Chitosan Nanoparticles for Intranasal Drug Delivery
Abstract
:1. Introduction
2. Chitosan in Neurological Applications
2.1. Enhanced Brain Delivery for Neurological Treatments
2.1.1. Alzheimer’s Disease
2.1.2. Parkinson’s Disease
2.1.3. Neuro-AIDS (Acquired Immunodeficiency Syndrome)
2.1.4. Dementia and Cognitive Improvement
2.1.5. Central Nervous System (CNS) Malignancies and Neuroprotection
2.2. Targeting Specific Neurological Conditions
2.2.1. Epilepsy and Other Specific Neurological Conditions
2.2.2. General and Specific CNS Targeting Strategies
3. Immunization and Immune Response Enhancement
3.1. General Vaccine Delivery Improvements
3.1.1. Influenza, Hepatitis B, and Other Respiratory/Mucosal Vaccines
3.1.2. Enhancements in Nasal Vaccine Delivery
3.2. Immune Enhancement for Specific Diseases
3.2.1. Comparative and Mechanistic Studies of Chitosan-Based Formulations
3.2.2. Broad-Spectrum and Disease-Specific Immune Responses
Respiratory Pathogens Immune Enhancement via Intranasal Delivery
Gastrointestinal and Enteric Pathogens Immune Enhancement
4. Systemic Delivery and Drug Absorption
4.1. Applications in Disease Treatments
4.1.1. Neurological and Psychiatric Disorders
4.1.2. Infectious Diseases and Antimicrobial Applications
4.1.3. Insulin and Diabetes Management
4.1.4. Cardiovascular and Blood Pressure Management
4.1.5. Allergic Rhinitis and Airway Inflammatory Diseases
4.2. Optimization of Drug Formulation and Delivery
4.2.1. Drug Properties Enhancement
4.2.2. Delivery Systems Optimization: Stability and Compatibility of Nanoparticles
5. Specific Treatment and Conditions
5.1. Disease-Specific Treatments
5.1.1. Viral Infections including COVID-19
5.1.2. Respiratory Diseases
5.1.3. Psychiatric Disorders
5.1.4. Emergency and Acute Treatments
5.1.5. Neurodegenerative Diseases
5.1.6. Pain Management
6. Testing
7. Collective Outcomes
8. Limitations and Future Directions
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Omidian, H.; Park, K.; Sinko, P. Pharmaceutical Polymers. In Martin’s Physical Pharmacy and Pharmaceutical Sciences, 6th ed.; Sinko, P., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010; pp. 492–515. [Google Scholar]
- Mastropietro, D.J.; Park, K.; Omidian, H. Polymers in Oral Drug Delivery. In Comprehensive Biomaterials II; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Mastropietro, D.J.; Muppalaneni, S.; Kwon, Y.; Park, K.; Omidian, H. Polymers in Drug Delivery. In Drug Delivery; Mitra, A.K., Kwarta, D., Vadlapudi, A.D., Eds.; Jones & Bartlett Learning: Burlington, MA, USA, 2014; pp. 129–156. [Google Scholar]
- Amiryaghoubi, N.; Fathi, M.; Adibkia, K.; Barar, J.; Omidian, H.; Omidi, Y. Chitosan-Based Biomaterials: Their Interaction with Natural and Synthetic Materials for Cartilage, Bone, Cardiac, Vascular, and Neural Tissue Engineering. In Engineering Materials for Stem Cell Regeneration; Sheikh, F.A., Ed.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Dhas, N.; Mehta, T. Intranasal delivery of chitosan decorated PLGA core/shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2021, 61, 11. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomed. 2018, 13, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Rashid, M.; Hallan, S.S.; Mehra, N.K.; Prakash, A.; Mishra, N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif. Cells Nanomed. Biotechnol. 2015, 44, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, D.; Nikolova, D.; Vassileva, E.; Kostova, B. Chitosan-Based Nanoparticles for Targeted Nasal Galantamine Delivery as a Promising Tool in Alzheimer’s Disease Therapy. Pharmaceutics 2023, 15, 829. [Google Scholar] [CrossRef] [PubMed]
- Uppuluri, C.T.; Ravi, P.R.; Dalvi, A.V. Design and evaluation of thermo-responsive nasal in situ gelling system dispersed with piribedil loaded lecithin-chitosan hybrid nanoparticles for improved brain availability. Neuropharmacology 2021, 201, 12. [Google Scholar] [CrossRef] [PubMed]
- Gartziandia, O.; Herrán, E.; Ruiz-Ortega, J.A.; Miguelez, C.; Igartua, M.; Lafuente, J.V.; Pedraz, J.L.; Ugedo, L.; Hernández, R.M. Intranasal Administration of Chitosan-Coated Nanostructured Lipid Carriers Loaded with GDNF Improves Behavioral and Histological Recovery in a Partial Lesion Model of Parkinson’s Disease. J. Biomed. Nanotechnol. 2016, 12, 2220–2280. [Google Scholar] [CrossRef]
- Chatzitaki, A.-T.; Jesus, S.; Karavasili, C.; Andreadis, D.; Fatouros, D.G.; Borges, O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int. J. Pharm. 2020, 589, 12. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Lai, S.; Wei, J.; Yang, L.; Jiang, N.; Wang, Q.; Yu, Y. A Novel Delivery Method of Cyclovirobuxine D for Brain-Targeting: Chitosan Coated Nanoparticles Loading Cyclovirobuxine D by Intranasal Administration. J. Nanosci. Nanotechnol. 2018, 18, 5274–5282. [Google Scholar] [CrossRef] [PubMed]
- Amidi, M.; Romeijn, S.G.; Verhoef, J.C.; Junginger, H.E.; Bungener, L.; Huckriede, A.; Crommelin, D.J.A.; Jiskoot, W. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine 2007, 25, 144–153. [Google Scholar] [CrossRef]
- Dabaghian, M.; Latifi, A.M.; Tebianian, M.; NajmiNejad, H.; Ebrahimi, S.M. Nasal vaccination with r4M2e.HSP70c antigen encapsulated into N-trimethyl chitosan (TMC) nanoparticulate systems: Preparation and immunogenicity in a mouse model. Vaccine 2018, 36, 2886–2895. [Google Scholar] [CrossRef]
- Liu, S.; Yang, S.; Ho, P.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci. 2018, 13, 72–81. [Google Scholar] [CrossRef]
- Gao, X.; Liu, N.; Wang, Z.; Gao, J.; Zhang, H.; Li, M.; Du, Y.; Gao, X.; Zheng, A. Development and Optimization of Chitosan Nanoparticle-Based Intranasal Vaccine Carrier. Molecules 2021, 27, 204. [Google Scholar] [CrossRef]
- Dehghan, S.; Tafaghodi, M.; Bolourieh, T.; Mazaheri, V.; Torabi, A.; Abnous, K.; Tavassoti Kheiri, M. Rabbit nasal immunization against influenza by dry-powder form of chitosan nanospheres encapsulated with influenza whole virus and adjuvants. Int. J. Pharm. 2014, 475, 1–8. [Google Scholar] [CrossRef]
- Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer’s Disease: Optimization, Biological Efficacy, and Potential Toxicity. J. Pharm. Sci. 2015, 104, 3544–3556. [Google Scholar] [CrossRef]
- Wilson, B.; Mohamed Alobaid, B.N.; Geetha, K.M.; Jenita, J.L. Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2021, 61, 6. [Google Scholar] [CrossRef]
- Shadab, M.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Preparation, Characterization and Evaluation of Bromocriptine Loaded Chitosan Nanoparticles for Intranasal Delivery. Sci. Adv. Mater. 2012, 4, 949–960. [Google Scholar] [CrossRef]
- Yousfan, A.; Rubio, N.; Natouf, A.H.; Daher, A.; Al-Kafry, N.; Venner, K.; Kafa, H. Preparation and characterisation of PHT-loaded chitosan lecithin nanoparticles for intranasal drug delivery to the brain. RSC Adv. 2020, 10, 28992–29009. [Google Scholar] [CrossRef]
- Mustafa, G.; Baboota, S.; Ahuja, A.; Ali, J. Formulation Development of Chitosan Coated Intra Nasal Ropinirole Nanoemulsion for Better Management Option of Parkinson: An In Vitro Ex Vivo Evaluation. Curr. Nanosci. 2012, 8, 348–360. [Google Scholar] [CrossRef]
- Baltzley, S.; Mohammad, A.; Malkawi, A.H.; Al-Ghananeem, A.M. Intranasal Drug Delivery of Olanzapine-Loaded Chitosan Nanoparticles. AAPS PharmSciTech 2014, 15, 1598–1602. [Google Scholar] [CrossRef]
- Annu; Baboota, S.; Ali, J. In vitro appraisals and ex vivo permeation prospect of chitosan nanoparticles designed for schizophrenia to intensify nasal delivery. Polym. Bull. 2021, 79, 2263–2285. [Google Scholar] [CrossRef]
