A Novel Lactose/MCC/L-HPC Triple-Based Co-Processed Excipients with Improved Tableting Performance Designed for Metoclopramide Orally Disintegrating Tablets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation Optimization
2.2.1. Effects on Various Fillers
2.2.2. Effects on Various Disintegrants
2.2.3. Effects on Different Preparation Methods
2.2.4. Box–Behnken Experiment Design
2.3. Preparation of Co-Processed Excipients
2.4. Characterization of Co-Processed Excipients
2.4.1. Flowability
The Angle of Repose
Bulk Density and Tapped Density
2.4.2. Compactibility
2.4.3. Hygroscopicity
2.4.4. Surface Morphology and Physical States
2.5. Preparation of MCP ODTs
2.6. Characterization of MCP ODTs
2.6.1. Disintegration Time
2.6.2. In Vitro Dissolution
2.7. In Vivo Pharmacokinetics Study
2.8. Statistical Analysis
3. Results and Discussion
3.1. Optimized Formulation of Co-Processed Excipients
3.2. Box–Behnken Experiment Design
3.2.1. Disintegrating Time
3.2.2. Angle of Repose
3.2.3. Carr’s Index
3.2.4. Optimal Formulation
3.3. Characterization of Optimized Co-Processed Particles
3.3.1. Flowability
3.3.2. Compactability
3.3.3. Hygroscopicity
3.4. Surface Morphology, Physical States, and Particle Size
3.5. In Vitro Dissolution
3.6. In Vivo Pharmacokinetics Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghourichay, M.P.; Kiaie, S.H.; Nokhodchi, A.; Javadzadeh, Y. Formulation and quality control of orally disintegrating tablets (ODTs): Recent advances and perspectives. BioMed Res. Int. 2021, 2021, 6618934. [Google Scholar] [CrossRef]
- Bashir, S.; Fitaihi, R.; Abdelhakim, H.E. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur. J. Pharm. Sci. 2023, 182, 106374. [Google Scholar] [CrossRef]
- Comoglu, T.; Dilek Ozyilmaz, E. Orally disintegrating tablets and orally disintegrating mini tablets—Novel dosage forms for pediatric use. Pharm. Dev. Technol. 2019, 24, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Saharan, V.A. Current Advances in Drug Delivery through Fast Dissolving/Disintegrating Dosage Forms; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017. [Google Scholar]
- Al-Zoubi, N.; Gharaibeh, S.; Aljaberi, A.; Nikolakakis, I. Spray Drying for Direct Compression of Pharmaceuticals. Processes 2021, 9, 267. [Google Scholar] [CrossRef]
- Ochoa, E.; Morelli, L.; Salvioni, L.; Giustra, M.; De Santes, B.; Spena, F.; Barbieri, L.; Garbujo, S.; Viganò, M.; Novati, B.; et al. Co-processed materials testing as excipients to produce Orally Disintegrating Tablets (ODT) using binder jet 3D-printing technology. Eur. J. Pharm. Biopharm. 2024, 194, 85–94. [Google Scholar] [CrossRef]
- Satish, K.; Nachaegari, K.; Bansal, A. Coprocessed Excipients for Solid Dosage Forms. Pharm. Technol. 2004, 28, 52–64. [Google Scholar]
- Chauhan, S.I.; Nathwani, S.V.; Soniwala, M.M.; Chavda, J.R. Development and Characterization of Multifunctional Directly Compressible Co-processed Excipient by Spray Drying Method. AAPS PharmSciTech 2017, 18, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Bhavana, P.; Reddy, M.S. A review on co-processed excipients used in direct compression of tablet dosage form. GSC Biol. Pharm. Sci. 2023, 23, 212–219. [Google Scholar] [CrossRef]
- Woyna-Orlewicz, K.; Brniak, W.; Tatara, W.; Strzebońska, M.; Haznar-Garbacz, D.; Szafraniec-Szczęsny, J.; Antosik-Rogóż, A.; Wojteczko, K.; Strózik, M.; Kurek, M.; et al. Investigating the Impact of Co-processed Excipients on the Formulation of Bromhexine Hydrochloride Orally Disintegrating Tablets (ODTs). Pharm. Res. 2023, 40, 2947–2962. [Google Scholar] [CrossRef]
