Mechanisms of Action of Phytoestrogens and Their Role in Familial Adenomatous Polyposis
Abstract
:1. Introduction
2. Phytoestrogens
2.1. Classification and Sources of Phytoestrogens
2.2. Mechanisms of Action of Phytoestrogens
3. Familial Adenomatous Polyposis
3.1. Genetics
3.2. Pharmacological Treatment
4. Phytoestrogens in FAP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, C.A.; Salas-Salvadó, J. The potential of nuts in the prevention of cancer. Br. J. Nutr. 2006, 96, S87–S94. [Google Scholar] [CrossRef] [PubMed]
- Lephart, E.D. Modulation of aromatase by phytoestrogens. Enzym. Res. 2015, 2015, 594656. [Google Scholar] [CrossRef]
- Branca, F.; Lorenzetti, S. Health effects of phytoestrogens. Forum Nutr. 2005, 57, 100–111. [Google Scholar]
- Viggiani, M.T.; Polimeno, L.; Di Leo, A.; Barone, M. Phytoestrogens: Dietary intake, bioavailability, and protective mechanisms against colorectal neoproliferative lesions. Nutrients 2019, 11, 1709. [Google Scholar] [CrossRef]
- Sridevi, V.; Naveen, P.; Karnam, V.S.; Reddy, P.R.; Arifullah, M. Beneficiary and adverse effects of phytoestrogens: A potential constituent of plant-based diet. Curr. Pharm. Des. 2021, 27, 802–815. [Google Scholar] [CrossRef]
- Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? Int. J. Mol. Sci. 2017, 18, 1381. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
- Seyed Hameed, A.S.; Rawat, P.S.; Meng, X.; Liu, W. Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol. Adv. 2020, 43, 107576. [Google Scholar] [CrossRef] [PubMed]
- Kolátorová, L.; Lapčík, O.; Stárka, L. Phytoestrogens and the intestinal microbiome. Physiol. Res. 2018, 67, S401–S408. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; DiLeo, A.; Niv, Y.; Gustafsson, J.Å. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett. 2016, 372, 48–56. [Google Scholar] [CrossRef]
- Böttner, M.; Thelen, P.; Jarry, H. Estrogen receptor beta: Tissue distribution and the still largely enigmatic physiological function. J. Steroid Biochem. Mol. Biol. 2014, 139, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Sareddy, G.R.; Vadlamudi, R.K. Cancer therapy using natural ligands that target estrogen receptor beta. Chin. J. Nat. Med. 2015, 13, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Principi, M.; Barone, M.; Pricci, M.; De Tullio, N.; Losurdo, G.; Ierardi, E.; Di Leo, A. Ulcerative colitis: From inflammation to cancer. Do estrogen receptors have a role? World J. Gastroenterol. 2014, 20, 11496–11504. [Google Scholar] [CrossRef] [PubMed]
- Maingi, J.W.; Tang, S.; Liu, S.; Ngenya, W.; Bao, E. Targeting estrogen receptors in colorectal cancer. Mol. Biol. Rep. 2020, 47, 4087–4091. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.; Tanzi, S.; Lofano, K.; Scavo, M.P.; Guido, R.; Demarinis, L.; Principi, M.B.; Bucci, A.; Di Leo, A. Estrogens, phytoestrogens and colorectal neoproliferative lesions. Genes Nutr. 2008, 3, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Torrens-Mas, M.; Roca, P. Phytoestrogens for cancer prevention and treatment. Biology 2020, 9, 427. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.Y.; Kim, M.Y.; Cho, J.Y. Antioxidant, anti-inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef]
- Sain, A.; Kandasamy, T.; Naskar, D. Targeting UNC-51-like kinase 1 and 2 by lignans to modulate autophagy: Possible implications in metastatic colorectal cancer. Mol. Divers. 2023, 27, 27–43. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Li, L.; Jiang, M.; Tang, Y.; Zhou, L.; Li, J.; Chen, Y. Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer. Food Func. 2022, 13, 8989–8997. [Google Scholar] [CrossRef] [PubMed]
