Taste-Masked Pellets of Warfarin Sodium: Formulation towards the Dose Personalisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Moisture Content
2.3. Sieving
2.4. Particle Size Distribution: Laser Diffraction
2.5. Microscopic Analysis
2.6. Drug Layering
2.7. Pellets Coating for Taste Masking
2.8. Drug Release
2.9. Appearance of Single Pellet upon Exposition in Medium
2.10. Kollicoat® Smartseal Film Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. PharSQ® Spheres M Cores Drug Loading and Taste Masking
Appendix B. CELPHERE™ CP-507 Cores Drug Loading and Taste-Masking
Appendix C. NaCl Cores Drug Loading and Taste Masking
References
- Lamprou, D. 3D & 4D Printing Methods for Pharmaceutical Manufacturing and Personalised Drug Delivery: Opportunities and Challenges; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Taylor, Z.L.; Green, F.G.; Hossain, N.; Burckart, G.J.; Pacanowski, M.; Schuck, R.N. Assessment of Dosing Strategies for Pediatric Drug Products. Clin. Pharmacol. Ther. 2024; Early View. [Google Scholar] [CrossRef]
- Patel, K.; Feng, L. Advanced Oral Sustained-Release Drug Delivery Systems for Older Patients. In Pharmaceutical Formulations for Older Patients; Springer: Berlin/Heidelberg, Germany, 2023; pp. 129–155. [Google Scholar]
- Breitkreutz, J.; Boos, J. Paediatric and geriatric drug delivery. Expert Opin. Drug Deliv. 2007, 4, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Christmas, C.; Rogus-Pulia, N. Swallowing Disorders in the Older Population. J. Am. Geriatr. Soc. 2019, 67, 2643–2649. [Google Scholar] [CrossRef]
- Shailesh, K.; Vaishali, L. Review on: Alternatives to large dosage forms for ease of swallowing. J. Drug Deliv. Sci. Technol. 2020, 57, 101712. [Google Scholar] [CrossRef]
- Simšič, T.; Planinšek, O.; Baumgartner, A. Taste-masking methods in multiparticulate dosage forms with a focus on poorly soluble drugs. Acta Pharm. 2024, 74. Available online: https://acta.pharmaceutica.farmaceut.org/press/ (accessed on 13 February 2024).
- Mohylyuka, V.; Patela, K.; Murnanea, D.; Richardsonb, C.; Liua, F. A Patient-Centric Approach: Formulation of Prolonged Release Microparticles to Be Used in Oral Suspensions for Older Patients with Dysphagia; AAPS PharmSci 360: Washington, DC, USA, 2018. [Google Scholar]
- Patel, S.; Scott, N.; Patel, K.; Mohylyuk, V.; McAuley, W.J.; Liu, F. Easy to Swallow “Instant” Jelly Formulations for Sustained Release Gliclazide Delivery. J. Pharm. Sci. 2020, 109, 2474–2484. [Google Scholar] [CrossRef] [PubMed]
- Schlatter, J.; Cisternino, S. Stability of warfarin sodium flavoured preservative-free oral liquid formulations. Eur. J. Hosp. Pharm. 2018, 25, e98–e101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.-Z.; Hu, X.; Li, Y.-L.; Zhang, L. Predicting Bioequivalence and Developing Dissolution Bioequivalence Safe Space in vitro for Warfarin using a Physiologically-Based Pharmacokinetic Absorption Model. Eur. J. Pharm. Biopharm. 2023, 191, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Jantoven, C. Warfarin (Drug Monograph). Available online: https://www.elsevier.com/clinical-solutions/druginformation/editorial-policy (accessed on 13 February 2024).