- Nawab, A.; Iqtidar, S.; Jamil, S.; Shiekh, J. Co-processed excipients—A step towards better drug product performance. In Proceedings of the 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 16–20 August 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Dziemidowicz, K.; Lopez, F.L.; Bowles, B.J.; Edwards, A.J.; Ernest, T.B.; Orlu, M.; Tuleu, C. Co-Processed Excipients for Dispersible Tablets-Part 2: Patient Acceptability. AAPS PharmSciTech 2018, 19, 2646–2657. [Google Scholar] [CrossRef]
- Bhatia, V.; Dhingra, A.; Chopra, B.; Guarve, K. Co-processed excipients: Recent advances and future perspective. J. Drug Deliv. Sci. Technol. 2022, 71, 103316. [Google Scholar] [CrossRef]
- Jin, C.; Wu, F.; Hong, Y.; Shen, L.; Lin, X.; Zhao, L.; Feng, Y. Updates on applications of low-viscosity grade Hydroxypropyl methylcellulose in coprocessing for improvement of physical properties of pharmaceutical powders. Carbohydr. Polym. 2023, 311, 120731. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Buckner, I.; Kumar, V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev. Ind. Pharm. 2012, 38, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Ambore, S.M.; Tekale, J.; Gattan, S.G. Investigation of Novel Multifunctional Co-Processed Excipient for Direct Compression. World Appl. Sci. J. 2014, 31, 801–810. [Google Scholar] [CrossRef]
- Franc, A.; Vetchý, D.; Vodáčková, P.; Kubaľák, R.; Jendryková, L.; Goněc, R. Co-processed excipients for direct compression of tablets. Ceska A Slov. Farm. 2018, 67, 175–181. [Google Scholar]
- Belda, P.M. The tabletting behavior of cellactose compared with mixtures of cellulose with lactose. Eur. J. Pharm. Biopharm. 1996, 42, 325–330. [Google Scholar]
- Casahoursat, L.; Lemagnen, G.; Larrouture, D. The Use of Stress Relaxation Trials to Characterize Tablet Capping. Drug Dev. Ind. Pharm. 1988, 14, 2179–2199. [Google Scholar] [CrossRef]
- Sherwood, B.E.; Becker, J.W. A new class of high-functionality excipients: Silicified microcrystalline cellulose. Pharm. Technol. 1998, 22, 78–88. [Google Scholar]
- Lupidi, G.; Pastore, G.; Marcantoni, E.; Gabrielli, S. Recent developments in chemical derivatization of microcrystalline cellulose (MCC): Pre-treatments, functionalization, and applications. Molecules 2023, 28, 2009. [Google Scholar] [CrossRef]
- Nakagami, H.; Nada, M. The use of micronized cellulose disintegrants as insoluble swellable matrices for sustained-release tablets. Drug Des. Deliv. 1991, 7, 321–332. [Google Scholar]
- Mishra, S.M.; Sauer, A. Effect of physical properties and chemical substitution of excipient on compaction and disintegration behavior of tablet: A case study of low-substituted hydroxypropyl cellulose (L-HPC). Macromol 2022, 2, 113–130. [Google Scholar] [CrossRef]
- Benet, L.Z.; Broccatelli, F.; Oprea, T.I. BDDCS applied to over 900 drugs. AAPS J. 2011, 13, 519–547. [Google Scholar] [CrossRef] [PubMed]
- Drugbank. Metoclopramide. Available online: https://www.drugbank.ca/drugs/DB01233 (accessed on 7 January 2020).
- Fass, R.; Pieniaszek, H.J.; Thompson, J.R. Pharmacokinetic comparison of orally-disintegrating metoclopramide with conventional metoclopramide tablet formulation in healthy volunteers. Aliment. Pharmacol. Ther. 2009, 30, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Richard Green, W.P.K. Swindon Fast-Dispersing Solid Oral Dosage Form Containing Coarse Particles; R. P. Scherer Corporation: Basking Ridge, NJ, USA, 1999. [Google Scholar]
- Tobyn, M.J.; McCarthy, G.P.; Staniforth, J.N.; Edge, S. Physicochemical comparison between microcrystalline cellulose and silicified microcrystalline cellulose. Int. J. Pharm. 1998, 169, 183–194. [Google Scholar] [CrossRef]
- Tay, J.Y.S.; Liew, C.V.; Heng, P.W.S. Powder Flow Testing: Judicious Choice of Test Methods. AAPS PharmSciTech 2017, 18, 1843–1854. [Google Scholar] [CrossRef]
- FDA. Orally Disintegrating Tablets. December 2008. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets (accessed on 8 July 2024).