- Rietjens, I.M.C.M.; Louisse, J.; Beekmann, K. The potential health effects of dietary phytoestrogens. Br. J. Pharmacol. 2017, 174, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Di Leo, A.; Barone, M.; Maiorano, E.; Tanzi, S.; Piscitelli, D.; Marangi, S.; Lofano, K.; Ierardi, E.; Principi, M.; Francavilla, A. ER-beta expression in large bowel adenomas: Implications in colon carcinogenesis. Dig. Liver Dis. 2008, 40, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.; Scavo, M.P.; Papagni, S.; Piscitelli, D.; Guido, R.; Di Lena, M.; Comelli, M.C.; Di Leo, A. ERβ expression in normal, adenomatous and carcinomatous tissues of patients with familial adenomatous polyposis. Scand. J. Gastroenterol. 2010, 45, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.; Lofano, K.; De Tullio, N.; Licinio, R.; Albano, F.; Di Leo, A. Dietary, endocrine, and metabolic factors in the development of colorectal cancer. J. Gastrointest. Cancer 2012, 43, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Strate, L.L.; Syngal, S. Hereditary colorectal cancer syndromes. Cancer Causes Control. 2005, 16, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Segura, P.P.; Ponce, C.G.; Cajal, T.R.Y.; Blanch, R.S.; Aranda, E. TTD consensus document on the diagnosis and management of hereditary colorectal cancer. Clin. Transl. Oncol. 2010, 12, 356–366. [Google Scholar] [CrossRef]
- Bülow, S.; Björk, J.; Christensen, I.J.; Fausa, O.; Järvinen, H.; Moesgaard, F.; Vasen, H.F.A.; DAF Study Group. Duodenal adenomatosis in familial adenomatous polyposis. Gut 2004, 53, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Septer, S.; Lawson, C.E.; Anant, S.; Attard, T. Familial adenomatous polyposis in pediatrics: Natural history, emerging surveillance and management protocols, chemopreventive strategies, and areas of ongoing debate. Fam. Cancer 2016, 15, 477–485. [Google Scholar] [CrossRef]
- Vasen, H.F.A.; Möslein, G.; Alonso, A.; Aretz, S.; Bernstein, I.; Bertario, L.; Blanco, I.; Bülow, S.; Burn, J.; Capella, G.; et al. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut 2008, 57, 704–713. [Google Scholar] [CrossRef]
- de Vos tot Nederveen Cappel, W.H.; Järvinen, H.J.; Björk, J.; Berk, T.; Griffioen, G.; Vasen, H.F. Worldwide survey among polyposis registries of surgical management of severe duodenal adenomatosis in familial adenomatous polyposis. Br. J. Surg. 2003, 90, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Galiatsatos, P.; Foulkes, W.D. Familial adenomatous polyposis. Am. J. Gastroenterol. 2006, 101, 385–398. [Google Scholar] [CrossRef]
- Ruys, A.T.; Alderlieste, Y.A.; Gouma, D.J.; Dekker, E.; Mathus-Vliegen, E.M.H. Jejunal cancer in patients with familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 2010, 8, 731–733. [Google Scholar] [CrossRef] [PubMed]
- van Nistelrooij, A.M.; Dinjens, W.N.; Wagner, A.; Spaander, M.C.; van Lanschot, J.J.; Wijnhoven, B.P. Hereditary Factors in Esophageal Adenocarcinoma. Gastrointest. Tumors 2014, 1, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Gatalica, Z.; Chen, M.; Snyder, C.; Mittal, S.; Lynch, H.T. Barrett’s esophagus in the patients with familial adenomatous polyposis. Fam. Cancer 2014, 13, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Sinicrope, F.A. Colorectal cancer prevention: Is an ounce of prevention worth a pound of cure? Semin. Oncol. 2005, 32, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Mathers, J.C.; Mickleburgh, I.; Chapman, P.C.; Bishop, D.T.; Burn, J.; Concerted Action Polyp Prevention (CAPP) 1 Study. Can resistant starch and/or aspirin prevent the development of colonic neoplasia? The Concerted Action Polyp Prevention (CAPP) 1 Study. Proc. Nutr. Soc. 2003, 62, 51–57. [Google Scholar] [CrossRef]
