Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach
Abstract
:1. Introduction
2. Skin Diseases
2.1. Common Skin Problems
2.1.1. Rashes
2.1.2. Viral Infections
2.1.3. Bacterial Infections
2.1.4. Fungal Infection
2.1.5. Pigmentation Problems
2.1.6. Cancers
2.1.7. Others
3. Herbal Drugs for Skin Diseases
3.1. Atopic Dermatitis
- Licorice
- b.
- Tormentil and Evening Primrose
3.2. Psoriasis
- Araroba tree
- b.
- Indigo
- c.
- Turmeric
- d.
- Olibanum
3.3. Herpes Simplex
- Lemon balm
3.4. Wound Healing
- Birch bark
- b.
- Allium cepa (Onion)
3.5. Acne Vulgaris
- Green tea
- b.
- Melaleuca alternifolia (Tea tree)
- c.
- Humulus lupulus (Hop)
3.6. Skin Cancer
- Panax ginseng
- b.
- Rosmarinus officinalis (Rosemary)
4. Traditional Treatment vs. Nanotechnology-Based Treatment
5. Herbal Nanotechnology
5.1. Polymeric Nanoparticles
5.2. Solid Lipid Nanoparticles Nanostructured Lipid Carriers (NLCs)
5.3. Ethosomes
5.4. Liposomes
5.5. Nanoemulsions
5.6. Niosomes
5.7. Nanofibers
5.8. Hydrogels and Nanogels
5.9. Others
6. Patents
7. Current Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madison, K.C. Barrier function of the skin: “La raison d’être” of the epidermis. J. Investig. Dermatol. 2003, 121, 231–241. [Google Scholar] [CrossRef]
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; Green, E.D.; et al. Topographical and temporal diversity of the human skin microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, N.; Hamdani, M. Plants used to treat skin diseases. Pharmacogn. Rev. 2014, 8, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Jones, V.A.; Patel, P.M.; Wilson, C.; Wang, H.; Ashack, K.A. Complementary and alternative medicine treatments for common skin diseases: A systematic review and meta-analysis. JAAD Int. 2021, 2, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Saising, J.; Maneenoon, K.; Sakulkeo, O.; Limsuwan, S.; Götz, F.; Voravuthikunchai, S.P. Ethnomedicinal Plants in Herbal Remedies Used for Treatment of Skin Diseases by Traditional Healers in Songkhla Province, Thailand. Plants 2022, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A Review. J. Adv. Pharm. Technol. Res. 2012, 3, 142–146. [Google Scholar] [CrossRef]
- Teja, P.K.; Mithiya, J.; Kate, A.S.; Bairwa, K.; Chauthe, S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022, 96, 153890. [Google Scholar] [CrossRef] [PubMed]
- Dewi, M.K.; Chaerunisaa, A.Y.; Muhaimin, M.; Joni, I.M. Improved Activity of Herbal Medicines through Nanotechnology. Nanomaterials 2022, 12, 4073. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Ghune, M.; Jain, D. Nano-medicine based drug delivery system. J Adv. Pharm. Educ. Res. 2011, 1, 201–213. [Google Scholar]
- Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomed. 2014, 9, 1–15. [Google Scholar] [CrossRef]
- Dawid-Pać, R. Medicinal plants used in treatment of inflammatory skin diseases. Postep. Dermatol. Alergol. 2013, 30, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.; Kumar, G.S.; Nelliyanil, M. Skin diseases and conditions among students of a medical college in southern India. Indian Dermatol. Online J. 2014, 5, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Dunwell, P.; Rose, A. Study of the skin disease spectrum occurring in an Afro-Caribbean population. Int. J. Dermatol. 2003, 42, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhou, X.; Luo, Y.; Zhang, H.; Yang, H.; Ma, J.; Ma, L. Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning. Chin. J. Mech. Eng. 2021, 34, 112. [Google Scholar] [CrossRef]
- Ahuja, A.; Gupta, J.; Gupta, R. Miracles of Herbal Phytomedicines in Treatment of Skin Disorders: Natural Healthcare Perspective. Infect. Disord. Drug Targets 2021, 21, 328–338. [Google Scholar] [CrossRef]
- Ramdass, P.; Mullick, S.; Farber, H.F. Viral Skin Diseases. Prim. Care 2015, 42, 517–567. [Google Scholar] [CrossRef]
- Schalka, S. New data on hyperpigmentation disorders. J. Eur. Acad. Dermatol. Venereol. JEADV 2017, 31 (Suppl. S5), 18–21. [Google Scholar] [CrossRef] [PubMed]
- Abdlaty, R.; Hayward, J.; Farrell, T.; Fang, Q. Skin erythema and pigmentation: A review of optical assessment techniques. Photodiagnosis Photodyn. Ther. 2021, 33, 102127. [Google Scholar] [CrossRef] [PubMed]
- Kuzmina, I.; Diebele, I.; Spigulis, J.; Valeine, L.; Berzina, A.; Abelite, A. Contact and contactless diffuse reflectance spectroscopy: Potential for recovery monitoring of vascular lesions after intense pulsed light treatment. J. Biomed. Opt. 2011, 16, 040505. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.G.C.; Krohling, R.A. The impact of patient clinical information on automated skin cancer detection. Comput. Biol. Med. 2020, 116, 103545. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.R.; Deep, A.; Abdullah, S.T. Herbal products as skincare therapeutic agents against ultraviolet radiation-induced skin disorders. J. Ayurveda Integr. Med. 2022, 13, 100500. [Google Scholar] [CrossRef]
- Karlsson, I.; Hillerström, L.; Stenfeldt, A.L.; Mårtensson, J.; Börje, A. Photodegradation of dibenzoylmethanes: Potential cause of photocontact allergy to sunscreens. Chem. Res. Toxicol. 2009, 22, 1881–1892. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Khan, M.S.; Ahmad, I. Chapter 1—Herbal Medicine: Current Trends and Future Prospects. In New Look to Phytomedicine; Ahmad Khan, M.S., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Costa, E.M.M.d.B.; Barbosa, A.S.; Arruda, T.A.d.; Oliveira, P.T.d.; Dametto, F.R.; Carvalho, R.A.d.; Melo, M.d.D. Estudo in vitro da ação antimicrobiana de extratos de plantas contra Enterococcus faecalis. J. Bras. Patol. Med. Lab. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Vieira, B.L.; Lim, N.R.; Lohman, M.E.; Lio, P.A. Complementary and Alternative Medicine for Atopic Dermatitis: An Evidence-Based Review. Am. J. Clin. Dermatol. 2016, 17, 557–581. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Hirota, S.; Jippo-Kanemoto, T.; Kim, H.R.; Shin, T.Y.; Yeom, Y.; Lee, K.K.; Kitamura, Y.; Nomura, S.; Kim, H.M. Inhibition of histamine synthesis by glycyrrhetinic acid in mast cells cocultured with Swiss 3T3 fibroblasts. Int. Arch. Allergy Immunol. 1996, 110, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Farrukh, M.R.; Nissar, U.A.; Kaiser, P.J.; Afnan, Q.; Sharma, P.R.; Bhushan, S.; Tasduq, S.A. Glycyrrhizic acid (GA) inhibits reactive oxygen Species mediated photodamage by blocking ER stress and MAPK pathway in UV-B irradiated human skin fibroblasts. J. Photochem. Photobiol. B Biol. 2015, 148, 351–357. [Google Scholar] [CrossRef]
