Development of a Web Application for Simulating Plasma Drug Concentrations in Patients with Zolpidem Intoxication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data
2.2. Population PK Model
2.3. Model Evaluation
2.4. RxODE Conversion and Simulation
2.5. Development of A Web-Application
3. Results
3.1. Pharmacokinetic Analysis
3.2. Population PK Model
3.3. RxODE Conversion and Simulation
3.4. Zolpidemsim: Web Application
3.5. Simulation Results at Various Doses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahl, S.M.; Grady, M.M.; Muntner, N. Stahl’s Essential Psychopharmacology, Neuroscientific Basis and Practical Application, 5th ed.; Cambridge University Press: Cambridge, UK, 2021; pp. 418–424. [Google Scholar] [CrossRef]
- Holm, K.J.; Goa, K.L. Zolpidem: An update of its pharmacology, therapeutic efficacy and tolerability in the treatment of insomnia. Drugs 2000, 59, 865–889. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. National Institutes of Health State of the Science Conference statement on Manifestations and Management of Chronic Insomnia in Adults, 13–15 June 2005. Sleep 2005, 28, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.J.; Mattison, D.R. Assessment of patterns of potentially unsafe use of zolpidem. JAMA Intern. Med. 2018, 178, 1275–1277. [Google Scholar] [CrossRef] [PubMed]
- Morlock, R.J.; Tan, M.; Mitchell, D.Y. Patient characteristics and patterns of drug use for sleep complaints in the United States: Analysis of National Ambulatory Medical Survey data, 1997–2002. Clin. Ther. 2006, 28, 1044–1053. [Google Scholar] [PubMed]
- Thompson, K.S.; Lewis, R.J.; Ritter, R.M. Analysis of zolpidem in postmortem fluids and tissues using ultra-performance liquid chromatography-mass spectrometry. J. Anal. Toxicol. 2014, 38, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Choi, J.W.; Lee, J.; Shin, A.; Oh, S.M.; Jung, S.J.; Lee, Y.J. Trends in prescriptions for sedative-hypnotics among Korean adults: A nationwide prescription database study for 2011–2015. Soc. Psychiatry Psychiatr. Epidemiol. 2019, 54, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Salvà, P.; Costa, J. Clinical Pharmacokinetics and Pharmacodynamics of Zolpidem. Clin. Pharmacokinet. 1995, 29, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Monti, J.M.; Spence, D.W.; Buttoo, K.; Randi-Perumal, S.R. Zolpidem’s use for insomnia. Asian J. Psychiatry 2017, 25, 79–90. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA Approves New Label Changes and Dosing for Zolpidem Products and Recommendation to Avoid Driving the Day after Using Ambien CR. US FDA. 2013. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-approves-new-label-changes-and-dosing-zolpidem-products-and (accessed on 21 January 2024).
- Scharner, V.; Hasieber, L.; Sönnichsen, A.; Mann, E. Efficacy and safety of Z-substances in the management of insomnia in older adults: A systematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatr. 2022, 22, 87. [Google Scholar] [CrossRef] [PubMed]
- Sanofi-aventis. U.S. LLC. AMBIEN® (Zolpidem Tartrate) Tablets, for Oral Use. Label. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/019908s40s044s047lbl.pdf (accessed on 9 April 2024).
- Uges, D.R. TIAFT Reference Blood Level List of Therapeutic and Toxic Substances. Available online: https://www.fnusa.cz/wp-content/uploads/therap_tox_levels.pdf (accessed on 13 January 2024).
- Organization for Economic Cooperation and Development. OECD Factbook 2015–2016: Economic, Environmental and Social Statistics; OECD Publishing: Paris, France. 2016. Available online: https://www.oecd-ilibrary.org/economics/oecd-factbook-2015-2016_factbook-2015-en (accessed on 21 January 2024).
- Lee, E.S.; Kim, S.J.; Cho, G.C.; Lee, M.J.; So, B.H.; Kim, K.S.; Song, J.; Lee, S.W. The 2022 annual report on toxicology surveillance and severe poisoning cases at emergency departments in Korea. J. Korean Soc. Clin. Toxicol. 2023, 21, 1–16. [Google Scholar] [CrossRef]
- Pai, K.H.; Lee, S.W.; Kim, S.J.; Han, K.S.; Song, J.; Lee, S.; Park, J.H.; Song, J. Patterns of self-harm/suicide attempters who visited emergency department over the past 10 years and changes in poisoning as a major method (2011–2020). J. Korean Soc. Clin. Toxicol. 2023, 21, 69–80. [Google Scholar] [CrossRef]
- Park, M.; Park, J.; Lee, S.; In, S. Analysis of death due to poisoning in the national capital region (2014–2016). J. Korean Soc. Clin. Toxicol. 2017, 15, 101–106. [Google Scholar] [CrossRef]
- Powell, J.R.; Gobburu, J.V.S. Pharmacometrics at FDA: Evolution and impact on decisions. Clin. Pharmacol. Ther. 2007, 82, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.J. NONMEM Tutorial Part I: Description of Commands and Options, With Simple Examples of Population Analysis. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Korea Clinical Trials Information Center. Available online: https://cris.nih.go.kr/cris/search/listDetail.do?search_yn=Y&searchWord=KCT0003934 (accessed on 12 January 2024).