- van Es, J.H.; Giles, R.H.; Clevers, H.C. The many faces of the tumor suppressor gene APC. Exp. Cell Res. 2001, 264, 126–134. [Google Scholar] [CrossRef]
- Nelson, S.; Näthke, I.S. Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance. J. Cell Sci. 2013, 126, 873–877. [Google Scholar] [CrossRef]
- Näthke, I. APC at a glance. J. Cell Sci. 2004, 117, 4873–4875. [Google Scholar] [CrossRef]
- Goss, K.H.; Groden, J. Biology of the adenomatous polyposis coli tumor suppressor. J. Clin. Oncol. 2000, 18, 1967–1979. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liang, S.; Zhang, Z.; Zhao, G.; Hu, Y.; Liang, S.; Zhang, X.; Banerjee, S. A novel pathogenic splice acceptor site germline mutation in intron 14 of the APC gene in a Chinese family with familial adenomatous polyposis. Oncotarget 2017, 8, 21327–21335. [Google Scholar] [CrossRef]
- Friedl, W.; Caspari, R.; Sengteller, M.; Uhlhaas, S.; Lamberti, C.; Jungck, M.; Kadmon, M.; Wolf, M.; Fahnenstich, J.; Gebert, J.; et al. Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 2001, 48, 515–521. [Google Scholar] [CrossRef]
- Bertario, L.; Russo, A.; Sala, P.; Varesco, L.; Giarola, M.; Mondini, P.; Pierotti, M.; Spinelli, P.; Radice, P.; Hereditary Colorectal Tumor Registry. Multiple approach to the exploration of genotype-phenotype correlations in familial adenomatous polyposis. J. Clin. Oncol. 2003, 21, 1698–1707. [Google Scholar] [CrossRef]
- Septer, S.; Slowik, V.; Morgan, R.; Dai, H.; Attard, T. Thyroid cancer complicating familial adenomatous polyposis: Mutation spectrum of at-risk individuals. Hered. Cancer Clin. Pract. 2013, 11, 13. [Google Scholar] [CrossRef]
- Sarvepalli, S.; Burke, C.A.; Monachese, M.; Lopez, R.; Leach, B.H.; Laguardia, L.; O’Malley, M.; Kalady, M.F.; Church, J.M. Web-Based Model for Predicting Time to Surgery in Young Patients with Familial Adenomatous Polyposis: An Internally Validated Study. Am. J. Gastroenterol. 2018, 113, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W.; American College of Gastroenterology. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 2015, 110, 223–263. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, E.; Enomoto, T.; Saida, Y. Alternative treatments for prophylaxis of colorectal cancer in familial adenomatous polyposis. J. Anus Rectum Colon 2018, 1, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Valanzano, R.; Ficari, F.; Curia, M.C.; Aceto, G.; Veschi, S.; Cama, A.; Battista, P.; Tonelli, F. Balance between endoscopic and genetic information in the choice of ileorectal anastomosis for familial adenomatous polyposis. J. Surg. Oncol. 2007, 95, 28–33. [Google Scholar] [CrossRef]
- Konishi, T.; Ishida, H.; Ueno, H.; Kobayashi, H.; Hinoi, T.; Inoue, Y.; Ishida, F.; Kanemitsu, Y.; Yamaguchi, T.; Tomita, N.; et al. Feasibility of laparoscopic total proctocolectomy with ileal pouch-anal anastomosis and total colectomy with ileorectal anastomosis for familial adenomatous polyposis: Results of a nationwide multicenter study. Int. J. Clin. Oncol. 2016, 21, 953–961. [Google Scholar] [CrossRef]