- Song, N.R.; Kim, J.E.; Park, J.S.; Kim, J.R.; Kang, H.; Lee, E.; Kang, Y.G.; Son, J.E.; Seo, S.G.; Heo, Y.S.; et al. Licochalcone A, a polyphenol present in licorice, suppresses UV-induced COX-2 expression by targeting PI3K, MEK1, and B-Raf. Int. J. Mol. Sci. 2015, 16, 4453–4470. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, Z.W.; Dong, Y.; Davies, I.J.; Barbhuiya, S. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polym.-Plast. Technol. Eng. 2017, 56, 1307–1344. [Google Scholar] [CrossRef]
- Angelova-Fischer, I.; Rippke, F.; Richter, D.; Filbry, A.; Arrowitz, C.; Weber, T.; Fischer, T.W.; Zillikens, D. Stand-alone Emollient Treatment Reduces Flares After Discontinuation of Topical Steroid Treatment in Atopic Dermatitis: A Double-blind, Randomized, Vehicle-controlled, Left-right Comparison Study. Acta Derm.-Venereol. 2018, 98, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Seiwerth, J.; Tasiopoulou, G.; Hoffmann, J.; Wölfle, U.; Schwabe, K.; Quirin, K.W.; Schempp, C.M. Anti-Inflammatory Effect of a Novel Topical Herbal Composition (VEL-091604) Consisting of Gentian Root, Licorice Root and Willow Bark Extract. Planta Medica 2019, 85, 608–614. [Google Scholar] [CrossRef]
- Hoffmann, J.; Gendrisch, F.; Schempp, C.M.; Wölfle, U. New Herbal Biomedicines for the Topical Treatment of Dermatological Disorders. Biomedicines 2020, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Wölfle, U.; Hoffmann, J.; Haarhaus, B.; Rao Mittapalli, V.; Schempp, C.M. Anti-inflammatory and vasoconstrictive properties of Potentilla erecta—A traditional medicinal plant from the northern hemisphere. J. Ethnopharmacol. 2017, 204, 86–94. [Google Scholar] [CrossRef] [PubMed]
- van de Kerkhof, P.C.; van der Valk, P.G.; Swinkels, O.Q.; Kucharekova, M.; de Rie, M.A.; de Vries, H.J.; Damstra, R.; Oranje, A.P.; de Waard-van der Spek, F.B.; van Neer, P.; et al. A comparison of twice-daily calcipotriol ointment with once-daily short-contact dithranol cream therapy: A randomized controlled trial of supervised treatment of psoriasis vulgaris in a day-care setting. Br. J. Dermatol. 2006, 155, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; See, L.C.; Huang, Y.H.; Chi, C.C.; Hui, R.C. Comparison of indirubin concentrations in indigo naturalis ointment for psoriasis treatment: A randomized, double-blind, dosage-controlled trial. Br. J. Dermatol. 2018, 178, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Antiga, E.; Bonciolini, V.; Volpi, W.; Del Bianco, E.; Caproni, M. Oral Curcumin (Meriva) Is Effective as an Adjuvant Treatment and Is Able to Reduce IL-22 Serum Levels in Patients with Psoriasis Vulgaris. BioMed Res. Int. 2015, 2015, 283634. [Google Scholar] [CrossRef]
- Heng, M.C.; Song, M.K.; Harker, J.; Heng, M.K. Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br. J. Dermatol. 2000, 143, 937–949. [Google Scholar] [CrossRef]
- Varma, S.R.; Sivaprakasam, T.O.; Mishra, A.; Prabhu, S.; Rafiq, M.; Rangesh, P. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: Its evaluation using curcumin. Eur. J. Pharmacol. 2017, 813, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, M.; Nagabhushanam, K.; Sankaran, N.; Sood, R.S.; Karri, S. Clinical evaluation of AKBBA in the management of psoriasis. Clin. Dermatol. 2014, 2, 17–24. [Google Scholar] [CrossRef]
- Fukuchi, K.; Okudaira, N.; Adachi, K.; Odai-Ide, R.; Watanabe, S.; Ohno, H.; Yamamoto, M.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; et al. Antiviral and Antitumor Activity of Licorice Root Extracts. In Vivo 2016, 30, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Goswami, D.; Mahapatra, A.D.; Banerjee, S.; Kar, A.; Ojha, D.; Mukherjee, P.K.; Chattopadhyay, D. Boswellia serrata oleo-gum-resin and β-boswellic acid inhibits HSV-1 infection in vitro through modulation of NF-кB and p38 MAP kinase signaling. Phytomed. Int. J. Phytother. Phytopharm. 2018, 51, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Koytchev, R.; Alken, R.G.; Dundarov, S. Balm mint extract (Lo-701) for topical treatment of recurring herpes labialis. Phytomed. Int. J. Phytother. Phytopharm. 1999, 6, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Pazyar, N.; Yaghoobi, R.; Rafiee, E.; Mehrabian, A.; Feily, A. Skin wound healing and phytomedicine: A review. Skin Pharmacol. Physiol. 2014, 27, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, S.; Naumann, K.; Pollok, S.; Wardecki, T.; Vidal, Y.S.S.; Nascimento, J.M.; Boerries, M.; Schmidt, G.; Brandner, J.M.; Merfort, I. From a traditional medicinal plant to a rational drug: Understanding the clinically proven wound healing efficacy of birch bark extract. PLoS ONE 2014, 9, e86147. [Google Scholar] [CrossRef]
- Metelmann, H.R.; Brandner, J.M.; Schumann, H.; Bross, F.; Fimmers, R.; Böttger, K.; Scheffler, A.; Podmelle, F. Accelerated reepithelialization by triterpenes: Proof of concept in the healing of surgical skin lesions. Skin Pharmacol. Physiol. 2015, 28, 1–11. [Google Scholar] [CrossRef]
- Frew, Q.; Rennekampff, H.O.; Dziewulski, P.; Moiemen, N.; Zahn, T.; Hartmann, B. Betulin wound gel accelerated healing of superficial partial thickness burns: Results of a randomized, intra-individually controlled, phase III trial with 12-months follow-up. Burn. J. Int. Soc. Burn Inj. 2019, 45, 876–890. [Google Scholar] [CrossRef]
- Barret, J.P.; Podmelle, F.; Lipový, B.; Rennekampff, H.O.; Schumann, H.; Schwieger-Briel, A.; Zahn, T.R.; Metelmann, H.R. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: Results of a randomized phase III clinical trials program. Burn. J. Int. Soc. Burn Inj. 2017, 43, 1284–1294. [Google Scholar] [CrossRef]
- Singh, S.; Chidrawar, V.R.; Hermawan, D.; Nwabor, O.F.; Olatunde, O.O.; Jayeoye, T.J.; Samee, W.; Ontong, J.C.; Chittasupho, C. Solvent-assisted dechlorophyllization of Psidium guajava leaf extract: Effects on the polyphenol content, cytocompatibility, antibacterial, anti-inflammatory, and anticancer activities. S. Afr. J. Bot. 2023, 158, 166–179. [Google Scholar] [CrossRef]
- Chidrawar, V.R.; Singh, S.; Jayeoye, T.J.; Dodiya, R.; Samee, W.; Chittasupho, C. Porous Swellable Hypromellose Composite Fortified with Eucalyptus camaldulensis Leaf Hydrophobic/Hydrophilic Phenolic-rich Extract to Mitigate Dermal Wound Infections. J. Polym. Environ. 2023, 31, 3841–3856. [Google Scholar] [CrossRef]
- Draelos, Z.D. The ability of onion extract gel to improve the cosmetic appearance of postsurgical scars. J. Cosmet. Dermatol. 2008, 7, 101–104. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Kwon, H.H.; Min, S.U.; Thiboutot, D.M.; Suh, D.H. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J. Investig. Dermatol. 2013, 133, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Enshaieh, S.; Jooya, A.; Siadat, A.H.; Iraji, F. The efficacy of 5% topical tea tree oil gel in mild to moderate acne vulgaris: A randomized, double-blind placebo-controlled study. Indian J. Dermatol. Venereol. Leprol. 2007, 73, 22–25. [Google Scholar] [CrossRef]
