PubMed]
- Pilevaran, M.; Tavakolipour, H.; Naji-Tabasi, S.; Elhamirad, A.H. Investigation of functional, textural, and thermal properties of soluble complex of whey protein–xanthan gum hydrogel. J. Food Process Eng. 2021, 44, e13751. [Google Scholar] [CrossRef]
- Bhalekar, M.R.; Pokharkar, V.; Madgulkar, A.; Patil, N.; Patil, N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. Aaps Pharmscitech 2009, 10, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Bootz, A.; Vogel, V.; Schubert, D.; Kreuter, J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57, 369–375. [Google Scholar] [CrossRef]
- Takahashi, K.; Kramar, J.A.; Farkas, N.; Takahata, K.; Misumi, I.; Sugawara, K.; Gonda, S.; Ehara, K. Interlaboratory comparison of nanoparticle size measurements between NMIJ and NIST using two different types of dynamic light scattering instruments. Metrologia 2019, 56, 055002. [Google Scholar] [CrossRef]
- Soliman, G.M.; Zhang, Y.L.; Merle, G.; Cerruti, M.; Barralet, J. Hydrocaffeic acid–chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties. Eur. J. Pharm. Biopharm. 2014, 88, 1026–1037. [Google Scholar] [CrossRef]
- Hazen, K.C. Influence of DMSO on antifungal activity during susceptibility testing in vitro. Diagn. Microbiol. Infect. Dis. 2013, 75, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Akay, C.; Özkan, S.A.; Şentürk, Z.; Cevheroğlu, Ş. Simultaneous determination of metronidazole and miconazole in pharmaceutical dosage forms by RP-HPLC. Il Farm. 2002, 57, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.; Rasul, A.; Abbas, G.; Shah, S.; Hanif, M. Targeted delivery of aspirin and metformin to colorectal cancer using disulfide bridged nanoparticles of thiolated pectin and thiolated Eudragit RL100. Mater. Today Commun. 2023, 35, 105586. [Google Scholar] [CrossRef]
- Aljaeid, B.M.; Hosny, K.M. Miconazole-loaded solid lipid nanoparticles: Formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int. J. Nanomed. 2016, 11, 441–447. [Google Scholar] [CrossRef]
Code | Composition of Formulations (Ratio of TXGM and STPP) | Size (nm) | PDI | Zeta Potential (mV) | Loading of MCZ (%) | Entrapment Efficiency (%) | |
---|---|---|---|---|---|---|---|
TXGM | STPP | ||||||
NTG1 | 1 | 1 | 87 ± 2 | 0.23 ± 0.02 | −17 ± 2 | 28.5 ± 2.52 | 71.5 ± 3.56 |
NTG2 | 1 | 2 | 98 ± 3 | 0.39 ± 0.03 | −15 ± 3 | 25.4 ± 1.80 | 69.8 ± 3.08 |
NTG3 | 1 | 3 | 121 ± 2 | 1.09 ± 0.03 | −11 ± 2 | 23.2 ± 1.62 | 67.4 ± 4.01 |
NTG4 | 1 | 4 | 134 ± 5 | 1.23 ± 0.05 | −08 ± 4 | 21.8 ± 1.02 | 66.2 ± 3.98 |
NTG5 | 1 | 5 | 156 ± 6 | 0.82 ± 0.02 | −07 ± 2 | 19.5 ± 1.42 | 65.5 ± 4.28 |
Code | Zero Order | First Order | Higuchi | Korsmeyer-Peppas | |
---|---|---|---|---|---|
R2 | R2 | R2 | R2 | n | |
NTG1 | 0.999 | 0.564 | 0.991 | 0.999 | 0.104 |
NTG2 | 0.997 | 0.487 | 0.990 | 0.992 | 0.209 |
NTG3 | 0.996 | 0.509 | 0.878 | 0.997 | 0.252 |
NTG4 | 0.998 | 0.498 | 0.894 | 0.998 | 0.179 |
NTG5 | 0.999 | 0.645 | 0.993 | 0.999 | 0.250 |
Formulations | MIC (µg/mL) |
---|---|
MCZ gel | 4.01 ± 0.34 |
NTG1 | 1.34 ± 0.21 |
Duration | Code | At 4 °C | At 25 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
Size (nm) | PDI | Zeta Potential (mV) | % EE | Size (nm) | PDI | Zeta Potential (mV) | % EE | ||
1 month | NTG1 | 88 ± 3 | 0.24 ± 0.02 | −16 ± 2 | 69 ± 2 | 91 ± 3 | 0.69 ± 0.02 | −11 ± 2 | 55 ± 3 |
NTG2 | 99 ± 4 | 0.39 ± 0.03 | −15 ± 4 | 65 ± 3 | 112 ± 4 | 0.98 ± 0.03 | −09 ± 3 | 51 ± 2 | |
NTG3 | 122 ± 2 | 1.19 ± 0.03 | −10 ± 1 | 64 ± 2 | 145 ± 3 | 1.76 ± 0.03 | −04 ± 2 | 45 ± 3 | |