- Björk, J.; Akerbrant, H.; Iselius, L.; Svenberg, T.; Oresland, T.; Påhlman, L.; Hultcrantz, R. Outcome of primary and secondary ileal pouch-anal anastomosis and ileorectal anastomosis in patients with familial adenomatous polyposis. Dis. Colon Rectum 2001, 44, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.Ø.; Juul, S.; Bülow, S.; Järvinen, H.J.; Bakka, A.; Björk, J.; Oresland, T.; Laurberg, S. Female fecundity before and after operation for familial adenomatous polyposis. Br. J. Surg. 2003, 90, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Kemp Bohan, P.M.; Mankaney, G.; Vreeland, T.J.; Chick, R.C.; Hale, D.F.; Cindass, J.L.; Hickerson, A.T.; Ensley, D.C.; Sohn, V.; Clifton, G.T.; et al. Chemoprevention in familial adenomatous polyposis: Past, present and future. Fam. Cancer 2021, 20, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Subbaramaiah, K.; Dannenberg, A.J. Cyclooxygenase 2: A molecular target for cancer prevention and treatment. Trends Pharmacol. Sci. 2003, 24, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Half, E.; Arber, N. Colon cancer: Preventive agents and the present status of chemoprevention. Expert Opin. Pharmacother. 2009, 10, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Benamouzig, R.; Uzzan, B.; Little, J.; Chaussade, S. Low dose aspirin, COX-inhibition and chemoprevention of colorectal cancer. Curr. Top. Med. Chem. 2005, 5, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Pfeffer, M.A.; Wittes, J.; Fowler, R.; Finn, P.; Anderson, W.F.; Zauber, A.; Hawk, E.; Bertagnolli, M.; et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 2005, 352, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.A.; Sandler, R.S.; Bresalier, R.S.; Lanas, A.; Morton, D.G.; Riddell, R.; Iverson, E.R.; Demets, D.L. Cardiovascular events associated with rofecoxib: Final analysis of the APPROVe trial. Lancet 2008, 372, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Wittes, J.; Finn, P.V.; Fowler, R.; Viner, J.; Bertagnolli, M.M.; Arber, N.; Levin, B.; Meinert, C.L.; Martin, B.; et al. Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: The cross trial safety analysis. Circulation 2008, 117, 2104–2113. [Google Scholar] [CrossRef]
- Aelvoet, A.S.; Buttitta, F.; Ricciardiello, L.; Dekker, E. Management of familial adenomatous polyposis and MUTYH-associated polyposis; new insights. Best Pract. Res. Clin. Gastroenterol. 2022, 58–59, 101793. [Google Scholar] [CrossRef]
- Meyskens, F.L., Jr.; Gerner, E.W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin. Cancer Res. 1999, 5, 945–951. [Google Scholar]
- Hull, M.A. Nutritional agents with anti-inflammatory properties in chemoprevention of colorectal neoplasia. Recent Results Cancer Res. 2013, 191, 143–156. [Google Scholar]
- Calviello, G.; Serini, S.; Piccioni, E. n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: Molecular mechanisms involved. Curr. Med. Chem. 2007, 14, 3059–3069. [Google Scholar] [CrossRef]
- Chapkin, R.S.; McMurray, D.N.; Lupton, J.R. Colon cancer, fatty acids and anti-inflammatory compounds. Curr. Opin. Gastroenterol. 2007, 23, 48–54. [Google Scholar] [CrossRef]
- Dommels, Y.E.; Haring, M.M.; Keestra, N.G.; Alink, G.M.; van Bladeren, P.J.; van Ommen, B. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE(2) synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis 2003, 24, 385–392. [Google Scholar] [CrossRef]