- Rohatgi, A. WebPlotDititizer, Version 4.7 [Computer Software]. 2021. Available online: https://apps.automeris.io/wpd (accessed on 12 January 2024).
- Saldanha, L.; Costa, B.; Vale, N. In silico personalized study for zolpidem based on sex difference. Future Pharmacol. 2022, 2, 99–116. [Google Scholar] [CrossRef]
- Kim, H.; Han, S.; Cho, Y.S.; Yoon, S.K.; Bae, K.S. Development of R packages: ‘NonCompart’ and ‘ncar’ for noncompartmental analysis (NCA). Transl. Clin. Pharmacol. 2018, 26, 10–15. [Google Scholar] [CrossRef] [PubMed]
- NonCompart: Noncompartmental Analysis for Pharmacokinetic Data. R package Version 0.7.0. Available online: https://cran.r-project.org/web/packages/NonCompart/ (accessed on 2 April 2024).
- NONMEM. ICON plc. Available online: https://iconplc.com/solutions/technologies/nonmem (accessed on 21 January 2024).
- Yoon, S.; Jeong, S.; Jung, E.; Kim, K.S.; Jeon, I.; Lee, Y.; Cho, J.Y.; Oh, W.Y.; Chung, J.Y. Effect of CYP3A4 metabolism on sex differences in the pharmacokinetics and pharmacodynamics of zolpidem. Sci. Rep. 2021, 11, 19150. [Google Scholar] [CrossRef] [PubMed]
- The R Project for Statistical Computing. R. Available online: http://www.r-project.org (accessed on 22 November 2023).
- nonmem2rx: ‘nonmem2rx’ Converts ‘NONMEM’ Models to ‘rxode2’. R Package Version 0.1.3. Available online: https://cran.r-project.org/web/packages/nonmem2rx/ (accessed on 12 December 2023).
- Rxode2: Facilities for Simulating from ODE-Based Models. R Package Version 2.1.0. Available online: https://cran.r-project.org/package=rxode2/ (accessed on 30 January 2024).
- Wang, W.; Hallow, K.M. A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Shiny: Web Application Framework for, R. R Package Version 1.8.1.1. Available online: https://cran.r-project.org/web/packages/shiny/ (accessed on 2 April 2024).
- bslib: Custom ‘Bootstrap’ ‘Sass’ Themes for ‘Shiny’ and ‘Rmarkdown’. R Package Version 0.7.0. Available online: https://cran.r-project.org/web/packages/bslib/ (accessed on 9 April 2024).
- Lee, Y.; Oh, W.Y.; Kim, K.S.; Jung, E.; Jeong, S.M.; Lee, J.G.; Yi, J.Y.; Chung, J.; Ryu, S.A.; Park, Z.W. Development of Pharmacometrics-Based Modeling for Optimal Dosage (Korean). Research Report of Ministry of Food and Drug Safety (MFDS), Republic of Korea. 2018. Available online: https://rnd.mfds.go.kr/download/rnd/1125833?mode=download (accessed on 22 January 2024).
- Drover, D.; Lemmens, H.; Naidu, S.; Cevallos, W.; Darwish, M.; Stanski, D. Pharmacokinetics, pharmacodynamics, and relative pharmacokinetic/pharmacodynamic profiles of zaleplon and zolpidem. Clin. Ther. 2000, 22, 1443–1461. [Google Scholar] [CrossRef] [PubMed]
- de Haas, S.L.; Schoemaker, R.C.; van Gerven, J.M.A.; Hoever, P.; Cohen, A.F.; Dingemanse, J. Pharmacokinetics, pharmacodynamics and the pharmacokinetic/pharmacodynamic relationship of zolpidem in healthy subjects. J. Psychopharmacol. 2010, 24, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- mrgsolve: Simulate from ODE-Based Models. R Package Version 1.4.1. Available online: https://cran.r-project.org/web/packages/mrgsolve/ (accessed on 9 April 2024).
- PKPDsim: Tools for Performing Pharmacokinetic-Pharmacodynamic Simulations. R Package Version 1.3.0. Available online: https://cran.r-project.org/web/packages/PKPDsim/ (accessed on 9 April 2024).