- Rukmangathen, R.; Yallamalli, I.M.; Yalavarthi, P.R. Formulation and biopharmaceutical evaluation of risperidone-loaded chitosan nanoparticles for intranasal delivery. Drug Dev. Ind. Pharm. 2019, 45, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Naik, S.; Chuttani, K.; Mathur, R.; Mishra, A.K.; Misra, A. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief. J. Drug Target. 2013, 21, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Javia, A.; Thakkar, H. Intranasal delivery of tapentadol hydrochloride–loaded chitosan nanoparticles: Formulation, characterisation and itsin vivoevaluation. J. Microencapsul. 2017, 34, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, S.; Kheiri, M.T.; Tabatabaiean, M.; Darzi, S.; Tafaghodi, M. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization. Arch. Pharm. Res. 2013, 36, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zheng, X.; Zhang, C.; Shao, X.; Zhang, X.; Zhang, Q.; Jiang, X. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration. J. Med. Virol. 2015, 87, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Lebre, F.; Borchard, G.; Faneca, H.; Pedroso de Lima, M.C.; Borges, O. Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice. Mol. Pharm. 2016, 13, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Najminejad, H.; Kalantar, S.M.; Mokarram, A.R.; Dabaghian, M.; Abdollahpour-Alitappeh, M.; Ebrahimi, S.M.; Tebianian, M.; Fasihi Ramandi, M.; Sheikhha, M.H. Bordetella pertussis antigens encapsulated into N-trimethyl chitosan nanoparticulate systems as a novel intranasal pertussis vaccine. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Pawar, D.; Jaganathan, K.S. Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: Enhancement of mucosal and systemic immune response. Drug Deliv. 2014, 23, 185–194. [Google Scholar] [CrossRef]
- Subbiah, R.; Ramalingam, P.; Ramasundaram, S.; Kim, D.Y.; Park, K.; Ramasamy, M.K.; Choi, K.J. N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr. Polym. 2012, 89, 1289–1297. [Google Scholar] [CrossRef]
- Khatri, K.; Goyal, A.K.; Gupta, P.N.; Mishra, N.; Vyas, S.P. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int. J. Pharm. 2008, 354, 235–241. [Google Scholar] [CrossRef]
- Alcantara, K.P.; Nalinratana, N.; Chutiwitoonchai, N.; Castillo, A.L.; Banlunara, W.; Vajragupta, O.; Rojsitthisak, P.; Rojsitthisak, P. Enhanced Nasal Deposition and Anti-Coronavirus Effect of Favipiravir-Loaded Mucoadhesive Chitosan–Alginate Nanoparticles. Pharmaceutics 2022, 14, 2680. [Google Scholar] [CrossRef]
- Kumar, M.; Behera, A.K.; Lockey, R.F.; Zhang, J.; Bhullar, G.; de la Cruz, C.P.; Chen, L.-C.; Leong, K.W.; Huang, S.-K.; Mohapatra, S.S. Intranasal Gene Transfer by Chitosan–DNA Nanospheres Protects BALB/c Mice Against Acute Respiratory Syncytial Virus Infection. Hum. Gene Ther. 2002, 13, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Tabynov, K.; Solomadin, M.; Turebekov, N.; Babayeva, M.; Fomin, G.; Yadagiri, G.; Renu, S.; Yerubayev, T.; Petrovsky, N.; Renukaradhya, G.J.; et al. An intranasal vaccine comprising SARS-CoV-2 spike receptor-binding domain protein entrapped in mannose-conjugated chitosan nanoparticle provides protection in hamsters. Sci. Rep. 2023, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.M.; Hinchcliffe, M.; Watts, P.; Castile, J.; Jabbal-Gill, I.; Nankervis, R.; Smith, A.; Illum, L. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm. Res. 2002, 19, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Urrusuno, R.; Romani, D.; Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Development of a freeze-dried formulation of insulin-loaded chitosan nanoparticles intended for nasal administration. STP Pharma Sci. 1999, 9, 429–436. [Google Scholar]
- Fernández-Urrusuno, R.; Calvo, P.; Remuñán-López, C.; Vila-Jato, J.L.; José Alonso, M. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 1999, 16, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, C.; Wu, Z.; Teng, D.; Zhang, X.; Wang, Z.; Li, C. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 88B, 150–161. [Google Scholar] [CrossRef]
- Zhang, X. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur. J. Pharm. Biopharm. 2008, 68, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yu, X.; Wang, T.; Bi, S.; Liu, Y.; Chen, X. Nasal adaptive chitosan-based nano-vehicles for anti-allergic drug delivery. Int. J. Biol. Macromol. 2019, 135, 1182–1192. [Google Scholar] [CrossRef]
- Attri, K.; Singh, M.; Bhalla, V. Xylometazoline Loaded Chitosan Nanoparticles: Fabrication, Optimization and Evaluation for Nasal Congestion. Indian J. Pharm. Educ. Res. 2022, 56, 716–722. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, J.; Wang, C. Self-assembled chitosan nanoparticles for intranasal delivery of recombinant protein interleukin-17 receptor C (IL-17RC): Preparation and evaluation in asthma mice. Bioengineered 2021, 12, 3029–3039. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, S.; Trapani, A.; Mandracchia, D.; De Giglio, E.; Cometa, S.; Mangini, V.; Arnesano, F.; Belgiovine, G.; Castellani, S.; Pace, L.; et al. Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur. J. Pharm. Biopharm. 2015, 94, 180–193. [Google Scholar] [CrossRef]
- Belgamwar, A.; Khan, S.; Yeole, P. Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting. Artif. Cells Nanomed. Biotechnol. 2017, 46, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Chin, L.Y.; Tan, J.Y.P.; Choudhury, H.; Pandey, M.; Sisinthy, S.P.; Gorain, B. Development and optimization of chitosan coated nanoemulgel of telmisartan for intranasal delivery: A comparative study. J. Drug Deliv. Sci. Technol. 2021, 62, 12. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chai, G.; Zhang, X.; Li, F. Brain pharmacokinetics of neurotoxin-loaded PLA nanoparticles modified with chitosan after intranasal administration in awake rats. Drug Dev. Ind. Pharm. 2013, 39, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Abo El-Enin, H.A.; Elkomy, M.H.; Naguib, I.A.; Ahmed, M.F.; Alsaidan, O.A.; Alsalahat, I.; Ghoneim, M.M.; Eid, H.M. Lipid Nanocarriers Overlaid with Chitosan for Brain Delivery of Berberine via the Nasal Route. Pharmaceuticals 2022, 15, 281. [Google Scholar] [CrossRef] [PubMed]
- Schlachet, I.; Moshe Halamish, H.; Sosnik, A. Mixed Amphiphilic Polymeric Nanoparticles of Chitosan, Poly(vinyl alcohol) and Poly(methyl methacrylate) for Intranasal Drug Delivery: A Preliminary In Vivo Study. Molecules 2020, 25, 4496. [Google Scholar] [CrossRef] [PubMed]
- Gartziandia, O.; Herran, E.; Pedraz, J.L.; Carro, E.; Igartua, M.; Hernandez, R.M. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf. B Biointerfaces 2015, 134, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Brar, V.; Kaur, G. Thiolated okra chitosan nanoparticles: Preparation and optimisation as intranasal drug delivery agents. J. Microencapsul. 2020, 37, 624–639. [Google Scholar] [CrossRef]
- Shah, B.; Khunt, D.; Misra, M.; Padh, H. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route. Int. J. Biol. Macromol. 2016, 89, 206–218. [Google Scholar] [CrossRef]