- Boudreau, M.D.; Sohn, K.H.; Rhee, S.H.; Lee, S.W.; Hunt, J.D.; Hwang, D.H. Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: Mediation through cyclooxygenase-independent pathways. Cancer Res. 2001, 61, 1386–1391. [Google Scholar] [CrossRef]
- Nakanishi, M.; Hanley, M.P.; Zha, R.; Igarashi, Y.; Hull, M.A.; Mathias, G.; Sciavolino, F.; Grady, J.J.; Rosenberg, D.W. A novel bioactive derivative of eicosapentaenoic acid (EPA) suppresses intestinal tumor development in ApcΔ14/+ mice. Carcinogenesis 2018, 39, 429–438. [Google Scholar] [CrossRef]
- Di Leo, A.; Nesi, G.; Principi, M.; Piscitelli, D.; Girardi, B.; Pricci, M.; Losurdo, G.; Iannone, A.; Ierardi, E.; Tonelli, F. Epithelial turnover in duodenal familial adenomatous polyposis: A possible role for estrogen receptors? World J. Gastroenterol. 2016, 22, 3202–3211. [Google Scholar] [CrossRef]
- Qadir, M.I.; Cheema, B.N. Phytoestrogens and Related Food Components in the Prevention of Cancer. Crit. Rev. Eukaryot. Gene Expr. 2017, 27, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Javid, S.H.; Moran, A.E.; Carothers, A.M.; Redston, M.; Bertagnolli, M.M. Modulation of tumor formation and intestinal cell migration by estrogens in the Apc(Min/+) mouse model of colorectal cancer. Carcinogenesis 2005, 26, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, I.K.; Kristiansen, E.; Mortensen, A.; Nicolaisen, G.M.; Wijnands, J.A.; van Kranen, H.J.; van Kreijl, C.F. The effect of soy isoflavones on the development of intestinal neoplasia in ApcMin mouse. Cancer Lett. 1998, 130, 217–225. [Google Scholar] [CrossRef]
- Seidlová-Wuttke, D.; Becker, T.; Christoffel, V.; Jarry, H.; Wuttke, W. Silymarin is a selective estrogen receptor beta (ERbeta) agonist and has estrogenic effects in the metaphysis of the femur but no or antiestrogenic effects in the uterus of ovariectomized (ovx) rats. J. Steroid Biochem. Mol. Biol. 2003, 86, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Kohno, H.; Tanaka, T.; Kawabata, K.; Hirose, Y.; Sugie, S.; Tsuda, H.; Mori, H. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int. J. Cancer 2002, 101, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.; Tanzi, S.; Lofano, K.; Scavo, M.P.; Pricci, M.; Demarinis, L.; Papagni, S.; Guido, R.; Maiorano, E.; Ingravallo, G.; et al. Dietary-induced ERbeta upregulation counteracts intestinal neoplasia development in intact male ApcMin/+ mice. Carcinogenesis 2010, 31, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Q.; Zhou, D.; Chen, H. Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/β-catenin signalling and reduces colon pre-neoplasia in rats. Br. J. Nutr. 2013, 109, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Lepri, S.R.; Zanelatto, L.C.; da Silva, P.B.; Sartori, D.; Ribeiro, L.R.; Mantovani, M.S. Effects of genistein and daidzein on cell proliferation kinetics in HT29 colon cancer cells: The expression of CTNNBIP1 (β-catenin), APC (adenomatous polyposis coli) and BIRC5 (survivin). Hum. Cell 2014, 27, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Bises, G.; Bajna, E.; Manhardt, T.; Gerdenitsch, W.; Kallay, E.; Cross, H.S. Gender-specific modulation of markers for premalignancy by nutritional soy and calcium in the mouse colon. J. Nutr. 2007, 137, 211S–215S. [Google Scholar] [CrossRef] [PubMed]
- Oikarinen, S.; Heinonen, S.M.; Nurmi, T.; Adlercreutz, H.; Mutanen, M. No effect on adenoma formation in Min mice after moderate amount of flaxseed. Eur. J. Nutr. 2005, 44, 273–280. [Google Scholar] [CrossRef] [PubMed]