NTG4 | 135 ± 4 | 1.26 ± 0.06 | −08 ± 3 | 62 ± 2 | 176 ± 4 | 1.92 ± 0.05 | −06 ± 4 | 43 ± 2 | |
NTG5 | 158 ± 5 | 0.84 ± 0.03 | −08 ± 2 | 59 ± 3 | 198 ± 7 | 1.42 ± 0.02 | −05 ± 2 | 39 ± 3 | |
3 month | NTG1 | 91 ± 4 | 0.24 ± 0.03 | −16 ± 2 | 67 ± 3 | 95 ± 4 | 0.80 ± 0.03 | −05 ± 1 | 51 ± 2 |
NTG2 | 100 ± 5 | 0.40 ± 0.02 | −14 ± 3 | 63 ± 4 | 117 ± 3 | 1.10 ± 0.04 | −04 ± 2 | 43 ± 2 | |
NTG3 | 124 ± 4 | 1.20 ± 0.04 | −10 ± 3 | 61 ± 3 | 149 ± 4 | 1.89 ± 0.06 | −02 ± 2 | 38 ± 3 | |
NTG4 | 136 ± 6 | 1.26 ± 0.05 | −08 ± 2 | 56 ± 4 | 181 ± 5 | 2.23 ± 0.04 | −01 ± 3 | 35 ± 2 | |
NTG5 | 159 ± 4 | 0.85 ± 0.06 | −07 ± 2 | 54 ± 2 | 201 ± 6 | 2.46 ± 0.06 | 01 ± 1 | 31 ± 2 | |
6 month | NTG1 | 95 ± 5 | 0.25 ± 0.05 | −15 ± 3 | 64 ± 3 | 109 ± 5 | 0.87 ± 0.03 | −03 ± 1 | 44 ± 2 |
NTG2 | 101 ± 3 | 0.40 ± 0.06 | −13 ± 3 | 56 ± 4 | 134 ± 4 | 1.67 ± 0.06 | −01 ± 1 | 41 ± 2 | |
NTG3 | 125 ± 4 | 1.21 ± 0.07 | −09 ± 4 | 55 ± 2 | 159 ± 5 | 2.59 ± 0.07 | 04 ± 2 | 33 ± 3 | |
NTG4 | 137 ± 6 | 1.27 ± 0.05 | −07 ± 2 | 51 ± 3 | 189 ± 5 | 2.83 ± 0.05 | 06 ± 2 | 30 ± 2 | |
NTG5 | 160 ± 7 | 0.85 ± 0.07 | −06 ± 5 | 48 ± 2 | 214 ± 6 | 2.96 ± 0.04 | 07 ± 2 | 26 ± 2 |
Percentage Recovery of MCZ | Inter-Day Precision | Intra-Day Precision | |||||
---|---|---|---|---|---|---|---|
Injected Concentration (µg/mL) | Recovered Concentration (µg/mL) | %RSD | Recovery (%) | Mean ± SD (µg/mL) | %RSD | Mean ± SD (µg/mL) | %RSD |
50.00 | 48.12 ± 1.23 | 0.24 | 96.24 | 48.14 ± 2.10 | 0.29 | 48.16 ± 1.98 | 0.32 |
25.00 | 23.22 ± 1.90 | 0.56 | 92.88 | 23.24 ± 1.03 | 0.59 | 23.25 ± 0.97 | 0.60 |
12.50 | 11.26 ± 2.09 | 0.67 | 90.08 | 11.27 ± 1.23 | 0.71 | 11.28 ± 1.02 | 0.75 |
6.25 | 6.10 ± 1.09 | 0.22 | 97.60 | 6.13 ± 0.87 | 0.24 | 6.11 ± 0.46 | 0.23 |
3.125 | 2.99 ± 0.97 | 0.31 | 95.68 | 3.01 ± 0.73 | 0.42 | 3.03 ± 0.54 | 0.41 |
System suitability parameters | |||||||
Parameters | Mean (n = 5) | %RSD | Limits | ||||
Peak area | 14,356 | 1.34 | <2 | ||||
Retention time in min | 6.8 | 0.98 | -- | ||||
Theoretical plates | 8239 | 0.67 | -- | ||||
Resolution | 9.87 | 1.54 | >1 | ||||
Tailing factor | 1.78 | 0.91 | <2 |
Parameters | Units | NTGI (Test) | Suspension of MCZ (Control) |
---|---|---|---|
Cmax | ng/mL | 540 ± 24 * | 255 ± 13 * |
tmax | Hour | 12 ± 2 ** | 4 ± 1 * |
t1/2 | Hour | 24.5 ± 5 ** | 8.5 ± 3 ** |
AUC0–t | ng.h/mL | 3245 ± 45 *** | 2359 ± 33 * |
AUC0–ꝏ | ng.h/mL | 3654 ± 65 ** | 2653 ± 32 ** |
MRT | Hour | 47.5 ± 6 ** | 8.5 ± 2 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namazi, N.I.; Alrbyawi, H.; Alanezi, A.A.; Almuqati, A.F.; Shams, A.; Ali, H.S.M. Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation. Pharmaceutics 2024, 16, 225. https://doi.org/10.3390/pharmaceutics16020225
Namazi NI, Alrbyawi H, Alanezi AA, Almuqati AF, Shams A, Ali HSM. Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation. Pharmaceutics. 2024; 16(2):225. https://doi.org/10.3390/pharmaceutics16020225
Chicago/Turabian StyleNamazi, Nader I., Hamad Alrbyawi, Abdulkareem Ali Alanezi, Afaf F Almuqati, Anwar Shams, and Hany S. M. Ali. 2024. "Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation" Pharmaceutics 16, no. 2: 225. https://doi.org/10.3390/pharmaceutics16020225
APA StyleNamazi, N. I., Alrbyawi, H., Alanezi, A. A., Almuqati, A. F., Shams, A., & Ali, H. S. M. (2024). Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation. Pharmaceutics, 16(2), 225. https://doi.org/10.3390/pharmaceutics16020225