- Khan, A.; Aqil, M.; Imam, S.S.; Ahad, A.; Sultana, Y.; Ali, A.; Khan, K. Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: Characterization, nasal absorption, histopathology and cell line study. Int. J. Biol. Macromol. 2018, 116, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Fachel, F.N.S.; Medeiros-Neves, B.; Dal Prá, M.; Schuh, R.S.; Veras, K.S.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. Box-Behnken design optimization of mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid nasal delivery—In vitro studies. Carbohydr. Polym. 2018, 199, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ho, P.C. Intranasal administration of brain-targeted HP-β-CD/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. J. Pharm. Pharmacol. 2017, 69, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Kandil, L.S.; Farid, R.M.; ElGamal, S.S.; Hanafy, A.S. Intranasal galantamine/chitosan complex nanoparticles elicit neuroprotection potentials in rat brains via antioxidant effect. Drug Dev. Ind. Pharm. 2021, 47, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Bruinsmann, F.; Pigana, S.; Aguirre, T.; Souto, G.; Pereira, G.; Bianchera, A.; Fasiolo, L.; Colombo, G.; Marques, M.; Pohlmann, A.; et al. Chitosan-Coated Nanoparticles: Effect of Chitosan Molecular Weight on Nasal Transmucosal Delivery. Pharmaceutics 2019, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Manhas, P.; Swami, A.; Bhandari, R.; Sharma, K.K.; Jain, R.; Kumar, R.; Pandey, S.K.; Kuhad, A.; Sharma, R.K.; et al. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues. Chem. Eng. J. 2018, 346, 630–639. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, I.; Pandit, J.; Emad, N.A.; Bano, S.; Dar, K.I.; Rizvi, M.M.A.; Ansari, M.D.; Aqil, M.; Sultana, Y. Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment. Int. J. Biol. Macromol. 2022, 221, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Don, T.-M.; Chang, W.-J.; Jheng, P.-R.; Huang, Y.-C.; Chuang, E.-Y. Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery. Int. J. Biol. Macromol. 2021, 181, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Noorulla, K.M.; Yasir, M.; Muzaffar, F.; Roshan, S.; Ghoneim, M.M.; Almurshedi, A.S.; Tura, A.J.; Alshehri, S.; Gebissa, T.; Mekit, S.; et al. Intranasal delivery of chitosan decorated nanostructured lipid carriers of Buspirone for brain targeting: Formulation development, optimization and In-Vivo preclinical evaluation. J. Drug Deliv. Sci. Technol. 2022, 67, 12. [Google Scholar] [CrossRef]
- Haroon, H.B.; Mukherjee, D.; Anbu, J.; Teja, B.V. Thiolated Chitosan-Centella asiatica Nanocomposite: A Potential Brain Targeting Strategy Through Nasal Route. AAPS PharmSciTech 2021, 22, 16. [Google Scholar] [CrossRef]
- Malhotra, M.; Tomaro-Duchesneau, C.; Saha, S.; Prakash, S. Intranasal Delivery of Chitosan–siRNA Nanoparticle Formulation to the Brain. In Drug Delivery System; Jain, K.K., Ed.; Methods in Molecular Biology; Humana Press Inc: Totowa, NJ, USA, 2014; Volume 1141, pp. 233–247. [Google Scholar]
- Sanchez-Ramos, J.; Song, S.; Kong, X.; Foroutan, P.; Martinez, G.; Dominguez-Viqueria, W.; Mohapatra, S.; Mohapatra, S.; Haraszti, R.A.; Khvorova, A.; et al. Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J. Drug Deliv. Sci. Technol. 2018, 43, 453–460. [Google Scholar] [CrossRef]
- Sava, V.; Fihurka, O.; Khvorova, A.; Sanchez-Ramos, J. Enriched chitosan nanoparticles loaded with siRNA are effective in lowering Huntington’s disease gene expression following intranasal administration. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 7. [Google Scholar] [CrossRef]
- Borges, O.; Cordeiro-da-Silva, A.; Tavares, J.; Santarém, N.; de Sousa, A.; Borchard, G.; Junginger, H.E. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm. 2008, 69, 405–416. [Google Scholar] [CrossRef]
- Bento, D.; Staats, H.F.; Gonçalves, T.; Borges, O. Development of a novel adjuvanted nasal vaccine: C48/80 associated with chitosan nanoparticles as a path to enhance mucosal immunity. Eur. J. Pharm. Biopharm. 2015, 93, 149–164. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, S.; Lu, L.; Song, X.; Li, P.; Wang, F. Curdlan sulfate–O-linked quaternized chitosan nanoparticles: Potential adjuvants to improve the immunogenicity of exogenous antigens via intranasal vaccination. Int. J. Nanomed. 2018, 13, 2377–2394. [Google Scholar] [CrossRef]
- Vila, A.; Sánchez, A.; Janes, K.; Behrens, I.; Kissel, T.; Jato, J.L.V.; Alonso, M.a.J. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm. 2004, 57, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, S.; Li, W.; Yu, L.; Duan, X.; Han, J.; Wang, X.; Jin, Z. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv. 2017, 24, 1574–1586. [Google Scholar] [CrossRef] [PubMed]
- Slütter, B.; Bal, S.; Keijzer, C.; Mallants, R.; Hagenaars, N.; Que, I.; Kaijzel, E.; van Eden, W.; Augustijns, P.; Löwik, C.; et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010, 28, 6282–6291. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zheng, X.; Zhang, C.; Shao, X.; Zhang, X.; Zhang, Q.; Jiang, X. Antigen-conjugated N-trimethylaminoethylmethacrylate Chitosan Nanoparticles Induce Strong Immune Responses After Nasal Administration. Pharm. Res. 2014, 32, 22–36. [Google Scholar] [CrossRef]
- Sharma, S.; Benson, H.A.E.; Mukkur, T.K.S.; Rigby, P.; Chen, Y. Preliminary studies on the development of IgA-loaded chitosan–dextran sulphate nanoparticles as a potential nasal delivery system for protein antigens. J. Microencapsul. 2012, 30, 283–294. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Nazarian, S.; Ebrahimi, F.; Hajizade, A. Immunogenicity Evaluation of Recombinant Staphylococcus aureus Enterotoxin B (rSEB) and rSEB-loaded Chitosan Nanoparticles Following Nasal Administration. Iran. J. Allergy Asthma Immunol. 2020, 19, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Mosafer, J.; Sabbaghi, A.-H.; Badiee, A.; Dehghan, S.; Tafaghodi, M. Preparation, characterization and in vivo evaluation of alginate-coated chitosan and trimethylchitosan nanoparticles loaded with PR8 influenza virus for nasal immunization. Asian J. Pharm. Sci. 2019, 14, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Verheul, R.J.; Hagenaars, N.; van Es, T.; van Gaal, E.V.B.; de Jong, P.H.J.L.F.; Bruijns, S.; Mastrobattista, E.; Slütter, B.; Que, I.; Heldens, J.G.M.; et al. A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine. Eur. J. Pharm. Sci. 2012, 45, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Amidi, M.; Romeijn, S.G.; Borchard, G.; Junginger, H.E.; Hennink, W.E.; Jiskoot, W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release 2006, 111, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.M.; Slütter, B.; Verheul, R.; Bouwstra, J.A.; Jiskoot, W. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: Adjuvant- and site-dependent immunogenicity in mice. Eur. J. Pharm. Sci. 2012, 45, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Slütter, B.; Jiskoot, W. Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. J. Control. Release 2010, 148, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Verheul, R.J.; Slütter, B.; Bal, S.M.; Bouwstra, J.A.; Jiskoot, W.; Hennink, W.E. Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. J. Control. Release 2011, 156, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Dai, W.; Wang, Z.; Chen, B.; Li, Z.; Fan, X. Intranasal Vaccination with Chitosan-DNA Nanoparticles Expressing Pneumococcal Surface Antigen A Protects Mice against Nasopharyngeal Colonization by Streptococcus pneumoniae. Clin. Vaccine Immunol. 2011, 18, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yang, X.; Cai, D.; Mao, D.; Wu, J.; Zong, L.; Liu, J. Intranasal immunization with chitosan/pCETP nanoparticles inhibits atherosclerosis in a rabbit model of atherosclerosis. Vaccine 2008, 26, 3727–3734. [Google Scholar] [CrossRef]