- van Kranen, H.J.; Mortensen, A.; Sørensen, I.K.; van den Berg-Wijnands, J.; Beems, R.; Nurmi, T.; Adlercreutz, H.; van Kreijl, C.F. Lignan precursors from flaxseed or rye bran do not protect against the development of intestinal neoplasia in ApcMin mice. Nutr. Cancer 2003, 45, 203–210. [Google Scholar] [CrossRef]
- Girardi, B.; Pricci, M.; Giorgio, F.; Piazzolla, M.; Iannone, A.; Losurdo, G.; Principi, M.; Barone, M.; Ierardi, E.; Di Leo, A. Silymarin, boswellic acid and curcumin enriched dietetic formulation reduces the growth of inherited intestinal polyps in an animal model. World J. Gastroenterol. 2020, 26, 1601–1612. [Google Scholar] [CrossRef]
- Oikarinen, S.I.; Pajari, A.M.; Salminen, I.; Heinonen, S.M.; Adlercreutz, H.; Mutanen, M. Effects of a flaxseed mixture and plant oils rich in alpha-linolenic acid on the adenoma formation in multiple intestinal neoplasia (Min) mice. Br. J. Nutr. 2005, 94, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Volate, S.R.; Davenport, D.M.; Muga, S.J.; Wargovich, M.J. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis 2005, 26, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Rajamanickam, S.; Velmurugan, B.; Kaur, M.; Singh, R.P.; Agarwal, R. Chemoprevention of intestinal tumorigenesis in APCmin/+ mice by silibinin. Cancer Res. 2010, 70, 2368–2378. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, K.; Velmurugan, B.; Gu, M.; Singh, R.P.; Agarwal, R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin. Cancer Res. 2010, 16, 4595–4606. [Google Scholar] [CrossRef]
- Principi, M.; Di Leo, A.; Pricci, M.; Scavo, M.P.; Guido, R.; Tanzi, S.; Piscitelli, D.; Pisani, A.; Ierardi, E.; Comelli, M.C.; et al. Phytoestrogens/insoluble fibers and colonic estrogen receptor β: Randomized, double-blind, placebo-controlled study. World J. Gastroenterol. 2013, 19, 4325–4333. [Google Scholar] [CrossRef]
- Calabrese, C.; Praticò, C.; Calafiore, A.; Coscia, M.; Gentilini, L.; Poggioli, G.; Gionchetti, P.; Campieri, M.; Rizzello, F. Eviendep® reduces number and size of duodenal polyps in familial adenomatous polyposis patients with ileal pouch-anal anastomosis. World J. Gastroenterol. 2013, 19, 5671–5677. [Google Scholar] [CrossRef] [PubMed]
- Bringiotti, R.; Ierardi, E.; De Tullio, N.; Fracella, M.R.; Brindicci, D.; Marmo, R.; Albano, F.; Papagni, S.; Di Leo, A.; Principi, M. Education and imaging. Gastroenterology: Video capsule endoscopy disclosure of unprecedented therapeutic effect of Eviendep on small bowel polyposis in Lynch syndrome. J. Gastroenterol. Hepatol. 2015, 30, 801. [Google Scholar] [CrossRef]
- Calabrese, C.; Rizzello, F.; Gionchetti, P.; Calafiore, A.; Pagano, N.; De Fazio, L.; Valerii, M.C.; Cavazza, E.; Strillacci, A.; Comelli, M.C.; et al. Can supplementation of phytoestrogens/insoluble fibers help the management of duodenal polyps in familial adenomatous polyposis? Carcinogenesis 2016, 37, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, F.; Fabbri, S.; Ficari, F.; Batignani, G.; Femia, A.P.; Caderni, G.; Brandi, M.L. Low intestinal tract adenomatous polyps regression in FAP patients by dietary-induced erbeta upregulation. Clin. Cases Miner. Bone Metab. 2018, 15, 79–84. [Google Scholar]
- Luceri, C.; Femia, A.P.; Tortora, K.; D’Ambrosio, M.; Fabbri, S.; Fazi, M.; Caderni, G. Supplementation with phytoestrogens and insoluble fibers reduces intestinal carcinogenesis and restores ER-β expression in Apc-driven colorectal carcinogenesis. Eur. J. Cancer Prev. 2020, 29, 27–35. [Google Scholar] [CrossRef]