- Weber, N.; Biehler, K.; Schwabe, K.; Haarhaus, B.; Quirin, K.W.; Frank, U.; Schempp, C.M.; Wölfle, U. Hop Extract Acts as an Antioxidant with Antimicrobial Effects against Propionibacterium acnes and Staphylococcus aureus. Molecules 2019, 24, 223. [Google Scholar] [CrossRef] [PubMed]
- Chinembiri, T.N.; du Plessis, L.H.; Gerber, M.; Hamman, J.H.; du Plessis, J. Review of natural compounds for potential skin cancer treatment. Molecules 2014, 19, 11679–11721. [Google Scholar] [CrossRef] [PubMed]
- Lippens, S.; Hoste, E.; Vandenabeele, P.; Agostinis, P.; Declercq, W. Cell death in the skin. Apoptosis Int. J. Program. Cell Death 2009, 14, 549–569. [Google Scholar] [CrossRef] [PubMed]
- Xiaoguang, C.; Hongyan, L.; Xiaohong, L.; Zhaodi, F.; Yan, L.; Lihua, T.; Rui, H. Cancer chemopreventive and therapeutic activities of red ginseng. J. Ethnopharmacol. 1998, 60, 71–78. [Google Scholar] [CrossRef]
- Huang, M.T.; Ho, C.T.; Wang, Z.Y.; Ferraro, T.; Lou, Y.R.; Stauber, K.; Ma, W.; Georgiadis, C.; Laskin, J.D.; Conney, A.H. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res. 1994, 54, 701–708. [Google Scholar]
- Shenefelt, P.D. Herbal Treatment for Dermatologic Disorders; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- Palungwachira, P.; Tancharoen, S.; Phruksaniyom, C.; Klungsaeng, S.; Srichan, R.; Kikuchi, K.; Nararatwanchai, T. Antioxidant and Anti-Inflammatory Properties of Anthocyanins Extracted from Oryza sativa L. in Primary Dermal Fibroblasts. Oxidative Med. Cell. Longev. 2019, 2019, 2089817. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Kaur, A.; Bhardwaj, R.; Srivastava, N.; Lal, M.; Madan, S.; Bala, K. Preclinical assessment of stem of Nicotiana tabacum on excision wound model. Bioorg. Chem. 2021, 109, 104731. [Google Scholar] [CrossRef] [PubMed]
- Thinh, B.B.; Khoi, N.T.; Doudkin, R.V.; Thin, D.B.; Ogunwande, I.A. Chemical composition of essential oil and antioxidant activity of the essential oil and methanol extracts of Knema globularia (Lam.) Warb. from Vietnam. Nat. Prod. Res. 2023, 37, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, M.N.G.; Machado Martins, M.; Scalon Cunha, L.C.; de Souza Santos, P.; Goulart, L.R.; de Souza Silva, T.; Gomes Martins, C.H.; de Morais, S.A.L.; Pivatto, M. Antimicrobial and cytotoxic activities of Senna and Cassia species (Fabaceae) extracts. Ind. Crops Prod. 2020, 148, 112081. [Google Scholar] [CrossRef]
- Saini, S.; Mishra, P.; Balhara, M.; Dutta, D.; Ghosh, S.; Chaudhuri, S. Antimicrobial potency of Punica granatum peel extract: Against multidrug resistant clinical isolates. Gene Rep. 2023, 30, 101744. [Google Scholar] [CrossRef]
- Padmakar, S.; Kumar, G.A.; Khurana, N.; Kumari, S.; Pal, B. Efficacy and safety of natural Aloe Vera gel in the treatment of stable vitiligo. Clin. Epidemiol. Glob. Health 2023, 22, 101332. [Google Scholar] [CrossRef]
- Esimone, C.O.; Nworu, C.; Jackson, C. Cutaneous wound healing activity of a herbal ointment containing the leaf extract of Jatropha curcas L. (Euphorbiaceae). Int. J. Appl. Res. Nat. Prod. 2008, 1, 1–4. [Google Scholar]
- Jan, R.; Gani, A.; Masarat Dar, M.; Bhat, N.A. Bioactive characterization of ultrasonicated ginger (Zingiber officinale) and licorice (Glycyrrhiza glabra) freeze dried extracts. Ultrason. Sonochem. 2022, 88, 106048. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Akhtar, N.; Ali, A. Effects of Cream Containing Ficus carica L. Fruit Extract on Skin Parameters: In Vivo Evaluation. Indian J. Pharm. Sci. 2014, 76, 560–564. [Google Scholar]
- Chaudhuri, A.; Aqil, M.; Qadir, A. Herbal cosmeceuticals: New opportunities in cosmetology. Trends Phytochem. Res. 2021, 4, 117–142. [Google Scholar]
- Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-based cosmeceuticals. ISRN Dermatol. 2014, 2014, 843687. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M. An Overview of Nanomedicine. J. Med. Res. Inst. 2006, 27, 248–254. [Google Scholar]
- Sindura, C.; Babu, N.C.; Vinod. Unbounding the Future: Nanobiotechnology in Detection and Treatment of Oral Cancer. J. Adv. Med. Dent. Sci. 2013, 1, 66–77. [Google Scholar]
- Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Colloids Surf. B Biointerfaces 2013, 105, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Radhai, R.; Kotresh, T.M.; Csiszar, E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr. Polym. 2013, 91, 613–617. [Google Scholar] [CrossRef]
- Mainardes, R.M.; Urban, M.C.; Cinto, P.O.; Chaud, M.V.; Evangelista, R.C.; Gremião, M.P. Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr. Drug Deliv. 2006, 3, 275–285. [Google Scholar] [CrossRef]
- Grill, A.E.; Johnston, N.W.; Sadhukha, T.; Panyam, J. A review of select recent patents on novel nanocarriers. Recent Pat. Drug Deliv. Formul. 2009, 3, 137–142. [Google Scholar] [CrossRef]
- Venugopal, J.; Prabhakaran, M.P.; Low, S.; Choon, A.T.; Deepika, G.; Dev, V.R.; Ramakrishna, S. Continuous nanostructures for the controlled release of drugs. Curr. Pharm. Des. 2009, 15, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Chorilli, M.; Brizante, A.C.; Rodrigues, C.A.; Salgado, H.R.N. Aspectos gerais em sistemas transdérmicos de liberação de fármacos General aspects in transdermal systems of drugs release. Infarma 2007, 88, 7–13. [Google Scholar]
- Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. [Google Scholar] [CrossRef]
- Bailey, M.M.; Berkland, C.J. Nanoparticle formulations in pulmonary drug delivery. Med. Res. Rev. 2009, 29, 196–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, X.; Park, H.; Greever, R. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine 2009, 5, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Ghosh, A.K. Phytosomes: The Emerging Technology for Enhancement of Bioavailability of Botanicals and Nutraceuticals. Int. J. Aesthetic. Antiaging Med. 2009, 2, 87–91. [Google Scholar]
- Sinico, C.; De Logu, A.; Lai, F.; Valenti, D.; Manconi, M.; Loy, G.; Bonsignore, L.; Fadda, A.M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm. 2005, 59, 161–168. [Google Scholar] [CrossRef]
- Ontong, J.C.; Singh, S.; Siriyong, T.; Voravuthikunchai, S.P. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections. Biotechnol. Lett. 2024, 46, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Chorachoo Ontong, J.; Singh, S.; Nwabor, O.F.; Chusri, S.; Kaewnam, W.; Kanokwiroon, K.; Septama, A.W.; Panichayupakaranant, P.; Voravuthikunchai, S.P. Microwave-assisted extract of rhodomyrtone from rhodomyrtus tomentosa leaf: Anti-inflammatory, antibacterial, antioxidant, and safety assessment of topical rhodomyrtone formulation. Sep. Sci. Technol. 2023, 58, 929–943. [Google Scholar] [CrossRef]