- Cevher, E.; Salomon, S.K.; Makrakis, A.; Li, X.W.; Brocchini, S.; Alpar, H.O. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: Optimisation and cellular studies. J. Microencapsul. 2015, 32, 755–768. [Google Scholar] [CrossRef]
- Cevher, E.; Salomon, S.K.; Somavarapu, S.; Brocchini, S.; Alpar, H.O. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines:in vivostudies. J. Microencapsul. 2015, 32, 769–783. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, B.; Jin, Z.; Zhao, K. Enhanced Immune Responses to Mucosa by Functionalized Chitosan-Based Composite Nanoparticles as a Vaccine Adjuvant for Intranasal Delivery. ACS Appl. Mater. Interfaces 2022, 14, 52691–52701. [Google Scholar] [CrossRef]
- Kabiri, M.; Bolourian, H.; Dehghan, S.; Tafaghodi, M. The dry powder formulation of mixed cross-linked dextran microspheres and tetanus toxoid-loaded trimethyl chitosan nanospheres as a potent adjuvant for nasal delivery system. Iran. J. Basic Med. Sci. 2021, 24, 116–122. [Google Scholar] [CrossRef]
- Raghuwanshi, D.; Mishra, V.; Das, D.; Kaur, K.; Suresh, M.R. Dendritic Cell Targeted Chitosan Nanoparticles for Nasal DNA Immunization against SARS CoV Nucleocapsid Protein. Mol. Pharm. 2012, 9, 946–956. [Google Scholar] [CrossRef]
- Yao, W.; Peng, Y.; Du, M.; Luo, J.; Zong, L. Preventative Vaccine-Loaded Mannosylated Chitosan Nanoparticles Intended for Nasal Mucosal Delivery Enhance Immune Responses and Potent Tumor Immunity. Mol. Pharm. 2013, 10, 2904–2914. [Google Scholar] [CrossRef]
- Zhao, K.; Sun, B.; Shi, C.; Sun, Y.; Jin, Z.; Hu, G. Intranasal immunization with O-2′-Hydroxypropyl trimethyl ammonium chloride chitosan nanoparticles loaded with Newcastle disease virus DNA vaccine enhances mucosal immune response in chickens. J. Nanobiotechnol. 2021, 19, 15. [Google Scholar] [CrossRef]
- Chang, Y.-F.; Shim, S.; Soh, S.H.; Im, Y.B.; Ahn, C.; Park, H.-T.; Park, H.-E.; Park, W.B.; Kim, S.; Yoo, H.S. Induction of systemic immunity through nasal-associated lymphoid tissue (NALT) of mice intranasally immunized with Brucella abortus malate dehydrogenase-loaded chitosan nanoparticles. PLoS ONE 2020, 15, e0228463. [Google Scholar] [CrossRef]
- Huang, J.-L.; Yin, Y.-X.; Pan, Z.-M.; Zhang, G.; Zhu, A.-P.; Liu, X.-F.; Jiao, X.-A. Intranasal Immunization with Chitosan/pCAGGS-flaA Nanoparticles Inhibits Campylobacter jejuni in a White Leghorn Model. J. Biomed. Biotechnol. 2010, 2010, 589476. [Google Scholar] [CrossRef]
- Jahantigh, D.; Saadati, M.; Fasihi Ramandi, M.; Mousavi, M.; Zand, A.M. Novel Intranasal Vaccine Delivery System by Chitosan Nanofibrous Membrane Containing N-Terminal Region of Ipad Antigen as a Nasal Shigellosis Vaccine, Studies in Guinea Pigs. J. Drug Deliv. Sci. Technol. 2014, 24, 33–39. [Google Scholar] [CrossRef]
- Nevagi, R.J.; Khalil, Z.G.; Hussein, W.M.; Powell, J.; Batzloff, M.R.; Capon, R.J.; Good, M.F.; Skwarczynski, M.; Toth, I. Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomater. 2018, 80, 278–287. [Google Scholar] [CrossRef]
- Dumkliang, E.; Pamornpathomkul, B.; Patrojanasophon, P.; Ngawhirunpat, T.; Rojanarata, T.; Yoksan, S.; Opanasopit, P. Feasibility of chitosan-based nanoparticles approach for intranasal immunisation of live attenuated Japanese encephalitis vaccine. Int. J. Biol. Macromol. 2021, 183, 1096–1105. [Google Scholar] [CrossRef]
- Najafi, A.; Ghazvini, K.; Sankian, M.; Gholami, L.; Amini, Y.; Zare, S.; Khademi, F.; Tafaghodi, M. T helper type 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sci. 2021, 282, 8. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.-M.; Kim, J.-H.; Cho, C.-W.; Jeon, J.-W.; Park, J.-K.; Lee, S.-H.; Jung, B.-G.; Lee, B.-J. Nasal delivery of chitosan/alginate nanoparticle encapsulated bee (Apis mellifera) venom promotes antibody production and viral clearance during porcine reproductive and respiratory syndrome virus infection by modulating T cell related responses. Vet. Immunol. Immunopathol. 2018, 200, 40–51. [Google Scholar] [CrossRef]
- Dhakal, S.; Renu, S.; Ghimire, S.; Shaan Lakshmanappa, Y.; Hogshead, B.T.; Feliciano-Ruiz, N.; Lu, F.; HogenEsch, H.; Krakowka, S.; Lee, C.W.; et al. Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs. Front. Immunol. 2018, 9, 16. [Google Scholar] [CrossRef]
- Rodrigues Dos Santos Junior, S.; Kelley Lopes da Silva, F.; Santos Dias, L.; Oliveira Souza, A.C.; Valdemir de Araujo, M.; Buffoni Roque da Silva, L.; Travassos, L.R.; Correa Amaral, A.; Taborda, C.P. Intranasal Vaccine Using P10 Peptide Complexed within Chitosan Polymeric Nanoparticles as Experimental Therapy for Paracoccidioidomycosis in Murine Model. J. Fungi 2020, 6, 160. [Google Scholar] [CrossRef]
- Santos Júnior, S.R.D.; Barbalho, F.V.; Nosanchuk, J.D.; Amaral, A.C.; Taborda, C.P. Biodistribution and Adjuvant Effect of an Intranasal Vaccine Based on Chitosan Nanoparticles against Paracoccidioidomycosis. J. Fungi 2023, 9, 245. [Google Scholar] [CrossRef]
- Zuo, Z.; Zou, Y.; Li, Q.; Guo, Y.; Zhang, T.; Wu, J.; He, C.; Eko, F.O. Intranasal immunization with inactivated chlamydial elementary bodies formulated in VCG-chitosan nanoparticles induces robust immunity against intranasal Chlamydia psittaci challenge. Sci. Rep. 2021, 11, 17. [Google Scholar] [CrossRef]
- Agami, M.; Shaalan, R.A.; Belal, S.F.; Ragab, M.A.A. LC-MS bioanalysis of targeted nasal galantamine bound chitosan nanoparticles in rats’ brain homogenate and plasma. Anal. Bioanal. Chem. 2021, 413, 5181–5191. [Google Scholar] [CrossRef]
- Alastal, A.; Kwaik, A.D.A.; Malkawi, A.A.; Baltzley, S.; Al-Ghananeem, A.M.; Jiao, P. Enhancing Intranasal Delivery and Bioavailability of Dihydroergotamine Utilizing Chitosan Nanoparticles. J. Clin. Pharm. Ther. 2023, 2023, 2284371. [Google Scholar] [CrossRef]
- Al-Ghananeem, A.M.; Saeed, H.; Florence, R.; Yokel, R.A.; Malkawi, A.H. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by aids viruses. J. Drug Target. 2009, 18, 381–388. [Google Scholar] [CrossRef]
- Barbi, M.d.S.; Carvalho, F.C.; Kiill, C.P.; Da Silva Barud, H.; Santagneli, S.H.; Ribeiro, S.J.L.; Gremião, M.P.D. Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery. J. Nanosci. Nanotechnol. 2015, 15, 865–874. [Google Scholar] [CrossRef]
- Bayat Tork, M.; Hemmati Nejad, N.; Ghalehbagh, S.; Bashari, A.; Shakeri-Zadeh, A.; Kamrava, S.K. In situ green synthesis of silver nanoparticles/chitosan/poly vinyl alcohol/poly ethylene glycol hydrogel nanocomposite for novel finishing of nasal tampons. J. Ind. Text. 2014, 45, 1399–1416. [Google Scholar] [CrossRef]
- Jintapattanakit, A.; Peungvicha, P.; Sailasuta, A.; Kissel, T.; Junyaprasert, V.B. Nasal absorption and local tissue reaction of insulin nanocomplexes of trimethyl chitosan derivatives in rats. J. Pharm. Pharmacol. 2010, 62, 583–591. [Google Scholar] [CrossRef]
- Nanda, B.; Murthy, R.S.R. Preparation and Characterization of Chitosan Lactate Nanoparticles for the Nasal Delivery of Enalaprilat. J. Biomed. Nanotechnol. 2007, 3, 45–51. [Google Scholar] [CrossRef]
- Hassan, R.H.; Gad, H.A.; El-Din, S.B.; Shaker, D.S.; Ishak, R.A.H. Chitosan nanoparticles for intranasal delivery of olmesartan medoxomil: Pharmacokinetic and pharmacodynamic perspectives. Int. J. Pharm. 2022, 628, 13. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Patel, H.M.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. New nasal nanocomplex self-assembled from charged biomacromolecules: N,N,N-Trimethyl chitosan and dextran sulfate. Int. J. Biol. Macromol. 2016, 88, 476–490. [Google Scholar] [CrossRef]