- Narazaki, R.; Harada, T.; Takami, N.; Kato, Y.; Ohwaki, T. A New Method for Disintegration Studies of Rapid Disintegrating Tablet. Chem. Pharm. Bull. 2004, 52, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Builders, P.F.; Bonaventure, A.M.; Tiwalade, A.; Okpako, L.C.; Attama, A.A. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose–starch microparticulate composites prepared by compatibilized reactive polymer blending. Int. J. Pharm. 2010, 388, 159–167. [Google Scholar] [CrossRef]
- Lamešić, D.; Planinšek, O.; Lavrič, Z.; Ilić, I. Spherical agglomerates of lactose with enhanced mechanical properties. Int. J. Pharm. 2017, 516, 247–257. [Google Scholar] [CrossRef]
- Reynolds, G.K.; Campbell, J.I.; Roberts, R.J. A Compressibility Based Model for Predicting the Tensile Strength of Directly Compressed Pharmaceutical Powder Mixtures. Int. J. Pharm. 2017, 531, 215–224. [Google Scholar] [CrossRef]
- Busignies, V.; Tchoreloff, P.; Leclerc, B.; Besnard, M.; Couarraze, G. Compaction of crystallographic forms of pharmaceutical granular lactoses. I. Compressibility. Eur. J. Pharm. Biopharm. 2004, 58, 569–576. [Google Scholar] [CrossRef]
- Patil, S.S.; Mahadik, K.R.; Paradkar, A.R. Liquid crystalline phase as a probe for crystal engineering of lactose: Carrier for pulmonary drug delivery. Eur. J. Pharm. Sci. 2015, 68, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Buckton, G.; Chidavaenzi, O.C.; Koosha, F. The effect of spray-drying feed temperature and subsequent crystallization conditions on the physical form of lactose. AAPS PharmSciTech 2002, 3, E37. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Human Services, FDA, Center for Drug Evaluation and Research (CDER). Guidance for Industry: Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs—General Considerations. Available online: https://www.fda.gov/media/88254/download (accessed on 4 April 2019).
Filler Agents | Angle of Repose (°) | Bulk Density (g/mL) | Tap Density (g/mL) | Hausner Ratio | Carr’s Index (%) |
---|---|---|---|---|---|
Lactose | 37.09 ± 2.96 | 0.3653 ± 0.008 | 0.4823 ± 0.013 | 1.32 ± 0.075 | 24.26 ± 0.54 |
Mannitol | 39.11 ± 0.83 | 0.3236 ± 0.013 | 0.5153 ± 0.021 | 1.59 ± 0.061 | 37.20 ± 1.42 |
Maltitol | 46.68 ± 2.75 | 0.3200 ± 0.018 | 0.5247 ± 0.017 | 1.64 ± 0.068 | 39.01 ± 0.87 |
Sorbitol | 44.42 ± 1.97 | 0.2566 ± 0.011 | 0.3708 ± 0.015 | 1.45 ± 0.081 | 30.80 ± 0.83 |
Disintegrating Agents | Angle of Repose (°) | Bulk Density (g/mL) | Tap Density (g/mL) | Hausner Ratio | Carr’s Index (%) |