- Chittasupho, C.; Chaobankrang, K.; Sarawungkad, A.; Samee, W.; Singh, S.; Hemsuwimon, K.; Okonogi, S.; Kheawfu, K.; Kiattisin, K.; Chaiyana, W. Antioxidant, Anti-Inflammatory and Attenuating Intracellular Reactive Oxygen Species Activities of Nicotiana tabacum var. Virginia Leaf Extract Phytosomes and Shape Memory Gel Formulation. Gels 2023, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C.; Ditsri, S.; Singh, S.; Kanlayavattanakul, M.; Duangnin, N.; Ruksiriwanich, W.; Athikomkulchai, S. Ultraviolet Radiation Protective and Anti-Inflammatory Effects of Kaempferia galanga L. Rhizome Oil and Microemulsion: Formulation, Characterization, and Hydrogel Preparation. Gels 2022, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Moulari, B.; Lboutounne, H.; Pellequer, Y.; Guillaume, Y.C.; Millet, J.; Pirot, F. Vectorization of Harungana madagascariensis Lam. ex Poir. (Hypericaceae) ethanolic leaf extract by using PLG-nanoparticles: Antibacterial activity assessment. Drug Dev. Res. 2005, 65, 26–33. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Z.; Wang, L.; Cun, D.; Tong, H.H.Y.; Yan, R.; Chen, X.; Wang, R.; Zheng, Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J. Control. Release 2017, 254, 44–54. [Google Scholar] [CrossRef]
- Raghuwanshi, N.; Yadav, T.C.; Srivastava, A.K.; Raj, U.; Varadwaj, P.; Pruthi, V. Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Biswasroy, P.; Pradhan, D.; Haldar, J.; Kar, B.; Ghosh, G.; Rath, G. Recent Advancements in Herbal Bioactive-based Nanoformulations for the Treatment of Psoriasis. Curr. Bioact. Compd. 2023, 19, 94–103. [Google Scholar] [CrossRef]
- Lee, W.-R.; Chou, W.-L.; Lin, Z.-C.; Sung, C.T.; Lin, C.-Y.; Fang, J.-Y. Laser-assisted nanocarrier delivery to achieve cutaneous siRNA targeting for attenuating psoriasiform dermatitis. J. Control. Release 2022, 347, 590–606. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Hsieh, Y.-T.; Chan, L.Y.; Yang, T.-Y.; Maeda, T.; Chang, T.-M.; Huang, H.-C. Dictamnine delivered by PLGA nanocarriers ameliorated inflammation in an oxazolone-induced dermatitis mouse model. J. Control. Release 2021, 329, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.; hussain, F.A.J.; Srinivasan, B.; Sambantham, M.T.; Al-Keridis, L.A.; Al-Mekhlafi, F.A. Green synthesizes and characterization of copper-oxide nanoparticles by Thespesia populnea against skin-infection causing microbes. J. King Saud Univ. Sci. 2022, 34, 101885. [Google Scholar] [CrossRef]
- Chelladurai, M.; Sahadevan, R.; Margavelu, G.; Vijayakumar, S.; González-Sánchez, Z.I.; Vijayan, K.; Balaji, K.C.D. Anti-skin cancer activity of Alpinia calcarata ZnO nanoparticles: Characterization and potential antimicrobial effects. J. Drug Deliv. Sci. Technol. 2021, 61, 102180. [Google Scholar] [CrossRef]
- Yang, X.; Mo, W.; Shi, Y.; Fang, X.; Xu, Y.; He, X.; Xu, Y. Fumaria officinalis-loaded chitosan nanoparticles dispersed in an alginate hydrogel promote diabetic wounds healing by upregulating VEGF, TGF-β, and b-FGF genes: A preclinical investigation. Heliyon 2023, 9, e17704. [Google Scholar] [CrossRef] [PubMed]
- Sheokand, B.; Pathak, S.R.; Srivastava, C.M.; Kumar, A.; Bahadur, I.; Vats, M. Green silver nanoparticles functionalised gelatin nanocomposite film for wound healing: Construction and characterization. J. Mol. Liq. 2022, 368, 120561. [Google Scholar] [CrossRef]
- Bhalla, N.; Ingle, N.; Jayaprakash, A.; Patel, H.; Patri, S.V.; Haranath, D. Green approach to synthesize nano zinc oxide via Moringa oleifera leaves for enhanced anti-oxidant, anti-acne and anti-bacterial properties for health & wellness applications. Arab. J. Chem. 2023, 16, 104506. [Google Scholar] [CrossRef]
- Hemmati, S.; Ahmeda, A.; Salehabadi, Y.; Zangeneh, A.; Zangeneh, M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and l-Ascorbic acid. Polyhedron 2020, 180, 114425. [Google Scholar] [CrossRef]
- Carneiro, R.d.S.; Canuto, M.R.; Ribeiro, L.K.; Ferreira, D.C.L.; Assunção, A.F.C.; Costa, C.A.C.B.; de Freitas, J.D.; Rai, M.; Cavalcante, L.S.; Alves, W.d.S.; et al. Novel antibacterial efficacy of ZnO nanocrystals/Ag nanoparticles loaded with extract of Ximenia americana L. stem bark for wound healing. S. Afr. J. Bot. 2022, 151, 18–32. [Google Scholar] [CrossRef]
- Guo, C.; Yang, C.; Li, Q.; Qi, T.; Xi, Y.; Liu, W.; Zhai, G. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm. 2012, 430, 292–298. [Google Scholar] [CrossRef]
- Agrawal, U.; Gupta, M.; Vyas, S.P. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif. Cells Nanomed. Biotechnol. 2015, 43, 33–39. [Google Scholar] [CrossRef]
- Khan, A.; Qadir, A.; Ali, F.; Aqil, M. Phytoconstituents based nanomedicines for the management of psoriasis. J. Drug Deliv. Sci. Technol. 2021, 64, 102663. [Google Scholar] [CrossRef]
- Montenegro, L.; Pasquinucci, L.; Zappalà, A.; Chiechio, S.; Turnaturi, R.; Parenti, C. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles. Pharmaceutics 2017, 9, 48. [Google Scholar] [CrossRef]
- Pivetta, T.P.; Simões, S.; Araújo, M.M.; Carvalho, T.; Arruda, C.; Marcato, P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B Biointerfaces 2018, 164, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Singh, S. Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin. Nanomedicine 2014, 9, 1223–1238. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Nastruzzi, C.; Sguizzato, M.; Cortesi, R. Nanomedicines to Treat Skin Pathologies with Natural Molecules. Curr. Pharm. Des. 2019, 25, 2323–2337. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Theranostics 2019, 9, 48–64. [Google Scholar] [CrossRef]
- Ascenso, A.; Pinho, S.; Eleutério, C.; Praça, F.G.; Bentley, M.V.; Oliveira, H.; Santos, C.; Silva, O.; Simões, S. Lycopene from tomatoes: Vesicular nanocarrier formulations for dermal delivery. J. Agric. Food Chem. 2013, 61, 7284–7293. [Google Scholar] [CrossRef]
- Koli, J.R.; Lin, S. Development of anti-oxidant ethosomes for topical delivery utilizing the synergistic properties of Vit A palmitate, Vit E and Vit C. AAPS Pharm. Sci. Technol. 2009, 11, 1–8. [Google Scholar]
- Khogta, S.; Patel, J.; Barve, K.; Londhe, V. Herbal nano-formulations for topical delivery. J. Herb. Med. 2020, 20, 100300. [Google Scholar] [CrossRef]
