Ligand- and Structure-Based Virtual Screening Identifies New Inhibitors of the Interaction of the SARS-CoV-2 Spike Protein with the ACE2 Host Receptor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ligand-Based Virtual Screening (LBVS)
2.2. Molecular Docking
2.3. Protein–Protein Docking
2.4. Molecular Dynamic Simulations
2.5. Biological Evaluation
2.5.1. Enzymatic Inhibition Assay
2.5.2. Cytotoxicity
2.6. ADME-Tox Prediction
3. Results
3.1. Ligand-Based Virtual Screening (LBVS) and Molecular Docking on RBD
3.2. Protein–Protein Docking
3.3. Molecular Dynamics
3.4. Biological Evaluations
3.4.1. In Vitro Inhibition Assay
3.4.2. Cytotoxicity
3.5. ADME Predictions
4. Discussion
4.1. LBVS and Molecular Docking
4.2. Protein–Protein Docking
4.3. Molecular Dynamics (MDs)
4.4. Biological Activity
4.5. ADME Predictions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Zhou, H.; Guo, L.; Xie, D.; He, H.; Zhang, H.; Liu, Y.; Peng, L.; Zheng, L.; Lu, W.; et al. Potential inhibitors for blocking the interaction of the coronavirus SARS-CoV-2 spike protein and its host cell receptor ACE2. J. Transl. Med. 2022, 20, 314. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO), Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 22 February 2024).
- V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Khailany, R.A.; Safdar, M.; Ozaslan, M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020, 19, 100682. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Zardecki, C.; Dolan, E.M.; Lu, C.; Shen, Z.; Dutta, S.; Westbrook, J.D.; Hudson, B.P.; Goodsell, D.S.; Williams, J.K.; et al. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first six months of the COVID-19 pandemic. Proteins 2022, 90, 1054–1080. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Raj, R. Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochem. Biophys. Rep. 2020, 11, 100847. [Google Scholar] [CrossRef] [PubMed]
- Zuzic, L.; Samsudin, F.; Shivgan, A.T.; Raghuvamsi, P.V.; Marzinek, J.K.; Boags, A.; Pedebos, C.; Tulsian, N.K.; Warwicker, J.; MacAry, P.; et al. Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein. Structure 2022, 30, 1062–1074.e4. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.Z. SARS-CoV-2 Virology. Infect Dis. Clin. N. Am. 2022, 36, 251–265. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, T.; Cai, Y.; Chen, B. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol. 2021, 50, 173–182. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef]
- Goulet, D.R.; Atkins, W.M. Considerations for the design of antibody-based therapeutics. J. Pharm. Sci. 2020, 109, 74–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Pan, X.; Huang, Y.; Cheng, C.; Xu, X.; Wu, Y.; Xu, Y.; Shang, W.; Niu, X.; Wan, Y.; et al. Drug Repurposing of Itraconazole and Estradiol 313 Benzoate against COVID-19 by Blocking SARS-CoV-2 Spike Protein-Mediated Membrane Fusion. Adv. Ther. 2021, 4, 2000224. [Google Scholar] [CrossRef]
- Baracaldo-Santamaría, D.; Cala-Garcia, J.D.; Medina-Rincón, G.J.; Rojas-Rodriguez, L.C.; Calderon-Ospina, C.A. Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation? Antibiotics 2022, 11, 645. [Google Scholar] [CrossRef]
- Essid, N.; Faiza, M.; Hedfi, A.; Almalki, M.; Urkmez, D.; Boufahja, F. Toxicity of synthetic Endocrine Disrupting Compounds on meiofauna: Estradiol benzoate as a case study. Environ. Pollut. 2021, 286, 117300. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Sloper, D.T. Altered expression of genes identified in rats with prostatic chronic inflammation in a prostate spheroid model treated by estradiol/testosterone. J. Toxicol. Sci. 2021, 46, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Balkrishna, A.; Pokhrel, S.; Singh, H.; Joshi, M.; Mulay, V.P.; Haldar, S.; Varshney, A. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized 311 Zebrafish Model. Drug Des. Devel. Ther. 2021, 15, 1111–1133. [Google Scholar] [CrossRef]