---|---|---|---|---|---|
L-HPC (LH22) | 35.67 ± 2.21 | 0.4348 ± 0.014 | 0.5685 ± 0.016 | 1.31 ± 0.061 | 23.50 ± 0.75 |
L-HPC (LH21) | 34.57 ± 1.91 | 0.3751 ± 0.023 | 0.4716 ± 0.017 | 1.26 ± 0.058 | 20.46 ± 1.00 |
L-HPC (LB) | 42.67 ± 0.50 | 0.4171 ± 0.018 | 0.6107 ± 0.011 | 1.46 ± 0.047 | 31.70 ± 0.91 |
CMS-Na (1) | 37.06 ± 3.33 | 0.5195 ± 0.021 | 0.7050 ± 0.013 | 1.36 ± 0.089 | 26.31 ± 1.48 |
CMS-Na (2) | 43.51 ± 1.48 | 0.5538 ± 0.011 | 0.7384 ± 0.022 | 1.33 ± 0.062 | 25.00 ± 0.81 |
Added Materials | Added Time (h) | Angle of Repose (°) | Bulk Density (g/mL) | Tap Density (g/mL) | Hausner Ratio | Carr’s Index (%) |
---|---|---|---|---|---|---|
L-HPC | 0.25 | 34.26 ± 0.43 | 0.4562 ± 0.016 | 0.5977 ± 0.018 | 1.31 ± 0.066 | 23.68 ± 0.68 |
1 | 37.79 ± 0.82 | 0.4803 ± 0.024 | 0.6403 ± 0.011 | 1.33 ± 0.041 | 24.98 ± 0.81 | |
2 | 36.40 ± 1.43 | 0.5040 ± 0.018 | 0.6719 ± 0.021 | 1.33 ± 0.058 | 24.98 ± 0.97 | |
3 | 37.62 ± 1.11 | 0.4640 ± 0.027 | 0.6496 ± 0.027 | 1.40 ± 0.049 | 28.57 ± 0.89 | |
4 | 41.67 ± 1.55 | 0.4935 ± 0.031 | 0.6807 ± 0.029 | 1.38 ± 0.083 | 27.50 ± 1.30 | |
6 | 42.81 ± 1.71 | 0.4060 ± 0.025 | 0.6091 ± 0.032 | 1.50 ± 0.053 | 33.34 ± 1.52 | |
Lactose | 0.5 | 39.76 ± 1.52 | 0.4775 ± 0.019 | 0.6686 ± 0.022 | 1.40 ± 0.062 | 28.57 ± 0.71 |
1 | 35.77 ± 0.96 | 0.4834 ± 0.007 | 0.6387 ± 0.011 | 1.32 ± 0.087 | 24.32 ± 0.98 | |
1.5 | 33.84 ± 0.56 | 0.5148 ± 0.015 | 0.6642 ± 0.018 | 1.29 ± 0.065 | 22.50 ± 0.83 | |
2 | 36.44 ± 1.06 | 0.4948 ± 0.026 | 0.6385 ± 0.022 | 1.29 ± 0.094 | 22.50 ± 0.79 | |
2.5 | 39.94 ± 1.63 | 0.5087 ± 0.023 | 0.6783 ± 0.021 | 1.33 ± 0.053 | 25.00 ± 0.97 | |
3 | 32.85 ± 2.61 | 0.5339 ± 0.033 | 0.6811 ± 0.028 | 1.28 ± 0.079 | 21.61 ± 1.39 | |
4 | 28.44 ± 0.32 | 0.4748 ± 0.015 | 0.6280 ± 0.017 | 1.32 ± 0.058 | 24.39 ± 0.96 | |
MCC | 3 | 34.42 ± 0.37 | 0.4631 ± 0.018 | 0.5975 ± 0.015 | 1.29 ± 0.075 | 22.50 ± 0.74 |
6 | 37.36 ± 2.00 | 0.4965 ± 0.028 | 0.6262 ± 0.029 | 1.26 ± 0.066 | 20.71 ± 0.99 | |
9 | 45.28 ± 0.23 | 0.4846 ± 0.015 | 0.6576 ± 0.016 | 1.36 ± 0.058 | 26.32 ± 0.87 | |
18 | 40.51 ± 0.35 | 0.4709 ± 0.021 | 0.6076 ± 0.024 | 1.29 ± 0.083 | 22.50 ± 1.55 |
Added Materials | Added Temperature (°C) | Angle of Repose (°) | Bulk Density (g/mL) | Tap Density (g/mL) | Hausner Ratio | Carr’s Index (%) |
---|---|---|---|---|---|---|
L-HPC | RT | 43.47 ± 2.53 | 0.5653 ± 0.035 | 0.7828 ± 0.017 | 1.38 ± 0.083 | 27.78 ± 0.85 |
40 | 43.20 ± 0.17 | 0.4291 ± 0.011 | 0.6007 ± 0.013 | 1.40 ± 0.069 | 28.57 ± 0.84 | |