- Lin, C.H.; Al-Suwayeh, S.A.; Hung, C.F.; Chen, C.C.; Fang, J.Y. Camptothecin-Loaded Liposomes with α-Melanocyte-Stimulating Hormone Enhance Cytotoxicity Toward and Cellular Uptake by Melanomas: An Application of Nanomedicine on Natural Product. J. Tradit. Complement. Med. 2013, 3, 102–109. [Google Scholar] [CrossRef]
- Di Marzio, L.; Ventura, C.A.; Cosco, D.; Paolino, D.; Di Stefano, A.; Stancanelli, R.; Tommasini, S.; Cannavà, C.; Celia, C.; Fresta, M. Nanotherapeutics for anti-inflammatory delivery. J. Drug Deliv. Sci. Technol. 2016, 32, 174–191. [Google Scholar] [CrossRef]
- Nunes, P.; Rabelo, A.; Souza, J.; Santana, B.; Silva, T.; Serafini, M.; Menezes, P.; Lima, B.; Cardoso, J.; Alves, J.; et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int. J. Pharm. 2016, 513, 473–482. [Google Scholar] [CrossRef]
- Mahdi, E.S.; Noor, A.M.; Sakeena, M.H.; Abdullah, G.Z.; Abdulkarim, M.F.; Sattar, M.A. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int. J. Nanomed. 2011, 6, 2499–2512. [Google Scholar] [CrossRef] [PubMed]
- Vater, C.; Bosch, L.; Mitter, A.; Göls, T.; Seiser, S.; Heiss, E.; Elbe-Bürger, A.; Wirth, M.; Valenta, C.; Klang, V. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. Eur. J. Pharm. Biopharm. 2022, 170, 1–9. [Google Scholar] [CrossRef]
- Kreutz, T.; Lucca, L.G.; Carneiro, S.B.; Limberger, R.P.; Veiga-Junior, V.F.; de Araújo, B.V.; Teixeira, H.F.; Koester, L.S. Hydrogel-thickened nanoemulsion containing amazonian Aniba canelilla (Kunth) Mez essential oil: Skin permeation and in vivo anti-inflammatory efficacy. J. Drug Deliv. Sci. Technol. 2023, 87, 104771. [Google Scholar] [CrossRef]
- Huynh Luu, N.-D.; Dang, L.H.; Vo Le, T.-V.; Ngoc Do, T.-D.; Thi Nguyen, T.-T.; Thi Nguyen, T.T.; Nguyen, T.P.; Hoang, L.S.; Tran, N.Q. Topical cream based on nanoformulation of Chromolaena odorata extract for accelerating burn wound healing. J. Drug Deliv. Sci. Technol. 2023, 82, 104360. [Google Scholar] [CrossRef]
- Budama-Kilinc, Y.; Gok, B.; Kecel-Gunduz, S.; Altuntas, E. Development of nanoformulation for hyperpigmentation disorders: Experimental evaluations, in vitro efficacy and in silico molecular docking studies. Arab. J. Chem. 2022, 15, 104362. [Google Scholar] [CrossRef]
- Ibrar, M.; Ayub, Y.; Nazir, R.; Irshad, M.; Hussain, N.; Saleem, Y.; Ahmad, M. Garlic and ginger essential oil-based neomycin nano-emulsions as effective and accelerated treatment for skin wounds’ healing and inflammation: In-vivo and in-vitro studies. Saudi Pharm. J. 2022, 30, 1700–1709. [Google Scholar] [CrossRef] [PubMed]
- Ramanunny, A.K.; Wadhwa, S.; Kumar Singh, S.; Kumar, B.; Gulati, M.; Kumar, A.; Almawash, S.; Al Saqr, A.; Gowthamarajan, K.; Dua, K.; et al. Topical non-aqueous nanoemulsion of Alpinia galanga extract for effective treatment in psoriasis: In vitro and in vivo evaluation. Int. J. Pharm. 2022, 624, 121882. [Google Scholar] [CrossRef]
- Quintão, W.; Alencar-Silva, T.; Borin, M.; Rezende, K.; Albernaz, L.; Cunha Filho, M.; Gratieri, T.; Carvalho, J.; Sá-Barreto, L.; Gelfuso, G. Microemulsions incorporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: In vitro stimulation of melanocyte migration and pigmentation. J. Mol. Liq. 2019, 294, 111685. [Google Scholar] [CrossRef]
- Kildaci, I.; Budama-Kilinc, Y.; Kecel-Gunduz, S.; Altuntas, E. Linseed Oil Nanoemulsions for treatment of Atopic Dermatitis disease: Formulation, characterization, in vitro and in silico evaluations. J. Drug Deliv. Sci. Technol. 2021, 64, 102652. [Google Scholar] [CrossRef]
- Priprem, A.; Janpim, K.; Nualkaew, S.; Mahakunakorn, P. Topical Niosome Gel of Zingiber cassumunar Roxb. Extract for Anti-inflammatory Activity Enhanced Skin Permeation and Stability of Compound D. AAPS PharmSciTech 2016, 17, 631–639. [Google Scholar] [CrossRef]
- Kaur, C.D.; Saraf, S. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin. J. Cosmet. Dermatol. 2011, 10, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Sun, L.; Wang, L.; Lin, Z.; Liu, Z.; Xi, L.; Wang, Z.; Zheng, Y. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf. B Biointerfaces 2019, 182, 110352. [Google Scholar] [CrossRef]
- Hromadka, M.; Collins, J.B.; Reed, C.; Han, L.; Kolappa, K.K.; Cairns, B.A.; Andrady, T.; van Aalst, J.A. Nanofiber applications for burn care. J. Burn Care Res. 2008, 29, 695–703. [Google Scholar] [CrossRef]
- Tang, T.; Yin, L.; Yang, J.; Shan, G. Emodin, an anthraquinone derivative from Rheum officinale Baill, enhances cutaneous wound healing in rats. Eur. J. Pharmacol. 2007, 567, 177–185. [Google Scholar] [CrossRef]
- Dai, X.Y.; Nie, W.; Wang, Y.C.; Shen, Y.; Li, Y.; Gan, S.J. Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: A novel medicated biomaterial for drug delivery and accelerated wound healing. J. Mater. Sci. Mater. Med. 2012, 23, 2709–2716. [Google Scholar] [CrossRef]
- Qadir, A.; Jahan, S.; Aqil, M.; Warsi, M.H.; Alhakamy, N.A.; Alfaleh, M.A.; Khan, N.; Ali, A. Phytochemical-Based Nano-Pharmacotherapeutics for Management of Burn Wound Healing. Gels 2021, 7, 209. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, M.; Yamane, M.; Thickett, S.C.; Minami, H.; Zetterlund, P.B. Synthesis of polymeric nanoparticles containing reduced graphene oxide nanosheets stabilized by poly(ionic liquid) using miniemulsion polymerization. Soft Matter 2016, 12, 3955–3962. [Google Scholar] [CrossRef] [PubMed]
- Almasian, A.; Najafi, F.; Eftekhari, M.; Ardekani, M.R.S.; Sharifzadeh, M.; Khanavi, M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater. Sci. Eng. C 2020, 114, 111039. [Google Scholar] [CrossRef] [PubMed]
- Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019, 229, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Esposito, L.; Barbosa, A.I.; Moniz, T.; Costa Lima, S.; Costa, P.; Celia, C.; Reis, S. Design and Characterization of Sodium Alginate and Poly(vinyl) Alcohol Hydrogels for Enhanced Skin Delivery of Quercetin. Pharmaceutics 2020, 12, 1149. [Google Scholar] [CrossRef] [PubMed]
- Jangde, R.; Srivastava, S.; Singh, M.R.; Singh, D. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int. J. Biol. Macromol. 2018, 115, 1211–1217. [Google Scholar] [CrossRef]
- Bagde, A.; Patel, K.; Mondal, A.; Kutlehria, S.; Chowdhury, N.; Gebeyehu, A.; Patel, N.; Kumar, N.; Singh, M. Combination of UVB Absorbing Titanium Dioxide and Quercetin Nanogel for Skin Cancer Chemoprevention. AAPS PharmSciTech 2019, 20, 240. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Muthu, D.; Isaac, R.S.R.; Ramakrishnan, S.; Anooj, E.; Vallinayagam, S. Nanomedicinary evaluation of calotropis procera mediated silver nanoparticle on skin cancer cell line for microbes-front line analysis. J. Mol. Struct. 2021, 1235, 130237. [Google Scholar] [CrossRef]