- Day, C.J.; Bailly, B.; Guillon, P.; Dirr, L.; Jen, F.E.-C.; Spillings, B.L.; Mak, J.; von Itzstein, M.; Haselhorst, T.; Jennings, M.P. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions. mBio 2021, 12, e03681-20. [Google Scholar] [CrossRef] [PubMed]
- Bojadzic, D.; Alcazar, O.; Chen, J.; Chuang, S.T.; Condor Capcha, J.M.; Shehadeh, L.A.; Buchwald, P. Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2. ACS Infect Dis. 2021, 7, 1519–1534. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014, 30, 1771–1773. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Prot. Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model 2006, 25, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Lemkul, J.A. From proteins to perturbed Hamiltonians a suite of tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living. J. Comput. Mol. Sci. 2019, 1, 5068. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular docking with deep learning. J. Cheminform. 2021, 13, 43. [Google Scholar] [CrossRef]
- Stalin, A.; Lin, D.; Senthamarai Kannan, B.; Feng, Y.; Wang, Y.; Zhao, W.; Ignacimuthu, S.; Wei, D.; Chen, Y. An in-silico approach to identify the potential hot spots in SARS-CoV-2 spike RBD to block the interaction with ACE2 receptor. J. Biomol. Struct. Dyn. 2022, 40, 7408–7423. [Google Scholar] [CrossRef] [PubMed]
- Joubert, F.; Neitz, A.W.; Louw, A.I. Structure-based inhibitor screening: A family of sulfonated dye inhibitors for malaria parasite triosephosphate isomerase. Proteins 2001, 45, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Mannell, W.A.; Grice, H.C.; Allmark, M.G. Chronic toxicity studies on food colours. V. Observations on the toxicity of Brilliant Blue FCF, Guinea Green B and Benzyl Violet 4B in rats. J. Pharm. Pharmacol. 1962, 14, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Agrawal, G.P.; Khan, S.; Khalilullah, H.; Saifullah, M.K.; Arshad, M.F. Towards the discovery of potential RdRp inhibitors for the treatment of COVID-19: Structure guided virtual screening, computational ADME and molecular dynamics study. Struct. Chem. 2022, 33, 1569–1583. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.G.; Hourai, Y.; Weng, Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 2011, 6, e24657. [Google Scholar] [CrossRef] [PubMed]
- Fallon, L.; Belfon, K.A.A.; Raguette, L.; Wang, Y.; Stepanenko, D.; Cuomo, A.; Guerra, J.; Budhan, S.; Varghese, S.; Corbo, C.P.; et al. Free Energy Landscapes from SARS-CoV-2 Spike Glycoprotein Simulations Suggest that RBD Opening Can Be Modulated via Interactions in an Allosteric Pocket. J. Am. Chem. Soc. 2021, 143, 11349–11360. [Google Scholar] [CrossRef]
- Indrayanto, G.; Satrio Putra, G.; Suhud, F. Chapter Six—Validation of in-vitro bioassay methods: Application in herbal drug research. In Profiles of Drug Substances, Excipients and Related Methodology; Al-Majed, A.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 46, pp. 2–316. [Google Scholar]
- Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef]
- Shultz, M.D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs: Miniperspective. J. Med. Chem. 2018, 62, 1701–1714. [Google Scholar] [CrossRef]
- Maher, S.; Geoghegan, C.; Brayden, D.J. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: Reasons for low efficacy in humans. Expert Opin. Drug Deliv. 2021, 18, 273–300. [Google Scholar] [CrossRef]
- Ahmed Juvale, I.I.; Abdul Hamid, A.A.; Abd Halim, K.B.; Che Has, A.T. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022, 8, e09777. [Google Scholar] [CrossRef]