50 | 41.63 ± 1.48 | 0.4405 ± 0.028 | 0.6075 ± 0.022 | 1.38 ± 0.047 | 27.49 ± 0.93 | |
60 | 34.11 ± 3.05 | 0.4863 ± 0.043 | 0.6383 ± 0.035 | 1.31 ± 0.055 | 23.81 ± 0.77 | |
70 | 40.65 ± 2.50 | 0.4682 ± 0.037 | 0.6399 ± 0.036 | 1.37 ± 0.072 | 26.83 ± 1.69 | |
80 | 36.74 ± 0.63 | 0.5196 ± 0.016 | 0.6726 ± 0.018 | 1.29 ± 0.093 | 22.75 ± 0.90 | |
90 | 36.98 ± 0.02 | 0.4795 ± 0.009 | 0.6293 ± 0.012 | 1.31 ± 0.047 | 23.80 ± 1.43 | |
Lactose | RT | 41.16 ± 2.07 | 0.5255 ± 0.026 | 0.7591 ± 0.025 | 1.44 ± 0.052 | 30.77 ± 0.88 |
40 | 43.31 ± 0.46 | 0.4952 ± 0.022 | 0.6933 ± 0.021 | 1.40 ± 0.061 | 28.57 ± 0.96 | |
50 | 41.56 ± 0.64 | 0.5019 ± 0.016 | 0.6849 ± 0.013 | 1.36 ± 0.077 | 26.72 ± 0.72 | |
60 | 37.66 ± 0.99 | 0.5211 ± 0.027 | 0.7071 ± 0.021 | 1.36 ± 0.059 | 26.30 ± 1.28 | |
70 | 40.31 ± 1.05 | 0.5239 ± 0.022 | 0.6811 ± 0.028 | 1.30 ± 0.060 | 23.08 ± 1.13 | |
80 | 32.85 ± 3.62 | 0.5479 ± 0.029 | 0.6849 ± 0.025 | 1.25 ± 0.064 | 20.00 ± 0.99 | |
90 | 42.24 ± 2.06 | 0.5071 ± 0.031 | 0.7136 ± 0.036 | 1.41 ± 0.073 | 28.94 ± 0.83 | |
MCC | RT | 36.09 ± 1.12 | 0.4884 ± 0.018 | 0.6411 ± 0.019 | 1.31 ± 0.059 | 23.81 ± 1.21 |
40 | 37.50 ± 0.71 | 0.485 ± 0.023 | 0.6466 ± 0.026 | 1.33 ± 0.046 | 25.00 ± 0.55 | |
50 | 40.67 ± 1.00 | 0.4786 ± 0.017 | 0.6475 ± 0.016 | 1.35 ± 0.083 | 26.09 ± 0.89 | |
60 | 44.40 ± 0.75 | 0.453 ± 0.011 | 0.6098 ± 0.014 | 1.35 ± 0.070 | 25.71 ± 0.86 |
Formulation Number | Water: L-HPC (g/g) | MCC: L-HPC (g/g) | Lactose: L-HPC (g/g) | Disintegrating Time (s) | Angle of Repose (°) | Carr’s Index (%) |
---|---|---|---|---|---|---|
1 | 20 | 3 | 4 | 19.54 | 36.92 | 20.83 |
2 | 30 | 3 | 2 | 40.66 | 39.95 | 28.57 |
3 | 20 | 3 | 4 | 22.28 | 38.61 | 23.53 |
4 | 10 | 3 | 6 | 25.95 | 38.46 | 18.75 |
5 | 20 | 2 | 6 | 26.64 | 41.30 | 20.83 |
6 | 10 | 2 | 4 | 20.85 | 41.41 | 25.00 |
7 | 20 | 3 | 4 | 21.59 | 37.55 | 21.05 |
8 | 10 | 4 | 4 | 31.32 | 42.27 | 30.77 |
9 | 20 | 4 | 6 | 35.49 | 43.18 | 25.00 |
10 | 30 | 3 | 6 | 44.12 | 40.44 | 35.71 |
11 | 20 | 3 | 4 | 20.64 | 37.83 | 23.53 |
12 | 30 | 4 | 4 | 41.41 | 41.69 | 29.41 |
13 | 20 | 2 | 2 | 33.31 | 40.37 | 26.67 |
14 | 20 | 3 | 4 | 22.93 | 37.53 | 18.75 |
15 | 10 | 3 | 2 | 25.04 | 40.03 | 28.57 |
16 | 30 | 2 | 4 | 38.14 | 38.66 | 30.77 |
17 | 20 | 4 | 2 | 38.94 | 40.93 | 33.33 |
Response | Source | Std. Dev. | R-Squared | |
---|---|---|---|---|
Disintegrating time (s) | Quadratic | 2.35 | 0.9663 | Suggested |
Angle of repose (°) | Quadratic | 1.03 | 0.8642 | Suggested |
Carr’s index (%) | Quadratic | 0.029 | 0.8611 | Suggested |