- Ghorbanzadeh, M.; Farhadian, N.; Golmohammadzadeh, S.; Karimi, M.; Ebrahimi, M. Formulation, clinical and histopathological assessment of microemulsion based hydrogel for UV protection of skin. Colloids Surf. B Biointerfaces 2019, 179, 393–404. [Google Scholar] [CrossRef]
- Qadir, A.; Aqil, M.; Ali, A.; Warsi, M.H.; Mujeeb, M.; Ahmad, F.J.; Ahmad, S.; Beg, S. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation. J. Drug Deliv. Sci. Technol. 2020, 57, 101775. [Google Scholar] [CrossRef]
- Nirmal, G.R.; Lin, Z.-C.; Tsai, M.-J.; Yang, S.-C.; Alalaiwe, A.; Fang, J.-Y. Photothermal treatment by PLGA–gold nanorod–isatin nanocomplexes under near-infrared irradiation for alleviating psoriasiform hyperproliferation. J. Control. Release 2021, 333, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Khalid, M.S.; Khan, M.F.; Ullah, Z. Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic. J. Drug Deliv. Sci. Technol. 2023, 80, 104094. [Google Scholar] [CrossRef]
- Amer, S.S.; Nasr, M.; Abdel-Aziz, R.T.A.; Moftah, N.H.; El Shaer, A.; Polycarpou, E.; Mamdouh, W.; Sammour, O. Cosm-nutraceutical nanovesicles for acne treatment: Physicochemical characterization and exploratory clinical experimentation. Int. J. Pharm. 2020, 577, 119092. [Google Scholar] [CrossRef]
- Nasirzadeh Fard, Y.; Kelidari, H.; Kazeminejad, A.; Mousavi, S.J.; Hedayati, M.T.; Mosayebi, E.; Nabili, M.; Faeli, L.; Asare-Addo, K.; Nokhodchi, A.; et al. Enhanced treatment in cutaneous dermatophytosis management by Zataria multiflora-loaded nanostructured lipid carrier topical gel: A randomized double-blind placebo-controlled clinical trial. J. Drug Deliv. Sci. Technol. 2023, 80, 104132. [Google Scholar] [CrossRef]
- Altinkaynak, C.; Haciosmanoglu, E.; Ekremoglu, M.; Hacioglu, M.; Özdemir, N. Anti-microbial, anti-oxidant and wound healing capabilities of Aloe vera-incorporated hybrid nanoflowers. J. Biosci. Bioeng. 2023, 135, 321–330. [Google Scholar] [CrossRef]
- Hayat, M.; Nawaz, A.; Chinnam, S.; Muzammal, M.; Latif, M.S.; Yasin, M.; Ashique, S.; Zengin, G.; Farid, A. Formulation development and optimization of herbo synthetic gel: In vitro biological evaluation and in vivo wound healing studies. Process Biochem. 2023, 130, 116–126. [Google Scholar] [CrossRef]
- Chaikul, P.; Kanlayavattanakul, M.; Somkumnerd, J.; Lourith, N. Phyllanthus emblica L. (amla) branch: A safe and effective ingredient against skin aging. J. Tradit. Complement. Med. 2021, 11, 390–399. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ryu, H.W.; Yang, W.-K.; Park, M.H.; Park, Y.-C.; Kim, D.-Y.; Kwon, H.J.; Kim, S.-Y.; Oh, S.-R.; Kim, S.-H. A combination of Olea europaea leaf extract and Spirodela polyrhiza extract alleviates atopic dermatitis by modulating immune balance and skin barrier function in a 1-chloro-2,4-dinitrobenzene-induced murine model. Phytomedicine 2021, 82, 153407. [Google Scholar] [CrossRef]
- Elhalmoushy, P.M.; Elsheikh, M.A.; Matar, N.A.; El-Hadidy, W.F.; Kamel, M.A.; Omran, G.A.; Elnaggar, Y.S.R. Elaboration of novel gel-core oleosomes encapsulating phytoconstituent for targeted topical delivery in a vitiligo-induced mouse model: Focus on antioxidant and anti-inflammatory pathways. J. Drug Deliv. Sci. Technol. 2023, 80, 104119. [Google Scholar] [CrossRef]
- Ibrahim, R.E.; Elshopakey, G.E.; Abdelwarith, A.A.; Younis, E.M.; Ismail, S.H.; Ahmed, A.I.; El-Saber, M.M.; Abdelhamid, A.E.; Davies, S.J.; El-Murr, A.; et al. Chitosan neem nanocapsule enhances immunity and disease resistance in Nile tilapia (Oreochromis niloticus). Heliyon 2023, 9, e19354. [Google Scholar] [CrossRef]
- Nadav, S.; Steinberg, E.; Jaggi, M.; Singh, A.T.; Verma, R.; Madaan, A. Herbal Nanoformulations for Treating Psoriasis and Other Skin Conditions. Patent No. WO2017172648A1, 5 October 2017. [Google Scholar]
- Lee, S.; Kim, J.; Yoon, S.; Jo, Y.; Han, C.; Pyo, S.; Shin, J. Topical Nano Liposome Formulation Including Extracted Purified Herbal Mixture and Whitening Cosmetics Using This Formulation. Patent No. KR20050117958A, 15 December 2005. [Google Scholar]
- Kim, N.; Yang, J.; Do, J.; Lee, J.; Kang, B. Cosmetic Composition for Preventing Skin Aging Comporising Nanoliposome of Torilis japonica Fruit. Patent No. KR100733334B1, 29 June 2007. Available online: https://patents.google.com/patent/KR100733334B1/en?q=(Cosmetic+composition+for+preventing+skin+aging+nano+liposome+Torilis+japonica+fruit)&oq=Cosmetic+composition+for+preventing+skin+aging+comprising+nano+liposome+of+Torilis+japonica+fruit (accessed on 26 June 2024).
- Ramar, A.; Sherbudeen, S.B.; Abdulrahim, M.I.; Mehta, F.; Janarthanan, M.; Ramanathan, R.; Rajagopalan, S. Nano-Sponge Loaded Topical Gel of Curcumin and Babchi Oil for Enhanced Treatment of Psoriasis. Patent No. DE202023101592U1, 2 May 2023. Available online: https://patents.google.com/patent/DE202023101592U1/en?q=(Nano-sponge+loaded+topical+gel+of+curcumin+and+babchi+oil+enhanced+treatment+of+psoriasis)&oq=Nano-sponge+loaded+topical+gel+of+curcumin+and+babchi+oil+for+enhanced+treatment+of+psoriasis (accessed on 26 June 2024).
- Quan, D.; Qin, M. Anti-Acne Nano Preparation, Gel Composition and Preparation Method Thereof. Patent No. CN115634165A, 24 January 2023. Available online: https://patents.google.com/patent/CN115634165A/en?q=(Anti-acne+nano+preparation%2c+gel+composition+and+preparation+method+Jiangsu+Jicui+New+Pharmaceutical+Preparation+Technology+Research+Institute+Co)&oq=Anti-acne+nano+preparation%2c+gel+composition+and+preparation+method+thereof+Jiangsu+Jicui+New+Pharmaceutical+Preparation+Technology+Research+Institute+Co+ltd (accessed on 26 June 2024).
- He, B.; Zhou, J.; Zhou, W.; Tang, T.; Bing, P.; Zhang, H.; Xu, M. Compound Traditional Chinese Medicine Nano Gel for Treating Dermatophytosis and Tinea Pedis and Preparation Method Thereof. Patent No. CN115300576A, 8 November 2022. Available online: https://patents.google.com/patent/CN115300576A/en?q=(Compound+traditional+Chinese+medicine+nano+gel+for+treating+dermatophytosis+and+tinea+pedis+and+preparation+method+Changsha+Medical+University)&oq=Compound+traditional+Chinese+medicine+nano+gel+for+treating+dermatophytosis+and+tinea+pedis+and+preparation+method+thereof+Changsha+Medical+University (accessed on 26 June 2024).
- Ni, X.; Xie, J.; Fan, L. Natural Gel Preparation of Traditional Chinese Medicine Compound Extract Coated by Nanoparticles, Preparation Method and Application thereof. Patent No. CN115337282A, 15 November 2022. Available online: https://patents.google.com/patent/CN115337282A/en?oq=Natural+gel+preparation+of+traditional+Chinese+medicine+compound+extract+coated+by+nanoparticles%2c+preparation+method+and+application+thereof+CN115337282A (accessed on 26 June 2024).