- Sava, V.; Fihurka, O.; Khvorova, A.; Sanchez-Ramos, J. Data on enrichment of chitosan nanoparticles for intranasal delivery of oligonucleotides to the brain. Data Brief 2020, 28, 6. [Google Scholar] [CrossRef]
- Nanaki, S.G.; Spyrou, K.; Veneti, P.; Karouta, N.; Gournis, D.; Baroud, T.N.; Barmpalexis, P.; Bikiaris, D.N. L-Cysteine Modified Chitosan Nanoparticles and Carbon-Based Nanostructures for the Intranasal Delivery of Galantamine. Polymers 2022, 14, 4004. [Google Scholar] [CrossRef]
- Prego, C.; Torres, D.; Alonso, M.J. Chitosan nanocapsules: A new carrier for nasal peptide delivery. J. Drug Deliv. Sci. Technol. 2006, 16, 331–337. [Google Scholar] [CrossRef]
- Gagliardi, M.; Chiarugi, S.; De Cesari, C.; Di Gregorio, G.; Diodati, A.; Baroncelli, L.; Cecchini, M.; Tonazzini, I. Crosslinked Chitosan Nanoparticles with Muco-Adhesive Potential for Intranasal Delivery Applications. Int. J. Mol. Sci. 2023, 24, 6590. [Google Scholar] [CrossRef]
- Shahnaz, G.; Vetter, A.; Barthelmes, J.; Rahmat, D.; Laffleur, F.; Iqbal, J.; Perera, G.; Schlocker, W.; Dünnhaput, S.; Augustijns, P.; et al. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: Bioavailability and pharmacokinetic characterization. Int. J. Pharm. 2012, 428, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhao, Z.; Lan, Q.; Zhou, H.; Mai, Z.; Wang, Y.; Ding, X.; Zhang, W.; Pi, J.; Evans, C.E.; et al. Nasal Delivery of Hesperidin/Chitosan Nanoparticles Suppresses Cytokine Storm Syndrome in a Mouse Model of Acute Lung Injury. Front. Pharmacol. 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Sun, Z.; Xiao, J.; Yan, X.; Chen, Y.; Yu, J.; Wu, Y. Simultaneous Intramuscular and Intranasal Administration of Chitosan Nanoparticles–Adjuvanted Chlamydia Vaccine Elicits Elevated Protective Responses in the Lung. Int. J. Nanomed. 2019, 14, 8179–8193. [Google Scholar] [CrossRef] [PubMed]
- Tajdini, F.; Amini, M.A.; Mokarram, A.R.; Taghizadeh, M.; Azimi, S.M. Foot and Mouth Disease virus-loaded fungal chitosan nanoparticles for intranasal administration: Impact of formulation on physicochemical and immunological characteristics. Pharm. Dev. Technol. 2013, 19, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Chalikwar, S.S.; Mene, B.S.; Pardeshi, C.V.; Belgamwar, V.S.; Surana, S.J. Self-Assembled, Chitosan Grafted PLGA Nanoparticles for Intranasal Delivery: Design, Development andEx VivoCharacterization. Polym.-Plast. Technol. Eng. 2013, 52, 368–380. [Google Scholar] [CrossRef]
- Majcher, M.J.; Babar, A.; Lofts, A.; Leung, A.; Li, X.; Abu-Hijleh, F.; Smeets, N.M.B.; Mishra, R.K.; Hoare, T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J. Control. Release 2021, 330, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Nojoki, F.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Khodagholi, F.; Khezri, K. Design and development of chitosan-insulin-transfersomes (Transfersulin) as effective intranasal nanovesicles for the treatment of Alzheimer’s disease: In vitro, in vivo, and ex vivo evaluations. Biomed. Pharmacother. 2022, 153, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm. 2008, 70, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Fachel, F.N.S.; Michels, L.R.; Azambuja, J.H.; Lenz, G.S.; Gelsleichter, N.E.; Endres, M.; Scholl, J.N.; Schuh, R.S.; Barschak, A.G.; Figueiró, F.; et al. Chitosan-coated rosmarinic acid nanoemulsion nasal administration protects against LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats. Neurochem. Int. 2020, 141, 9. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; Khan, S.; Neupane, Y.R.; Dang, S.; Md, S.; Fahmy, U.A.; Kotta, S.; Alhakamy, N.A.; Baboota, S.; Ali, J. Tailoring Midazolam-Loaded Chitosan Nanoparticulate Formulation for Enhanced Brain Delivery via Intranasal Route. Polymers 2020, 12, 2589. [Google Scholar] [CrossRef]
- Casadomé-Perales, Á.; Matteis, L.D.; Alleva, M.; Infantes-Rodríguez, C.; Palomares-Pérez, I.; Saito, T.; Saido, T.C.; Esteban, J.A.; Nebreda, A.R.; de la Fuente, J.M.; et al. Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules. Nanomedicine 2019, 14, 2409–2422. [Google Scholar] [CrossRef] [PubMed]
- Sava, V.; Fihurka, O.; Khvorova, A.; Sanchez-Ramos, J. Kinetics of HTT lowering in brain of YAC 128 mice following single and repetitive intranasal dosing of siRNA packaged in chitosan-based nanoparticles. J. Drug Deliv. Sci. Technol. 2021, 63, 6. [Google Scholar] [CrossRef] [PubMed]
- Van Woensel, M.; Wauthoz, N.; Rosière, R.; Mathieu, V.; Kiss, R.; Lefranc, F.; Steelant, B.; Dilissen, E.; Van Gool, S.W.; Mathivet, T.; et al. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release 2016, 227, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Quantification of Rutin in Rat’s Brain by UHPLC/ESI-Q-TOF-MS/MS after Intranasal Administration of Rutin Loaded Chitosan Nanoparticles. EXCLI J. 2016, 15, 518–531. [Google Scholar] [CrossRef]
Chitosan Nano System with Active Loaded | Application and Properties | Ref. |
---|---|---|
Chitosan-decorated PLGA nanoparticles with curcumin (Cur) | General encapsulation efficiency and particle size characterization; size: 200 nm, entrapment efficiency: 75% | [5] |
Lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA with huperzine A (HupA) | Enhanced mucoadhesion and targeting; size: 153.2 nm, entrapment efficiency: 73.8%, zeta potential: +35.6 mV | [6] |
Thiolated chitosan nanoparticles with selegiline hydrochloride | Nasal delivery for depression treatment; size: 215 nm, entrapment efficiency: 70%, zeta potential: +17.06 mV | [7] |
GH-loaded chitosan and chitosan–alginate particles with galantamine hydrobromide (GH) | Drug delivery with enhanced stability; size: 240 nm and 286 nm | [8] |
Lecithin–chitosan hybrid nanoparticles with piribedil | Increased brain bioavailability, sustained release; particle size: 147 nm, drug loading capacity: 12% | [9] |
Chitosan-coated nanostructured lipid carriers with glial cell-derived neurotrophic factor (GDNF) | Neuroprotection and behavioral improvement in neurological disorders; particle size: 130 nm, high encapsulation efficiency | [10] |
Chitosan-coated PLGA nanoparticles with ropinirole hydrochloride | Rapid drug release for efficient drug delivery; size: 468.0 nm, zeta potential: +54.4 mV | [11] |
Chitosan nanoparticles loading cyclovirobuxine D | Sustained release and increased brain targeting; diameter: 235.37 ± 12.71 nm, entrapment efficiency: 62.82% | [12] |
Carboxymethyl chitosan nanoparticles with carbamazepine | Enhanced brain delivery via intranasal route for epilepsy treatment; size: 218.76 ± 2.41 nm, drug loading: about 35%, entrapment efficiency: approximately 80% | [15] |
Intranasal chitosan nanoparticles with piperine | Brain-targeting via intranasal delivery; size: 248.50 nm, entrapment efficiency: 81.70%, zeta potential: +56.30 mV | [18] |
Chitosan nanoparticles for sitagliptin delivery | Enhanced nasal absorption and brain targeting for Alzheimer’s disease treatment; size: 188.4 ± 48.1 nm, zeta potential: 20.8 mV | [19] |
Chitosan nanoparticles with bromocriptine (BRC) | Enhanced nasal permeability and drug delivery; particle size: approx. 161.3 nm, encapsulation efficiency: 84.26% | [20] |
Chitosan-lecithin nanoparticles loaded with phenytoin (PHT) | Sustained release and increased brain levels intranasally; average dynamic size: approx. 600 nm, encapsulation efficiency: over 60% | [21] |