- deSolve: Solvers for Initial Value Problems of Differential Equations (‘ODE’, ‘DAE’, ‘DDE’) R Package Version 1.40. Available online: https://cran.r-project.org/web/packages/deSolve/ (accessed on 9 April 2024).
Parameters | Male | Female | ||
---|---|---|---|---|
Original (N = 15) | Digitized (N = 12) | Original (N = 15) | Digitized (N = 11) | |
Cmax (ng/mL) | 161.21 (46.74) | 162.72 (47.04) | 187.64 (59.44) | 189.22 (59.85) |
AUC0–12h (ng h/mL) | 537.9 (202.3) | 542.5 (197.5) | 696.9 (221.7) | 688.1 (221.3) |
CL/F (L/h) | 19.76 (7.25) | 18.88 (6.06) | 14.72 (4.07) | 14.93 (4.22) |
Lambda z (1/h) | 0.27 (0.09) | 0.22 (0.06) | 0.23 (0.03) | 0.24 (0.04) |
Half-life (h) | 2.93 (1.14) | 3.58 (1.10) | 3.05 (0.35) | 3.02 (0.52) |
Vd/F (L) | 74.8 (16.2) | 92.2 (35.7) | 63.6 (15.6) | 63.5 (16.5) |
Tmax (h) | 0.94 (0.58–1.80) | 0.96 (0.58–1.78) | 0.83 (0.58–3.33) | 0.84 (0.57–3.36) |
Parameters | Estimates (RSE a %) | Bootstrap | |
---|---|---|---|
Median | 95% CI | ||
Fixed effects | |||
Ka (1/h) | 5.41 (45.47) | 5.66 | 3.24–11.24 |
Vd/F (L) | 61.70 (5.82) | 61.33 | 54.89–68.64 |
CL/F (L/h) | 16.90 (8.40) | 16.87 | 14.29–19.50 |
ALAG (h) | 0.394 (6.24) | 0.394 | 0.385–0.493 |
Interindividual variability (IIV) | |||
ω2 Ka (CV b %) | 158.91 (43.65) | 157.81 | 69.76–444.98 |
ω2 Vd (CV%) | 22.10 (47.17) | 20.98 | 12.0–29.68 |
ω2 CL (CV%) | 32.60 (45.54) | 31.74 | 20.96–41.65 |
ρVd-CL | 0.853 | 0.853 | 0.796–0.869 |
Residual variability | |||
Proportional error | 0.284 (6.16) | 0.283 | 0.242–0.319 |
Doses (mg) | NR a (%) | <1 h (%) | 1–2 h (%) | 2–3 h (%) | >3 h (%) | |
---|---|---|---|---|---|---|
Toxic concentration (500–1500 ng/mL) | 10 | 100 | 0 | 0 | 0 | 0 |
280 | 0 | 0 | 0 | 0 | 100 | |
560 | 0 | 0 | 0 | 0 | 100 | |
1120 | 0 | 0 | 0 | 0 | 100 | |
Comatose concentration (1500–4000 ng/mL) | 10 | 100 | 0 | 0 | 0 | 0 |
280 | 0.2 | 0.4 | 0.8 | 15.0 | 83.6 | |
560 | 0 | 0 | 0 | 0.4 | 99.6 | |
1120 | 0 | 0 | 0 | 0 | 100 | |
Fatal concentration (>4000 ng/mL) | 10 | 100 | 0 | 0 | 0 | 0 |
280 | 58.8 | 21.4 | 15.6 | 4.0 | 0.2 | |
560 | 2.6 | 1.6 | 11.2 | 31.4 | 53.2 | |
1120 | 0 | 0 | 0 | 1.6 | 98.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, H.J.; Han, S.; Pak, K.C.; Kim, H. Development of a Web Application for Simulating Plasma Drug Concentrations in Patients with Zolpidem Intoxication. Pharmaceutics 2024, 16, 689. https://doi.org/10.3390/pharmaceutics16050689
Cha HJ, Han S, Pak KC, Kim H. Development of a Web Application for Simulating Plasma Drug Concentrations in Patients with Zolpidem Intoxication. Pharmaceutics. 2024; 16(5):689. https://doi.org/10.3390/pharmaceutics16050689
Chicago/Turabian StyleCha, Hwa Jun, Sungpil Han, Kwan Cheol Pak, and Hyungsub Kim. 2024. "Development of a Web Application for Simulating Plasma Drug Concentrations in Patients with Zolpidem Intoxication" Pharmaceutics 16, no. 5: 689. https://doi.org/10.3390/pharmaceutics16050689