Species | Phytoestrogens or Compounds | Effects | Expression of ERs | Reference |
---|---|---|---|---|
Mice | 17-β-estradiol, genistein, coumestrol | Coumestrol reduced the number of tumours | Coumestrol and 17-β-estradiol increased ERβ experession | [70] |
Rats | Silymarin | Decrease in the frequency of aberrant crypt foci and increase in the activity of detoxifying enzymes; | / | [73] |
Decrease the incidence and multiplicity of adenocarcinoma in the colon | ||||
Mice | Silymarin and lignin | Decrease in number and volume of polyps; | Increased expression of ER-β; | [74] |
Improvement in the degree of polyps dysplasia | No change in expression of ER-α | |||
Rats | Genistein | Decrease in number of aberrant crypts; | / | [75] |
Prevention of hyper-activation of the WNT signalling pathway; | ||||
Decrease in the levels of β-catenin, c-My and Cyclin D1 | ||||
HT-29 | Genistein | Down-regulation of WNT/β-catenin signalling | / | [76] |
Mice | Soy | Decrease in Bak levels in females; | No change in expression of ER-β; | [77] |
Increased expression in COX-2 in female | Increased expression of ER-α in females | |||
Mice | Flaxseed | Decreasing trend in the number of adenomas | / | [78] |
Mice | Silymarin, boswellic acid and curcumin | Decrease in number and size of polypoid lesions | No change in expression of ER-α; | [80] |
Increased expression of ER-β | ||||
Patients | Silymarin, lignans and insoluble fibres | Increased apoptosis and epithelial proliferation | Increased levels of ER-β protein; | [85] |
No change in protein levels and expression of ER-α | ||||
Patients | Silymarin, lignans and insoluble fibres | Decrease in number and size of polyps | / | [86] |
Patients | Silymarin, lignans and insoluble fibres | Decrease in number and size of polyps | / | [87] |
Patients | Silymarin, lignans and insoluble fibres | Decrease in number and size of polyps; | Increased expression of ER-β | [88] |
Decreased expression of COX-2 and PCNA; | ||||
Increased expression of MUC-2 and caveolin-1 | ||||
Patients | Silymarin, lignans and insoluble fibres | Decrease in number of polyps | Increased expression of ER-β; | [89] |
No change in expression of ER-α | ||||
Rats | Silymarin, lignans and insoluble fibres | Decrease in number of pre-neoplastic lesions and macroscopic tumours; | Increased expression of ER-β; | [90] |
Increased expression of BOK | No change in expression of ER-α |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falsetti, I.; Palmini, G.; Iantomasi, T.; Brandi, M.L.; Tonelli, F. Mechanisms of Action of Phytoestrogens and Their Role in Familial Adenomatous Polyposis. Pharmaceutics 2024, 16, 640. https://doi.org/10.3390/pharmaceutics16050640
Falsetti I, Palmini G, Iantomasi T, Brandi ML, Tonelli F. Mechanisms of Action of Phytoestrogens and Their Role in Familial Adenomatous Polyposis. Pharmaceutics. 2024; 16(5):640. https://doi.org/10.3390/pharmaceutics16050640
Chicago/Turabian StyleFalsetti, Irene, Gaia Palmini, Teresa Iantomasi, Maria Luisa Brandi, and Francesco Tonelli. 2024. "Mechanisms of Action of Phytoestrogens and Their Role in Familial Adenomatous Polyposis" Pharmaceutics 16, no. 5: 640. https://doi.org/10.3390/pharmaceutics16050640
APA StyleFalsetti, I., Palmini, G., Iantomasi, T., Brandi, M. L., & Tonelli, F. (2024). Mechanisms of Action of Phytoestrogens and Their Role in Familial Adenomatous Polyposis. Pharmaceutics, 16(5), 640. https://doi.org/10.3390/pharmaceutics16050640