Chitosan-coated intra nasal Ropinirole nano emulsion | Potential for Parkinson’s management via enhanced brain delivery; particle size around 59 nm | [22] |
Chitosan-g-HPβCD nanoparticles with efavirenz | Enhanced entrapment and drug loading via ionic gelation; diameter: 198 ± 4.4 nm, drug loading capacity: 23.28%, entrapment efficiency: 38% | [47] |
Polylactic acid nanoparticles modified with chitosan-containing neurotoxin (NT) | Enhanced brain targeting and pharmacokinetics; size: 140.5 ± 5.4 nm, zeta potential: +33.71 ± 3.24 mV, entrapment efficiency: 83.51% | [49] |
Nanostructured lipid carriers overlaid with chitosan with berberine | Enhanced brain delivery and pharmacokinetics; size: 180.9 ± 4.3 nm, sustained-release, surface charge: 36.8 mV | [50] |
Chitosan-coated nanostructured lipid carriers with protein | Effective brain delivery after intranasal administration; size: 114 nm, surface charge: +28 mV | [52] |
Thiolated okra gum and chitosan nanoparticles | Promising brain targeting properties; size: 294.3 ± 0.3 nm, entrapment efficiency: 43.57%, zeta potential: 23.29 mV | [53] |
Quetiapine fumarate-loaded chitosan nanoparticles (QF-NP) with quetiapine fumarate | Increased brain/blood ratio and nasal bioavailability; size: 131.08 ± 7.45 nm, polydispersity index: 0.252, entrapment efficiency: 89.93% | [54] |
Temozolomide-loaded nano lipid chitosan hydrogel | Enhanced nasal absorption and compatibility with cell lines; size: 134 nm, polydispersity index: 0.177, encapsulation efficiency: 88.45%, drug loading: 9.12% | [55] |
Mucoadhesive chitosan-coated nano emulsions with rosmarinic Acid | Nasal delivery with prolonged drug release and enhanced penetration; droplet size: 270.23 to 448.40 nm, zeta potential: 41.97 to 48.63 mV | [56] |
HP-β-CD/chitosan nanoparticles with scutellarin | Enhanced brain targeting for treatment of cerebral ischemia; increased brain accumulation | [57] |
Simvastatin-loaded poly-epsilon-caprolactone nano capsules coated with chitosan | Increased nasal permeation and mucoadhesive properties; size: below 220 nm, high encapsulation efficiency, controlled drug release | [59] |
Bioengineered PLGA–chitosan nanoparticles with thyrotropin-releasing hormone analogues (NP-355, NP-647) | Brain-targeted antiepileptic drug delivery; sustained release capabilities | [60] |
Chitosan-coated PLGA nanoparticles with carmustine | Enhanced brain permeability and delivery via nasal route; size: 208 to 421 nm, polydispersity index (PDI): 0.221 to 0.561, entrapment efficiency of 58.76% and loading capacity of 11.70%. | [61] |
Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers | Targeted brain delivery for inflammatory lesions, responsive properties; average particle size around 170 nm with zeta potential about 25 mV | [62] |
Chitosan-coated buspirone-loaded NLCs (BPE-CH-NLCs) | High brain drug targeting efficiency via intranasal delivery; size: 190.98 ± 4.72 nm, zeta potential: +17.47 mV, entrapment efficiency: 80.53% | [63] |
Thiolated chitosan–Centella asiatica nanocomposite | Brain targeting via nasal route, potential blood–brain barrier (BBB) receptor targeting; good nasal permeability, low cytotoxicity, molecular docking studies. Size: 477.1 nm and 210.5 nm. Zeta potential: 36.3 mV (blank) and −14.5 mV (CTC conjugate) | [64] |
Chitosan–siRNA nanoparticle formulation with siRNA | Non-invasive brain delivery for neurodegenerative disease treatment; efficient and safe brain drug delivery, successful brain targeting and gene silencing | [65] |
Chitosan–mangafodipir nanoparticles with siRNA and DNA | Non-invasive gene therapy for neurodegenerative diseases via intranasal delivery; effective in reducing GFP mRNA levels, enables the expression of RFP, visualized by 7T MRI | [66] |
Chitosan Nano System with Active Loaded | Application and Properties | Ref. |
---|---|---|
N-trimethyl chitosan nanoparticles with Influenza A subunit H3N2 antigen | Nasal vaccination inducing high immune responses; size: 800 nm, loading efficiency: 78%, loading capacity: 13% (w/w) | [13] |
N-trimethyl chitosan nanoparticles with r4M2e.HSP70c antigen | Induced protection and immune response against influenza via nasal delivery; size: 200 and 250 nm, zeta potential: +30 mV, PDI: 0.1–0.2 | [14] |
Dry powder form of chitosan nanospheres with influenza whole virus and adjuvants | Enhanced mucosal immunization against influenza via nasal administration; size: 581.1 ± 32.6 nm, PDI: 0.478 ± 0.04, encapsulation efficiency: 33.7 ± 5.77% | [17] |
Chitosan nanospheres with influenza virus, CpG ODN, and Quillaja saponin | Controlled release and reduced cytotoxicity for nasal influenza vaccine delivery; size: 581.1 ± 32.6 nm, PDI: 0.478 | [28] |
N-trimethyl chitosan nanoparticles with Bordetella pertussis antigens | Systemic and mucosal immunity against pertussis via nasal delivery; size: 252.8 nm, zeta potential: +30.8 mV | [31] |
Glycol chitosan nanoparticles with hepatitis B vaccine | Strong systemic and mucosal immune responses, promising mucosal vaccine delivery; particle size: approximately 200 nm, positively charged surface, high loading efficacy: over 95% | [32] |
N,N,N-trimethyl chitosan nanoparticles with hepatitis B virus surface antigen (HBsAg) | Enhanced stability and adjuvanticity for prolonged immunogenic response; size between 143 ± 33 nm and 259 ± 47 nm, loading efficiency: 90–97%, release: 93% of HBsAg over 43 days | [33] |
Alginate-coated chitosan nanoparticles with hepatitis B surface antigen (HBsAg), CpG ODN | Enhanced systemic and mucosal immune response via nasal delivery; size: 300 and 600 nm, zeta potential: −35 mV | [68] |
Chitosan and chitosan–alginate nanoparticles with compound 48/80 | Improved nasal residence and adjuvant effects of antigen; mean size: around 500 nm, positive charge | [69] |
Curdlan sulfate–O-linked quaternized chitosan nanoparticles with ovalbumin | Improved immunogenicity and antigen uptake via intranasal administration; zeta potential: 11.8 mV, size: 178 nm. | [70] |
Low-molecular-weight chitosan nanoparticles with tetanus toxoid (TT) | Induced long-lasting humoral and mucosal immune responses in nasal immunization; size: about 350 nm, positive charge: +40 mV, loading efficiency: 50–60% | [71] |
Quaternized chitosan nanoparticles with live vaccine against Newcastle disease and infectious bronchitis | Effective mucosal immunization in chickens; particle size: 103.2 ± 1.6 nm, zeta potentials: 38.1 ± 2.7 mV | [72] |
Comparative study using PLGA NP, TMC NP, and TMC-coated PLGA NP with ovalbumin | Superior nasal immunization effectiveness; PLGA/TMC-loaded nanoparticles size: 448 ± 55.9 nm, zeta potential: 24.5 ± 0.90 mV, loading efficiency: 71.6 ± 6.2%. TMC-loaded nanoparticles size: 278 ± 28.8 nm, zeta potential: 10.4 ± 0.20 mV, loading efficiency: 60.2 ± 4.1% | [73] |
N-trimethylaminoethylmethacrylate chitosan nanoparticles with ovalbumin | Enhanced immune responses and transport across nasal epithelium; size: 140.5 ± 1.5 nm, zeta potential: 10.3 ± 0.2 mV | [74] |
Chitosan–dextran sulphate nanoparticles with pertussis toxin (PTX), Immunoglobulin-A | Potential nasal vaccine delivery system; entrapment efficiency: over 90% | [75] |
Alginate-coated chitosan and trimethyl chitosan nanoparticles with PR8 influenza virus | Superior Type 1 T helper (Th1)-type immune response for intranasal vaccine delivery; more positively charged of 14.6 and 13.9 mV, respectively. | [77] |