- Niese, S.; Quodbach, J. Formulation development of a continuously manufactured orodispersible film containing warfarin sodium for individualized dosing. Eur. J. Pharm. Biopharm. 2019, 136, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sohi, H.; Sultana, Y.; Khar, R.K. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Dev. Ind. Pharm. 2004, 30, 429–448. [Google Scholar] [CrossRef]
- Coupland, J.N.; Hayes, J.E. Physical approaches to masking bitter taste: Lessons from food and pharmaceuticals. Pharm. Res. 2014, 31, 2921–2939. [Google Scholar] [CrossRef]
- Dashevskiy, A.; Mohylyuk, V.; Ahmed, A.R.; Kolter, K.; Guth, F.; Bodmeier, R. Micropellets coated with Kollicoat Smartseal 30D for taste masking in liquid oral dosage forms. Drug Dev. Ind. Pharm. 2017, 43, 1548–1556. [Google Scholar] [CrossRef]
- Mohylyuk, V.; Jones, D.S.; Andrews, G.P. “Spheronized” taste-masked microparticles obtained by hot-melt extrusion and further thermal treatment. In Proceedings of the CRS 2021 Virtual Annual Meeting 2021, The Controlled Release Society, Virtually, 25–29 July 2021. [Google Scholar]
- Ghosh, T.K.; Pfister, W.R. Intraoral delivery systems: An overview, current status, and future trends. In Drug Delivery to the oral Cavity: Molecules to Market; Ghosh, T.K., Pfister, W.R., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 6–12. [Google Scholar]
- Dashevsky, A.; Wagner, K.; Kolter, K.; Bodmeier, R. Physicochemical and release properties of pellets coated with Kollicoat SR 30 D, a new aqueous polyvinyl acetate dispersion for extended release. Int. J. Pharm. 2005, 290, 15–23. [Google Scholar] [CrossRef]
- Wesseling, M.; Bodmeier, R. Influence of plasticization time, curing conditions, storage time, and core properties on the drug release from Aquacoat-coated pellets. Pharm. Dev. Technol. 2001, 6, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Priese, F.; Frisch, T.; Wolf, B. Comparison of film-coated retarded release pellets manufactured by layering technique or by bed rotor pelletization. Pharm. Dev. Technol. 2015, 20, 417–425. [Google Scholar] [CrossRef]
- Bodmeier, R. Tableting of coated pellets. Eur. J. Pharm. Biopharm. 1997, 43, 1–8. [Google Scholar] [CrossRef]
- Mohylyuk, V.; Styliari, I.D.; Novykov, D.; Pikett, R.; Dattani, R. Assessment of the effect of Cellets’ particle size on the flow in a Wurster fluid-bed coater via powder rheology. J. Drug Deliv. Sci. Technol. 2019, 54, 101320. [Google Scholar] [CrossRef]
- Irfan, M.; Ahmed, A.R.; Kolter, K.; Bodmeier, R.; Dashevskiy, A. Curing mechanism of flexible aqueous polymeric coatings. Eur. J. Pharm. Biopharm. 2017, 115, 186–196. [Google Scholar] [CrossRef]
- Wagner, M.; Hess, T.; Zakowiecki, D. Studies on the pH-Dependent Solubility of Various Grades of Calcium Phosphate-based Pharmaceutical Excipients. J. Pharm. Sci. 2022, 111, 1749–1760. [Google Scholar] [CrossRef]
- Zakowiecki, D.; Lachmann, M.; Huhn, A.; Papaioannou, M.; Hess, T.; Centkowska, K.; Mikolaszek, B.; Cal, K. Characterization of Physical Properties of Novel Calcium-Phosphate-Based Starter Pellets (PharSQ® Spheres CM); AAPS: San Antonio, TX, USA, 2019. [Google Scholar]
- Kollicoat®Smartseal 30 D Technical Information; BASF–Nutrition & Health. 2019. Available online: https://pharma.basf.com/technicalinformation/30492630/kollicoat-smartseal-30-d (accessed on 1 April 2024).
- Bang, F.; Cech, T.; Guth, F.; Assis, J. Formulation Development with Kollicoat®Smartseal: Impact of Plasticizers; BASF SE: Ludwigshafen, Germany, 2023. [Google Scholar]
- Mohylyuk, V.; Yerkhova, A.; Katynska, M.; Sirko, V.; Patel, K. Effect of Elevated pH on the Commercial Enteric-Coated Omeprazole Pellets Resistance: Patent Review and Multisource Generics Comparison. AAPS PharmSciTech 2021, 22, 188. [Google Scholar] [CrossRef] [PubMed]
- Dimitrokalli, E.; Fertaki, S.; Lykouras, M.; Kokkinos, P.; Orkoula, M.; Kontoyannis, C. Warfarin Sodium Stability in Oral Formulations. Molecules 2021, 26, 6631. [Google Scholar] [CrossRef]
- Sinchaipanid, N.; Chitropas, P.; Mitrevej, A. Influences of layering on theophylline pellet characteristics. Pharm. Dev. Technol. 2004, 9, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Warfarin sodium clathrate, in European Pharmacopoeia. 2014, Commission and European Directorate for the Quality of Medicines & Healthcare: Council of Europe. Ph. Eur. 8.1, 0699 (04/2014). Available online: https://faq.edqm.eu/pages/viewpage.action?pageId=1377105#:~:text=A%20good%20example%20of%20a,1742%20(01%2F2008 (accessed on 1 April 2024).