Sample | Mean Angle of Repose (°) | Hausner Ratio | Carr’s Index (%) | Mean Disintegrating Time (s) |
---|---|---|---|---|
181201 | 34.98 | 1.23 | 18.75 | 23.06 |
181202 | 37.31 | 1.25 | 20.59 | 23.69 |
181203 | 37.21 | 1.23 | 21.94 | 21.53 |
Parameter | Value |
---|---|
Bulk density (g/mL) | 0.60–0.63 |
Tab density (g/mL) | 0.77–0.80 |
Hausner ratio | 1.23 |
Carr’s index (%) | 18.75 |
Angle of repose (°) | 36.52 |
Parameters | Reglan® | MCP ODTs |
---|---|---|
T1/2 (h) | 1.17 ± 0.43 | 0.92 ± 0.36 |
Tmax (h) | 0.75 | 1 |
Cmax (ng/mL) | 60.30 ± 51.08 * | 96.74 ± 53.82 * |
Tlast (h) | 7.33 ± 1.03 | 5.67 ± 1.97 |
AUC0-t (h × ng/mL) | 142.56 ± 54.72 | 152.39 ± 56.41 |
AUC0-∞ (h × ng/mL) | 145.83 ± 57.29 | 157.85 ± 59.64 |
Vd0-∞ (L) | 124.32 ± 37.89 | 92.49 ± 43.13 |
CL0-∞ (L/h) | 82.61 ± 45.55 | 74.10 ± 34.79 |
MRT0-t | 1.99 ± 0.58 | 1.50 ± 0.36 |
MRT0-∞ | 2.13 ± 0.70 | 1.65 ± 0.40 |
Dependent | Units | Ratio_% Ref_ | CI_90_Lower | CI_90_Upper |
---|---|---|---|---|
Ln (Cmax) | ng/mL | 133.05 | 97.86 | 180.90 |
Ln (AUClast) | h × ng/mL | 107.94 | 93.58 | 124.51 |
Ln (AUCINF_obs) | h × ng/mL | 109.32 | 94.56 | 126.38 |
Test | p Value |
---|---|
Sequence | 0.3758 |
Period | 1 |
Form | 0.1967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Wang, J.; Yan, B.; Wang, Q.; Shen, Y.; Chen, Y.; Tian, Y. A Novel Lactose/MCC/L-HPC Triple-Based Co-Processed Excipients with Improved Tableting Performance Designed for Metoclopramide Orally Disintegrating Tablets. Pharmaceutics 2024, 16, 959. https://doi.org/10.3390/pharmaceutics16070959
Dai X, Wang J, Yan B, Wang Q, Shen Y, Chen Y, Tian Y. A Novel Lactose/MCC/L-HPC Triple-Based Co-Processed Excipients with Improved Tableting Performance Designed for Metoclopramide Orally Disintegrating Tablets. Pharmaceutics. 2024; 16(7):959. https://doi.org/10.3390/pharmaceutics16070959
Chicago/Turabian StyleDai, Xiaorong, Jiamin Wang, Bo Yan, Qian Wang, Yan Shen, Yongkang Chen, and Yu Tian. 2024. "A Novel Lactose/MCC/L-HPC Triple-Based Co-Processed Excipients with Improved Tableting Performance Designed for Metoclopramide Orally Disintegrating Tablets" Pharmaceutics 16, no. 7: 959. https://doi.org/10.3390/pharmaceutics16070959
APA StyleDai, X., Wang, J., Yan, B., Wang, Q., Shen, Y., Chen, Y., & Tian, Y. (2024). A Novel Lactose/MCC/L-HPC Triple-Based Co-Processed Excipients with Improved Tableting Performance Designed for Metoclopramide Orally Disintegrating Tablets. Pharmaceutics, 16(7), 959. https://doi.org/10.3390/pharmaceutics16070959