- Kim, Y.; Jang, K. Rigida Pine Bark Extract with Improved Stability Encapsulated Nanoparticles and Manufacturing Method, Cosmetic Composition Comprising the Same. Patent No. KR20220152865A, 17 November 2022. Available online: https://patents.google.com/patent/KR20220152865A/en?oq=Rigida+pine+bark+extract+with+improved+stability+encapsulated+nanoparticles+and+manufacturing+meth-od%2c+cosmetic+composition+comprising+the+same++KR20220152865A (accessed on 26 June 2024).
- Alam, M.; Bhati, P.; Kaushik, N.; Khatoon, R.; Kumar, A.; Rahate, K.; Sharma, A.; Sharma, S.; Singh, V.; Singh, V.; et al. In-Situ Gel Extraction, Formulation and Evaluation for Treating Fungal Skin Infection. Patent No. AU2021107001A4, 16 December 2021. Available online: https://patents.google.com/patent/AU2021107001A4/en?oq=In-situ+Gel+Extraction%2c+Formulation+and+Evaluation+for+Treating+Fungal+Skin+Infection+AU2021107001A4 (accessed on 26 June 2024).
- Kang, S. Novel Punica granatum Extracts-Zinc Oxide Nanoparticles and Its Use. Patent No. KR20220117942A, 25 September 2023. Available online: https://patents.google.com/patent/KR20220117942A/en?oq=Novel+Punica+granatum+Extracts-Zinc+oxide+Nanoparticles+and+its+use+KR20220117942A (accessed on 26 June 2024).
- Zhang, P.; Han, L.; Sun, S.; Du, M. Natural Polysaccharide Nano Hydrogel Mask Based on Hollow Nanoparticles and Preparation Method Thereof. Patent No. CN114010555A, 8 February 2022. Available online: https://patents.google.com/patent/CN114010555A/en?oq=Natural+polysaccharide+nano+hydrogel+mask+based+on+hollow+nanoparticles+and+preparation+method+thereof+CN114010555A (accessed on 26 June 2024).
- Karan, M.; Vasisht, K.; Sharma, N.; Kaur, I.P.; Gautam, V.; Sandhu, S.K.; Kaur, J. Berberis Extract Nano-Formulation and Process of Preparation Thereof. Patent No. WO2022168124A1, 11 August 2022. Available online: https://patents.google.com/patent/WO2022168124A1/en?oq=Berberis+extract+nano-formulation+and+process+of+preparation+thereof+WO2022168124A1 (accessed on 26 June 2024).
- Zhang, C.; Zhang, R.; Gao, F.; Hu, S. Nanoparticle System for Treating Skin Diseases and Preparation Method and Preparation Thereof. Patent No. CN113081948A, 9 July 2021. Available online: https://patents.google.com/patent/CN113081948A/en?oq=Nanoparticle+system+for+treating+skin+diseases+and+preparation+method+and+preparation+thereof+CN113081948A (accessed on 26 June 2024).
- Jassen GmbH. Cosmetic Preparation for the Care and Treatment of Facial Skin. Patent No. DE202021106363U1, 15 December 2021. Available online: https://patents.google.com/patent/DE202021106363U1/en?oq=Cosmetic+preparation+for+the+care+and+treatment+of+facial+skin+DE202021106363U1 (accessed on 26 June 2024).
Name of Plant | Part of Plant | Use | Research | Ref. |
---|---|---|---|---|
Oryza sativa | Seeds | Antioxidant and anti-inflammatory activity, antibacterial effect, antifungal effect, psoriasis, and anti-aging agent | Palungwachira et al. evaluated the cellular activity of anthocyanins, which will be useful in the creation of new products that promote natural healing. Based on the modulation of type-I collagen gene expression and the suppression of H2O2-induced activation of necrosis factor-B in skin fibroblasts, the data indicated that anthocyanins from Oryza sativa have anti-inflammatory and anti-aging potential. | [63] |
Nicotiana tabacum | Leaves | Antibacterial, antifungal, wound healing, and anti-aphthous activity | Sharma et al. used a Wistar rat model to examine the wound-healing properties of an ethanolic extract of stems of Nicotiana tabacum. Studies conducted in vitro and in vivo have shown the high efficiency of ethanolic extracts in wound healing, suggesting that they could be applied topically as herbal medicine. | [64] |
Knema globularia | Seeds, leaves | Cytotoxic activity and antioxidant activity | Thinh et al. determined the antioxidant effect of the leaves of Knema globularia. The findings demonstrated the potent antioxidant qualities of the methanol essential oil of Knema globularia, suggesting that they may offer a novel and dependable supply of naturally occurring antioxidants. | [65] |
Senna macranthera | Flowers | Antifungal activity | Nascimento et al. evaluated the antifungal and cytotoxic effects of flowers of senna species. The current findings indicated that flowers of Senna macranthera are a promising source of novel antifungal compounds. | [66] |
Punica granatum | Pericarp | Anti-melanoma, anti-inflammatory, antibacterial, and wound healing | Saini et al. utilized the peel extract of Punica granatum and evaluated its antibacterial activity against multidrug-resistant bacteria. Strong antibacterial activity was observed in the interaction with Punica granatum peel extract, with a minimum inhibitory concentration of 780–6250 μg/mL and a zone of inhibition measuring 24.33 mm. | [67] |
Aloe vera | Leaves | Insect bites, sunburns, wound infections, scabies, wound healing, burns, itching, and swelling [19] | Padmakar et al. evaluated natural aloe vera’s safety and effectiveness in treating stable vitiligo. It was found that using natural aloe vera to treat stable vitiligo was both effective and safe. However, in order to confirm the effectiveness and safety of Aloe vera in the management of vitiligo, higher sample sizes for randomized controlled trials are advised. | [68] |
Jatropha curcas | Seeds, roots, leaves | Wound healing and skin lesions [19] | An herbal ointment with pro-wound healing properties was developed and tested, incorporating the methanol leaf extract of Jatropha curcas. The application of the ointment batch containing the maximum amount of Jatropha curcas extract showed the highest rate of wound closure in comparison to the blank ointment, which had an epithelialization duration of 18.8 days. | [69] |
Glycyrrhiza glabra | Root | Allergic dermatitis, depigmentation, and atopic dermatitis [19] | Jan et al. isolated different polyphenols from the extract of Glycyrrhiza glabra and found flavonoids and other compounds showing antioxidant activity. | [70] |
Ficus carica | Fruit | Skin ulcers, acne, hyperpigmentation, eczema [19] | Khan et al. sought to determine the effect of cream containing fruit extract from Ficus carica on skin parameters such as erythema, sebum, moisture content, trans-epidermal water loss, and skin pigmentation. The pigment melanin, trans-epidermal water loss, and skin sebum were all considerably reduced by the formulation and had a negligible impact on skin erythema while greatly increasing skin moisture. | [71] |
Features | Traditional Herbal Formulation | Nanotechnological Herbal Formulation |
---|---|---|
Particle Size | Larger | Nano-size |
Solubility | Limited Solubility | Higher solubility |
Bioavailability | Limited Bioavailability | Higher bioavailability due to small size |
Targeted Delivery | No | Provides targeted delivery to specific cells |
Dosing Precision | Less precise | More precise |
Surface Area | Less surface area for interaction | More surface area for interaction |
Production Process | Simple | Complex |
Allergic Reactions | More allergic reactions to extract | Less, as the drug is enclosed in nanoformulation |
Interaction with other drugs | Possible | It may or may not be possible |
Skin Irritation | Yes | No |
Efficacy | Low | High |