- Rahman, Z.; Korang-Yeboah, M.; Siddiqui, A.; Mohammad, A.; Khan, M.A. Understanding effect of formulation and manufacturing variables on the critical quality attributes of warfarin sodium product. Int. J. Pharm. 2015, 495, 19–30. [Google Scholar] [CrossRef]
- Sheth, A.R.; Brennessel, W.W.; Young, V.G.; Muller, F.X.; Grant, D.J. Solid-state properties of warfarin sodium 2-propanol solvate. J. Pharm. Sci. 2004, 93, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Sheth, A.R.; Young, V.G.; Grant, D.J.W. Warfarin sodium 2-propanol solvate. Acta Crystallogr. Sect. E Struct. Rep. Online 2002, 58, m197–m199. [Google Scholar] [CrossRef]
- Hiskey, C.F.; Melnitchenko, V. Clathrates of sodium warfarin. J. Pharm. Sci. 1965, 54, 1298–1302. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N.; Jürgens, G.; Baslund, B.; Alderman, M.H. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: A meta-analysis. Am. J. Hypertens. 2014, 27, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Muselík, J.; Urbanova, M.; Bartoníčková, E.; Palovčík, J.; Vetchý, D.; Czernek, J.; Janisova, L.; Velychkivska, N.; Franc, A.; Brus, J. Structural Changes of Sodium Warfarin in Tablets Affecting the Dissolution Profiles and Potential Safety of Generic Substitution. Pharmaceutics 2021, 13, 1364. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, H.; Yoshida, T.; Maeda, A.; Katsuma, M.; Sako, K. Effects of physicochemical properties of salting-out layer components on drug release. Int. J. Pharm. 2009, 376, 13–21. [Google Scholar] [CrossRef]
- Mitchell, K.; Ford, J.L.; Armstrong, D.J.; Elliott, P.N.; Rostron, C.; Hogan, J.E. The influence of additives on the cloud point, disintegration and dissolution of hydroxypropylmethylcellulose gels and matrix tablets. Int. J. Pharm. 1990, 66, 233–242. [Google Scholar] [CrossRef]
- Lamprecht, A.; Bodmeier, R. Microencapsulation. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2010. [Google Scholar]
Ingredients | per 100 g | Solids, g | Solids, wt.% |
---|---|---|---|
Warfarin sodium clathrate (raw substance) | 28.7 | – | – |
Equivalent of warfarin sodium | 26.3 | 26.3 | 95.3 |
Methocel™ E5 | 1.2 | 1.2 | 4.3 |
Glycerin (99.9%) | 0.1 | 0.1 | 0.4 |
Water | 70.0 | – | – |
Ingredients | per 100 g | Solids, g | Solids, wt.% |
---|---|---|---|
Kollicoat® Smartseal 30D | 59.0 | – | – |
Equivalent of Kollicoat® Smartseal (solids) | 17.7 | 17.7 | 88.5 |
Dibutyl sebacate | 2.3 | 2.30 | 11.5 |
Added purified water | 38.7 | – | – |
NaCl | CELPHERE™ CP-507 | PharSQ® Spheres M | |
---|---|---|---|
Drug layering (WG, wt.%) | 28.5 | 27.5 | 27.5 |
Taste-masking coating (WG, wt.%) | 14.2 | 15.2 | 14.0 |