Study on the adjuvanticity of N,N,N-trimethyl chitosan with influenza virus vaccine | Influence of acetylation on adjuvant effectiveness in nasal vaccine; zeta potential: +18 mV. | [78] |
Chitosan Nano System with Active Loaded | Application and Properties | Ref. |
---|---|---|
Mannose-modified chitosan nanoparticles with bovine serum albumin (BSA) | Enhanced mucosal and systemic immune responses, potential for intranasal delivery; size: 156 nm, zeta: +33.5 mV | [16] |
Plasmid DNA loaded chitosan Nanoparticles with Plasmid DNA for hepatitis B | Induced protective immunoglobulin levels via nasal delivery; size: 337 ± 27 nm, encapsulation efficiencies: 96.2 ± 1.8%, zeta potential: 13.8 ± 1.5 mV | [34] |
Protein-loaded N-trimethyl chitosan nanoparticles with proteins like mouse monoclonal anti-ovalbumin IgG and fluorescent-labeled (Cy-5) goat IgG anti-mouse immunoglobulin | Preservation of protein integrity and controlled release; size: 350 nm, positive zeta-potential, loading efficiency: up to 95%, loading capacity: up to 50% (w/w) | [79] |
N-trimethyl chitosan nanoparticles with ovalbumin, various immunopotentiators like LPS, CpG | Tailored immunogenicity for nasal and intradermal vaccine delivery; diameter: 300–400 nm | [80] |
Ovalbumin-loaded N-trimethyl chitosan nanoparticles with CpG DNA | Enhanced Type 1 T helper (Th1) immune responses, proving effectiveness for nasal vaccine delivery; size: 380 nm, zeta: +21 Mv | [81] |
Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles with ovalbumin | Enhanced stability and immunogenicity for nasal and intradermal vaccination; size: 250–350 nm, positive zeta potential, OVA loading efficiencies up to 60% | [82] |
Chitosan-DNA nanoparticles with pneumococcal surface antigen A (PsaA) | Enhanced mucosal and systemic immune responses against Streptococcus pneumoniae; size: 392 nm, zeta: 12.5 mV | [83] |
Chitosan/pCETP nanoparticles with DNA plasmid encoding a B-cell epitope of cholesteryl ester transfer protein (CETP) | Intranasal immunization against atherosclerosis in rabbits; size: 340.2 ± 14.6 nm, zeta: +22.9 ± 1.3 mV | [84] |
Chitosan–pullulan composite nanoparticles with bovine serum albumin (BSA) | Demonstrated potential for nasal delivery of vaccines; size: 207 to 603 nm, loading efficiency: >90% | [85] |
Chitosan–pullulan composite nanoparticles with diphtheria toxoid (DT) | Enhanced nasal delivery of DT, improved immunological responses; size: 239–405 nm, surface charge: +18 and +27 mV | [86] |
Functionalized chitosan-based composite nanoparticles; N-2-hydroxypropyl trimethyl ammonium chloride chitosan/N,O-carboxymethyl chitosan nanoparticles with bovine serum albumin (BSA) | Enhanced mucosal and systemic immune responses for intranasal vaccination; promotes lymphocyte proliferation and secretion of pro-inflammatory factors | [87] |
Mixed cross-linked dextran microspheres and loaded trimethyl chitosan nanospheres with tetanus toxoid (TT) | Enhanced systemic and mucosal immune responses in nasal vaccine delivery; loading efficiency of TT in TMC NPs: 43.25% ± 3.56, zeta potential: 3.32 ± 0.05 mV and 2.28 ± 0.07 mV | [88] |
Dendritic-cell-targeted chitosan nanoparticles with Plasmid DNA targeting dendritic cells | Targeted nasal immunization against SARS-CoV, enhanced mucosal and systemic responses; encapsulation efficiency of plasmid DNA encoding N protein (pVAXN): 97.6 ± 2.1% | [89] |
Mannosylated chitosan nanoparticles with DNA vaccine for tumor immunity | Enhanced tumor immunity in a mouse model via nasal mucosal delivery; average tumor weight significantly lower in the treated groups | [90] |
Chitosan nanoparticles loaded with Newcastle disease virus DNA vaccine | Superior efficacy in intranasal immunization of chickens; size: 202.3 ± 0.52 nm, zeta potential: 50.8 ± 8.21 mV, encapsulation efficiency: 90.74 ± 1.10%, loading capacity: 49.84 ± 1.20% | [91] |
Chitosan nanoparticles loaded with Brucella abortus malate dehydrogenase | Inducing immune responses through intranasal administration, potential mucosal adjuvant; size: <1 μm | [92] |
Chitosan-DNA nanoparticles for Campylobacter jejuni with DNA encoding FlaA protein | Reduced bacterial colonization, enhanced systemic and mucosal immunity in poultry; size: 80–100 nm, association efficiency: 91.9% | [93] |
Chitosan nanofibrous membrane for Shigella vaccine with N-terminal region of invasion plasmid antigen D (IpaD antigen) | Protection against S. flexneri, significant antibody responses via nasal delivery; encapsulation efficiency of N-IpaD: 64.7 ± 14.3% | [94] |
Polyglutamic acid-trimethyl chitosan peptide nano-vaccine with peptide antigen | Potent systemic and mucosal antibody responses against Group A Streptococcus; zeta-potential: +36 mV, size: 201 ± 8 nm | [95] |
Chitosan-based nanoparticles for Japanese encephalitis with live attenuated Japanese encephalitis vaccine | Enhanced mucosal and systemic immunity, potential non-invasive vaccination route; loading efficiency and capacity of JE-CV in CS NPs and CM NPs: 85.27–86.04% | [96] |
Alginate–chitosan nanoparticles for tuberculosis Vaccine with PPE17 protein and CpG | Enhanced efficacy of BCG vaccines, strong Type 1 T helper (Th1) and IL-17 responses via nasal and subcutaneous routes; size: about 427 nm, zeta potential: −37 Mv | [97] |
Chitosan–alginate nanoparticle encapsulated bee venom for porcine reproductive and respiratory syndrome virus (PRRSV) | Enhanced T cell responses and viral clearance in pigs; size of AL-BV and CH/AL-BV: 541.5 ± 50.9 nm and 434.6 ± 22.1 nm | [98] |
Chitosan nanoparticles for swine influenza Vaccine (SwIAV) with inactivated influenza vaccine | Enhanced IgG and mucosal IgA responses, cross-reactive protection in pigs; encapsulation efficiency of SwIAV antigens (KAg): 67% | [99] |
Chitosan nanoparticles with P10 peptide from Paracoccidioides brasiliensis | Reduction in fungal load and immune modulation via intranasal immunization; size: 220 nm, pdi below 0.5, zeta potential: +20 mV, encapsulation efficiency around 90% | [100] |
Chitosan nanoparticles with fluorescent labeling and P10 peptide | Localization in upper airway, effective fungal load reduction, induced immune responses; size range: 230–350 nm, zeta potential: +20 mV | [101] |
Chitosan nanoparticles with inactivated Chlamydia psittaci elementary bodies (EBs) | Enhanced immune responses and protection against lung lesions in chickens; VCG + EB-immunized chickens showed significantly reduced lesions compared to controls | [102] |
Chitosan Nano System with Active Loaded | Application and Properties | Ref. |
---|---|---|
Chitosan nanoparticles for olanzapine delivery w | Enhanced systemic bioavailability for psychiatric medication delivery; Size ranged from 179 to 237 nm (20% loading) and 304 to 340 nm (60% loading), Encapsulation efficiency: nearly 90% | [23] |
Chitosan nanoparticles for insulin delivery with human zinc insulin | Examined nasal absorption of insulin; pharmacological response observed; Size: 751.8 ± 74.7 nm, Zeta potential: 41.2 ± 0.8 mV | [38] |
Chitosan nanoparticles for nasal insulin delivery | Enhanced nasal and systemic absorption of insulin; size: 300–400 nm, positive surface charge, insulin loading: up to 55% (insulin/nanoparticles w/w) | [40] |
Chitosan-N-acetyl-L-Cysteine nanoparticles with insulin | Enhanced mucosal absorption and controlled insulin release; zeta potential: + 19.5–31.7 mV, insulin loading: 1.3–42% | [41] |
PEG-grafted chitosan nanoparticles for insulin with pure crystalline porcine insulin | Improved nasal absorption of insulin in rabbits; size range: 150–300 nm, charge: +16 to +30 mV, loading efficiency: 20–39% | [42] |