- Nakajima, M.; Yokoi, T. MicroRNA: Regulation of P450 and pharmacogenetics. In Handbook of Pharmacogenomics and Stratified Medicine; Padmanabhan, S., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 385–401. [Google Scholar]
Compound | (%) Inhibition at 50 µM | IC50 (µM) a | CC50 (µM) a | SI |
---|---|---|---|---|
DRI-1 | 90.59 ± 0.54 | 13.04 ± 0.71 | 94.55 ± 0.96 | 7.25 |
DRI-2 | 90.76 ± 1.7 | 8.84 ± 4.3 | ˃200 | 22.62 |
DRI-3 | 99.65 ± 0.25 | 2.14 ± 0.97 | ˃200 | 93.45 |
DRI-4 | 76.41 ± 1.0 | 24.55 ± 2.5 | ˃200 | 8.14 |
DRI-5 | 69.90 ± 1.2 | 13.70 ± 0.12 | 126.25 ± 2.30 | 9.21 |
Physicochemical Properties and Drug-Likeness | |||||||||
---|---|---|---|---|---|---|---|---|---|
Compound | MW (g/mol) ≤ 500 | Rot. Bonds < 10 | HBA < 10 | HBD < 5 | Log P < 5 | Log S | TPSA (≤140 Ų) | Lipinski’s Rule | Veber’s Rule |
DRI-1 | 675.60 | 9 | 12 | 2 | -0.81 | Poor | 229.93 | 2 violations | 1 violation |
DRI-2 | 504.49 | 6 | 9 | 6 | 1.80 | Moderate | 207.09 | 3 violations | 1 violation |
DRI-3 | 669.83 | 11 | 6 | 2 | 4.65 | Poor | 131.75 | 2 violations | 1 violation |
DRI-4 | 472.56 | 9 | 4 | 2 | 4.69 | Poor | 92.88 | 0 violation | 0 violation |
DRI-5 | 432.45 | 5 | 5 | 2 | 3.61 | Moderate | 113.71 | 0 violation | 0 violation |
DRI | 684.69 | 9 | 10 | 6 | 3.86 | Poor | 224.16 | 3 violations | 1 violation |
Pharmacokinetics | |||||||||
Compound | Blood-Brain Permeability | GI Absorption | P-Glycoproteinsubstrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | PAINS |
DRI-1 | No | Low | Yes | No | No | No | No | No | 1 alert |
DRI-2 | No | Low | No | No | No | No | No | No | 0 alert |
DRI-3 | No | Low | No | No | No | Yes | No | No | 1 alert |
DRI-4 | No | Low | Yes | No | Yes | Yes | Yes | Yes | 0 alert |
DRI-5 | No | High | No | Yes | Yes | Yes | No | No | 0 alert |
DRI | No | Low | No | No | No | No | No | No | 0 alert |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Maldonado, T.; González-González, A.; Moreno-Rodríguez, A.; Bocanegra-García, V.; Martinez-Vazquez, A.V.; de Luna-Santillana, E.d.J.; Pujadas, G.; Rojas-Verde, G.; Lara-Ramírez, E.E.; Rivera, G. Ligand- and Structure-Based Virtual Screening Identifies New Inhibitors of the Interaction of the SARS-CoV-2 Spike Protein with the ACE2 Host Receptor. Pharmaceutics 2024, 16, 613. https://doi.org/10.3390/pharmaceutics16050613
Delgado-Maldonado T, González-González A, Moreno-Rodríguez A, Bocanegra-García V, Martinez-Vazquez AV, de Luna-Santillana EdJ, Pujadas G, Rojas-Verde G, Lara-Ramírez EE, Rivera G. Ligand- and Structure-Based Virtual Screening Identifies New Inhibitors of the Interaction of the SARS-CoV-2 Spike Protein with the ACE2 Host Receptor. Pharmaceutics. 2024; 16(5):613. https://doi.org/10.3390/pharmaceutics16050613
Chicago/Turabian StyleDelgado-Maldonado, Timoteo, Alonzo González-González, Adriana Moreno-Rodríguez, Virgilio Bocanegra-García, Ana Verónica Martinez-Vazquez, Erick de Jesús de Luna-Santillana, Gerard Pujadas, Guadalupe Rojas-Verde, Edgar E. Lara-Ramírez, and Gildardo Rivera. 2024. "Ligand- and Structure-Based Virtual Screening Identifies New Inhibitors of the Interaction of the SARS-CoV-2 Spike Protein with the ACE2 Host Receptor" Pharmaceutics 16, no. 5: 613. https://doi.org/10.3390/pharmaceutics16050613
APA StyleDelgado-Maldonado, T., González-González, A., Moreno-Rodríguez, A., Bocanegra-García, V., Martinez-Vazquez, A. V., de Luna-Santillana, E. d. J., Pujadas, G., Rojas-Verde, G., Lara-Ramírez, E. E., & Rivera, G. (2024). Ligand- and Structure-Based Virtual Screening Identifies New Inhibitors of the Interaction of the SARS-CoV-2 Spike Protein with the ACE2 Host Receptor. Pharmaceutics, 16(5), 613. https://doi.org/10.3390/pharmaceutics16050613