NaCl | CELPHERE™ CP-507 | PharSQ® Spheres M | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cores | Cores—DL | Cores—DL-TM | Cores | Cores—DL | Cores—DL-TM | Cores | Cores—DL | Cores-DL-TM | ||
Size A, µm | Av. | 521 | 549 | 668 | 615 | 698 | 738 | 532 | 570 | 590 |
(n = 150) | S.D. | 35 | 51 | 49 | 49 | 61 | 51 | 17 | 19 | 21 |
min | 457 | 458 | 567 | 492 | 579 | 620 | 485 | 520 | 527 | |
max | 646 | 749 | 813 | 747 | 912 | 887 | 609 | 650 | 650 | |
Volume B, mm3 | Av. | 0.143 | 0.170 | 0.303 | 0.124 | 0.182 | 0.213 | 0.079 | 0.097 | 0.108 |
S.D. | 0.031 | 0.051 | 0.068 | 0.030 | 0.051 | 0.045 | 0.008 | 0.010 | 0.011 | |
min | 0.095 | 0.096 | 0.182 | 0.062 | 0.101 | 0.124 | 0.060 | 0.074 | 0.077 | |
max | 0.270 | 0.419 | 0.537 | 0.218 | 0.397 | 0.365 | 0.118 | 0.143 | 0.143 | |
150 pellets B, mm3 | – | 21.5 | 25.5 | 45.4 | 18.6 | 27.3 | 32.0 | 11.9 | 14.6 | 16.2 |
150 pellets A, g | Av. | 0.051 | 0.057 | 0.063 | 0.023 | 0.034 | 0.043 | 0.019 | 0.025 | 0.030 |
(n = 3) | S.D. | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.002 | 0.000 | 0.001 | 0.000 |
SSA B, cm2/g | – | 48.4 | 47.7 | 63.8 | 77.6 | 67.3 | 60.4 | 70.4 | 62.0 | 54.0 |
Apparent density B, g/mL | – | 2.36 | 2.25 | 1.39 | 1.24 | 1.26 | 1.33 | 1.60 | 1.69 | 1.88 |
NaCl | CELPHERE™ CP-507 | PharSQ® Spheres M | |
---|---|---|---|
D10%, µm | 481.7 | 500.2 | 439.8 |
D50%, µm | 601.5 | 585.7 | 500.3 |
D90%, µm | 756.5 | 686.8 | 555.9 |
Span | 0.46 | 0.32 | 0.23 |
Composition, wt.% | NaCl | CELPHERE™ CP-507 | PharSQ® Spheres M |
---|---|---|---|
Cores | 67.8 | 67.2 | 67.9 |
Drug layer | 19.3 | 19.2 | 19.4 |
Warfarin sodium | 18.4 | 18.3 | 18.4 |
Methocel™ E5 | 0.8 | 0.8 | 0.8 |
Glycerine | 0.1 | 0.1 | 0.1 |
Taste-masking layer | 12.4 | 13.1 | 12.2 |
Kollicoat® Smartseal (solids) | 11.0 | 11.6 | 10.8 |
Dibutyl sebacate | 1.4 | 1.5 | 1.4 |
Syloid® 244FP | 0.5 | 0.5 | 0.5 |
∑ | 100.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalenko, L.; Kukuls, K.; Berga, M.; Mohylyuk, V. Taste-Masked Pellets of Warfarin Sodium: Formulation towards the Dose Personalisation. Pharmaceutics 2024, 16, 586. https://doi.org/10.3390/pharmaceutics16050586
Kovalenko L, Kukuls K, Berga M, Mohylyuk V. Taste-Masked Pellets of Warfarin Sodium: Formulation towards the Dose Personalisation. Pharmaceutics. 2024; 16(5):586. https://doi.org/10.3390/pharmaceutics16050586
Chicago/Turabian StyleKovalenko, Lakija, Kirils Kukuls, Marta Berga, and Valentyn Mohylyuk. 2024. "Taste-Masked Pellets of Warfarin Sodium: Formulation towards the Dose Personalisation" Pharmaceutics 16, no. 5: 586. https://doi.org/10.3390/pharmaceutics16050586
APA StyleKovalenko, L., Kukuls, K., Berga, M., & Mohylyuk, V. (2024). Taste-Masked Pellets of Warfarin Sodium: Formulation towards the Dose Personalisation. Pharmaceutics, 16(5), 586. https://doi.org/10.3390/pharmaceutics16050586