Adaptive chitosan-based nano-vehicles with cetirizine | Responsive drug release in nasal conditions, suitable for allergic therapy; size: 120 nm, zeta potential: 4 mV | [43] |
Xylometazoline-loaded chitosan nanoparticles | Effective treatment for nasal congestion with high mucosal retention; size: 172 nm, PDI: 0.27, encapsulation efficiency: 90.5% | [44] |
Chitosan nanoparticles for galantamine delivery | Improved delivery and bioavailability in Alzheimer’s disease models; linearity: 0.5–300 ng mL−1, trueness and precision: acceptable, recoveries: 85.6–114.3% | [103] |
Chitosan nanoparticles for dihydroergotamine delivery | Improved systemic absorption for acute migraine treatment via nasal delivery; size: 395 ± 59 nm, 20% loading with 95 ± 13% encapsulation efficiency, bioavailability: 82.5 ± 12.3% | [104] |
Chitosan nanoparticles for didanosine Delivery | Enhanced systemic and brain targeting for AIDS-related infections; brain/plasma, olfactory bulb/plasma, CSF/plasma concentration ratios significantly higher (p < 0.05) | [105] |
Chitosan Nanoparticles for zidovudine delivery | Improved mucoadhesion and drug flux for nasal administration; Sizes: AZT-loaded NP1 (406 nm), AZT-loaded NP2 (425 nm), Entrapment efficiency: 17.58% ± 1.48 (NP1), 11.02% ± 2.05 (NP2) | [106] |
Silver Nanoparticles/Chitosan/PVA/PEG hydrogel nanocomposite with silver nitrate (AgNO3) | Medical applications in nasal tampons with antibacterial and blood coagulation effects; Z-average: about 96 nm | [107] |
Trimethyl chitosan and PEGylated nanocomplexes for Insulin with human recombinant insulin | Enhanced nasal absorption with reduced mucosal toxicity; all insulin nanocomplexes showed a 34–47% reduction in blood glucose concentration | [108] |
Chitosan lactate nanoparticles with enalaprilat | Prolonged drug permeation and effective hypertension control in rats; size: 213 nm, % drug entrapment: 30.04%, zeta potential: 45.83 mV | [109] |
Chitosan nanoparticles with olmesartan medoxomil | Increased bioavailability for hypertension treatment, safe for nasal mucosa; size: 240.02–344.45 nm, %EE: 75.2–83.51%, improved bioavailability by 11.3-fold | [110] |
N,N,N-trimethyl chitosan and dextran sulfate nanocomplexes with mucin | Improved drug delivery due to enhanced solubility and biocompatibility; zeta potentials of native chitosan (CHT) and synthesized (TMC): 27.7 and 18.7 mV, respectively | [111] |
Enriched chitosan nanoparticles with siRNA | Potentially powerful tool for intranasal gene therapy; size: 90 to 200 nm, zeta potential: +42 to +55 mV | [112] |
L-Cysteine modified chitosan Nanoparticles for galantamine delivery | Prolonged release suitable for intranasal delivery; size: ~800 to ~1 mm, zeta potential: above 40 mV | [113] |
Chitosan-coated oil nano capsules for nasal peptide delivery with salmon calcitonin | Enhanced and prolonged hypocalcemia effect; size: 160–250 nm, zeta potential varied by coating, positive for chitosan-PEG nano capsules | [114] |
Thiolated chitosan nanoparticles with leuprolide | Sustained release and enhanced mucosal absorption for hormonal therapy; size: 252 ± 82 nm, zeta potential: +10.9 ± 4 mV, payload: 12 ± 2.8 | [116] |
Chitosan Nano System with Active Loaded | Application and Properties | Ref. |
---|---|---|
Lurasidone hydrochloride in chitosan nanoparticles | Improved nasal permeation and potential enhanced brain delivery for antipsychotic treatment; mean particle size: 154.8 nm, encapsulation efficiency: 88.5% | [24] |
Risperidone-loaded chitosan nanoparticles | Controlled drug release and enhanced brain delivery for treating CNS disorders; particle size: 137.9 nm, zeta potential: +23.4 mV, encapsulation efficiency: 65.1% | [25] |
Cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles | Enhanced brain uptake and trans-mucosal permeability; significant high drug permeation, reduced toxicity | [26] |
Tapentadol hydrochloride-loaded chitosan nanoparticles | High brain concentrations post-intranasal delivery for effective pain management; particle size: 201.2 nm, zeta potential: +49.3 mV, High drug loading and entrapment efficiency | [27] |
Favipiravir-loaded chitosan–alginate nanoparticles | Enhanced transmucosal delivery and anti-viral effects; superior mucoadhesion, increased deposition in nasal mucosa, 35-fold improvement over free drug; size: 233 nm, zeta potential: −21.6 mV | [35] |
SARS-CoV-2 spike RBD protein in mannose-conjugated chitosan nanoparticles | Induced robust mucosal and Th1-cell responses, protection against COVID-19; average size: 290 ± 18 nm, uptake rate of RBD protein: 66.8% | [37] |
Chitosan nanoparticles for intranasal delivery of IL-17RC with Interleukin-17 receptor C (IL-17RC) | Therapeutic strategy for reducing asthma symptoms; size: 212.2 nm, zeta potential: ~12 mV, encapsulation efficiency: up to 96.08 ± 3.34% | [45] |
Hesperidin/chitosan nanoparticles | Enhanced anti-inflammatory effects in lungs, potential treatment for ARDS; size: 200 nm, zeta potential: +22 mV, encapsulation rate: 81.02% | [117] |
Chitosan nanoparticles with Chlamydia psittaci antigens | Enhanced immune responses and protection against respiratory infection; size: 276.1 nm, zeta potential: 13.12 mV, encapsulation efficiency: 71.7% | [118] |
Foot and mouth disease virus in fungal chitosan nanoparticles | Mucosal immunoadjuvant for intranasal vaccination; size range: 221.9–281.2 nm, positive charges: +7 to +13 mV, high antigen loading capacities: 93–97% | [119] |
Chitosan–insulin transfersomes (transfersulin) | Enhanced elasticity and nasal delivery targeting Alzheimer’s treatment; particle size: 86 nm, zeta potential: +36.6 mV, high mucoadhesion rate | [122] |
Estradiol-loaded chitosan nanoparticles | Improved nasal absorption and direct transport into CSF for CNS disorders; mean particle size: 423.41 nm | [123] |
Rosmarinic acid in chitosan-coated nano emulsion w | Neuroprotective against neuroinflammation and oxidative stress; size: 310 nm, zeta potential: >35 mV | [124] |
Midazolam-loaded chitosan nanoparticles | Superior brain delivery via intranasal route for treating seizure emergencies; mean size: 269.3 nm, zeta potential: +25.4 mV | [125] |
siRNA-loaded chitosan nanoparticles targeting galectin-1 | Rapid CNS delivery and significant reduction in Gal-1 expression in glioblastoma; Z-average: 141 ± 5 nm, PDI: 0.27 | [128] |
Rutin-loaded chitosan nanoparticles (RT-CS-NPs) | Effective brain delivery quantified by advanced analytical techniques; particle size within a range of 85–100 nm, PDI: 0.206 | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidian, H.; Gill, E.J.; Dey Chowdhury, S.; Cubeddu, L.X. Chitosan Nanoparticles for Intranasal Drug Delivery. Pharmaceutics 2024, 16, 746. https://doi.org/10.3390/pharmaceutics16060746
Omidian H, Gill EJ, Dey Chowdhury S, Cubeddu LX. Chitosan Nanoparticles for Intranasal Drug Delivery. Pharmaceutics. 2024; 16(6):746. https://doi.org/10.3390/pharmaceutics16060746
Chicago/Turabian StyleOmidian, Hossein, Erma J. Gill, Sumana Dey Chowdhury, and Luigi X. Cubeddu. 2024. "Chitosan Nanoparticles for Intranasal Drug Delivery" Pharmaceutics 16, no. 6: 746. https://doi.org/10.3390/pharmaceutics16060746
APA StyleOmidian, H., Gill, E. J., Dey Chowdhury, S., & Cubeddu, L. X. (2024). Chitosan Nanoparticles for Intranasal Drug Delivery. Pharmaceutics, 16(6), 746. https://doi.org/10.3390/pharmaceutics16060746