Plants | Approaches | Techniques | Skin Disease | Types of Study | Outcomes | Ref. |
---|---|---|---|---|---|---|
Thespesia populnea | Nanoparticles | Aqueous and methanolic extraction methods | Skin infection |
|
| [97] |
Alpinia calcarata (diterpenoids, flavonoids and phenols) | Nanoparticles | Aqueous and methanolic extraction methods | Skin cancer |
|
| [98] |
Fumaria officinalis (stylopine, sanguinarine) | Nanoparticles | Ionotropic gelation method | Wound healing |
|
| [99] |
Praecitrullus fistulosus | Silver nanoparticles | Solvent casting method | Wound healing |
|
| [100] |
Moringa oleifera (phenolic compounds and flavonoids) | ZnO nanoparticles | Sonicate method | Anti-acne |
|
| [101] |
Fragaria ananassa (flavonols, flavan-3-ols, anthocyanins, hydrolyzable tannins) | Copper nanoparticles | ---- | Skin wounds |
|
| [102] |
Ximenia americana L. (rutin, epicatechin, catechin, myricetin) | Silver nanoparticles | Solvent casting method | Wound healing |
|
| [103] |
Plants | Approaches | Techniques | Skin Disease | Types of Study | Outcomes | Ref. |
---|---|---|---|---|---|---|
Garlic (dialkyl polysulphides) and ginger (zingiberene, curcumene, and β-bisabolene) | Nanoemulsion | Ultrasonic cavitation | Skin wound healing |
|
| [123] |
Chromolaena odorata (flavanoids, tannins) | Oil-in-water emulsion Pluronic micelles | ----- | Burn wound healing |
|
| [121] |
Chlorogenic acid | Nanoemulsion | Ultrasonic homogenization method. | Hyperpigmentation disorder |
|
| [122] |
Aniba canelilla (Kunth) (1-nitro-2-phenylethane and methyleugenol) | Nanoemulsion | ---- | Skin disorders |
|
| [120] |
Alpinia galanga extract (1-acetoxychavicol acetate) | Nanoemulsion | ---- | Psoriasis |
|
| [124] |
Brosimum Gaudichaudii (furanocoumarins bergapten and psoralen) | Microemulsions | ---- | Vitiligo |
|
| [125] |
Linseed oil | Nanoemulsion | Ultrasonic emulsification method | Atopic dermatitis |
|
| [126] |
Plants | Approaches | Techniques | Skin Disease | Types of Study | Outcomes | Ref. |
---|---|---|---|---|---|---|
Malva sylvestris (mucilage and flavonoids) | Nanofibers | Maceration method | Wound dressings |
|
| [135] |
Ananas comosus (bromelain) | Nanofibers | Electrospinning method | Wound healing |
|
| [136] |
Plants | Approaches | Techniques | Skin Disease | Types of Study | Outcomes | Ref. |
---|---|---|---|---|---|---|
Calotropis procera (flavones, tannins, and alkaloids) | Nanogel | Diffusion technique | Skin acne and skin cancer |
|
| [140] |
Sesame oil (lignans and sesamol) | Hydrogel | --------- | Skin hyperpigmentation |
|
| [141] |
Smilax china and Salix alba (quercetin) | Nano lipid carrier-based gel | Sonication method | Psoriasis |
|
| [142] |
Plants | Approaches | Techniques | Skin Disease | Types of Study | Outcomes | Ref. |
---|---|---|---|---|---|---|
Zataria multiflora (carvacrol, thymol) | Nanostructured lipid carriers | Ultrasonic probe | Cutaneous dermatophytosis |
|
| [146] |
Aloe vera | Nanoflowers | ----- | Wound healing |
|
| [147] |
Sideroxylon mascatense (quercetine, berberine, and myricetin) | Synthetic gel | --- | Wound healing |
|
| [148] |
Phyllanthus emblica L. (sinapic and ferulic acid) | Topical gel | Rotary Evaporator | Anti-aging |
|
| [149] |
Olea europaea and Spirodela polyrhiza (oleuropein, luteolin, and apigenin) | Topical oil | ---- | Atopic dermatitis |
|
| [150] |
Berberine | Gel-core oleosomes | Modified ethanol injection technique | Vitiligo |
|
| [151] |
Azadirachta indica | Nanocapsule | Sonochemical method | Bacterial diseases |
|
| [152] |
Title | Patent No. | Publication Date | Current Assignee | Ref. |
---|---|---|---|---|
Herbal nanoformulations for treating psoriasis and other skin conditions | WO2017172648A1 | 5 October 2017 | Sirbal Ltd. | [153] |
Topical nano liposome formulation, including extracted purified herbal mixture whitening cosmetics using this formulation | KR20050117958A | 15 December 2005 | SK Chemicals Co. Ltd. | [154] |
Cosmetic composition for preventing skin aging comprising nano liposome of Torilis japonica fruit | KR100733334B1 | 29 June 2007 | KT&G Co., Ltd., Korea Ginseng Corporation Co., Ltd. | [155] |
Nano-sponge loaded topical gel of Curcumin and babchi oil for enhanced treatment of psoriasis. | DE202023101592U1 | 2 May 2023 | Individual | [156] |
Anti-acne nano preparation, gel composition, and preparation method thereof | CN115634165A | 24 January 2023 | Jiangsu Jicui New Pharmaceutical Preparation Technology Research Institute Co. Ltd. | [157] |
Compound traditional Chinese medicine nano gel for treating dermatophytosis and tinea pedis and preparation method thereof | CN115300576A | 8 November 2022 | Changsha Medical University | [158] |
Natural gel preparation of traditional Chinese medicine compound extract coated by nanoparticles, preparation method, and application thereof | CN115337282A | 15 November 2022 | Individual | [159] |
Rigida pine bark extract with improved stability encapsulated nanoparticles and manufacturing method, a cosmetic composition comprising the same | KR20220152865A | 17 November 2022 | Kim Yu-mi and Jang Ki-hyeon | [160] |
In-situ Gel Extraction, Formulation and Evaluation for Treating Fungal Skin Infection | AU2021107001A4 | 16 December 2021 | Bhati Priyanka Ms. Khatoon Rizwana Mrs. Kumar Amrish Dr. Rahate Kalpana Dr. Sharma Akhil Dr. Sharma Shaweta Dr. Singh Veena Dr. Singh Vijay Dr. Sudha Anjali Ms | [161] |
Novel Punica granatum Extracts-Zinc oxide Nanoparticles and its use | KR20220117942A | 25 September 2023 | Yeungnam University Industry-Academic Cooperation Foundation | [162] |
Natural polysaccharide Nano-hydrogel mask based on hollow nanoparticles preparation method thereof | CN114010555A | 8 February 2022 | Luoyang Normal University | [163] |
Berberis extract nanoformulation and process of preparation thereof | WO2022168124A1 | 11 August 2022 | Panjab University, Chandigarh | [164] |
Nanoparticle system for treating skin diseases and preparation method and preparation thereof | CN113081948A | 9 July 2021 | Anhui University of Traditional Chinese Medicine AHUTCM | [165] |
Cosmetic preparation for the care and treatment of facial skin | DE202021106363U1 | 15 December 2021 | Jassen GmbH | [166] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrawal, R.; Jurel, P.; Deshmukh, R.; Harwansh, R.K.; Garg, A.; Kumar, A.; Singh, S.; Guru, A.; Kumar, A.; Kumarasamy, V. Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach. Pharmaceutics 2024, 16, 869. https://doi.org/10.3390/pharmaceutics16070869
Agrawal R, Jurel P, Deshmukh R, Harwansh RK, Garg A, Kumar A, Singh S, Guru A, Kumar A, Kumarasamy V. Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach. Pharmaceutics. 2024; 16(7):869. https://doi.org/10.3390/pharmaceutics16070869
Chicago/Turabian StyleAgrawal, Rutvi, Priyanka Jurel, Rohitas Deshmukh, Ranjit Kumar Harwansh, Akash Garg, Ashwini Kumar, Sudarshan Singh, Ajay Guru, Arun Kumar, and Vinoth Kumarasamy. 2024. "Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach" Pharmaceutics 16, no. 7: 869. https://doi.org/10.3390/pharmaceutics16070869
APA StyleAgrawal, R., Jurel, P., Deshmukh, R., Harwansh, R. K., Garg, A., Kumar, A., Singh, S., Guru, A., Kumar, A., & Kumarasamy, V. (2024). Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach. Pharmaceutics, 16(7), 869. https://doi.org/10.3390/pharmaceutics16070869