Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Re-Complex 2
2.2. Synthesis of 99mTc-Complex 2’
2.3. Stability Studies of 99mTc-Complex 2’
2.4. Lipophilicity Study of 99mTc-Complex 2’
2.5. In Vitro Biological Studies
2.5.1. Cytotoxicity and Growth Inhibition (MTT Assay)
2.5.2. Inhibition of EGFR Phosphorylation
2.5.3. Cell Cycle Analysis
2.5.4. Radiosensitivity: MTT Assay and Clonogenic Assay
2.5.5. Cell Uptake of 99mTc-Complex 2’
3. Results and Discussion
3.1. Synthesis of Re-Complexes
3.2. Radiochemistry and In Vitro Evaluation
3.3. In Vitro Biological Studies
3.3.1. Cell Growth Inhibition
3.3.2. Inhibition of EGFR Phosphorylation
3.3.3. Cell Cycle Analysis
3.3.4. Influence of the Complexes on A431 Cell Line Radiosensitivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guardiola, S.; Varese, M.; Sánchez-Navarro, M.; Giralt, E. A Third Shot at EGFR: New Opportunities in Cancer Therapy. Trends Pharmacol. Sci. 2019, 40, 941–955. [Google Scholar] [CrossRef] [PubMed]
- Schultz, D.F.; Billadeau, D.D.; Jois, S.D. EGFR Trafficking: Effect of Dimerization, Dynamics, and Mutation. Front. Oncol. 2023, 13, 1258371. [Google Scholar] [CrossRef] [PubMed]
- Shaban, N.; Kamashev, D.; Emelianova, A.; Buzdin, A. Targeted Inhibitors of EGFR: Structure, Biology, Biomarkers, and Clinical Applications. Cells 2023, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Belloni, A.; Pugnaloni, A.; Rippo, M.R.; Di Valerio, S.; Giordani, C.; Procopio, A.D.; Bronte, G. The Cell Line Models to Study Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer with Mutations in the Epidermal Growth Factor Receptor: A Scoping Review. Crit. Rev. Oncol. Hematol. 2024, 194, 104246. [Google Scholar] [CrossRef]
- Tripathy, R.K.; Pande, A.H. Molecular and Functional Insight into Anti-EGFR Nanobody: Theranostic Implications for Malignancies. Life Sci. 2024, 345, 122593. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; Xu, L. Clinical Advances in EGFR-TKI Combination Therapy for EGFR-Mutated NSCLC: A Narrative Review. Transl. Cancer Res. 2023, 12, 3764–3778. [Google Scholar] [CrossRef]
- Singh, S.; Sadhukhan, S.; Sonawane, A. 20 Years since the Approval of First EGFR-TKI, Gefitinib: Insight and Foresight. Biochim. Biophys. Acta BBA—Rev. Cancer 2023, 1878, 188967. [Google Scholar] [CrossRef]
- Ciardiello, F.; Hirsch, F.R.; Pirker, R.; Felip, E.; Valencia, C.; Smit, E.F. The Role of Anti-EGFR Therapies in EGFR-TKI-Resistant Advanced Non-Small Cell Lung Cancer. Cancer Treat. Rev. 2024, 122, 102664. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R. Small Molecule Inhibitors Targeting the EGFR/ErbB Family of Protein-Tyrosine Kinases in Human Cancers. Pharmacol. Res. 2019, 139, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Levantini, E.; Maroni, G.; Del Re, M.; Tenen, D.G. EGFR Signaling Pathway as Therapeutic Target in Human Cancers. Semin. Cancer Biol. 2022, 85, 253–275. [Google Scholar] [CrossRef]
- Solomon, B.; Hagekyriakou, J.; Trivett, M.K.; Stacker, S.A.; McArthur, G.A.; Cullinane, C. EGFR Blockade with ZD1839 (“Iressa”) Potentiates the Antitumor Effects of Single and Multiple Fractions of Ionizing Radiation in Human A431 Squamous Cell Carcinoma. Int. J. Radiat. Oncol. 2003, 55, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Burdak-Rothkamm, S.; Rübe, C.E.; Nguyen, T.P.; Ludwig, D.; Feldmann, K.; Wiegel, T.; Rübe, C. Radiosensitivity of Tumor Cell Lines after Pretreatment with the EGFR Tyrosine Kinase Inhibitor ZD1839 (Iressa®). Strahlenther. Onkol. 2005, 181, 197–204. [Google Scholar] [CrossRef]
- Kang, K.B.; Zhu, C.; Wong, Y.L.; Gao, Q.; Ty, A.; Wong, M.C. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair. Int. J. Radiat. Oncol. 2012, 83, e43–e52. [Google Scholar] [CrossRef]
- Huang, F.; Liang, X.; Min, X.; Zhang, Y.; Wang, G.; Peng, Z.; Peng, F.; Li, M.; Chen, L.; Chen, Y. Simultaneous Inhibition of EGFR and HER2 via Afatinib Augments the Radiosensitivity of Nasopharyngeal Carcinoma Cells. J. Cancer 2019, 10, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Macha, M.A.; Rachagani, S.; Qazi, A.K.; Jahan, R.; Gupta, S.; Patel, A.; Seshacharyulu, P.; Lin, C.; Li, S.; Wang, S.; et al. Afatinib Radiosensitizes Head and Neck Squamous Cell Carcinoma Cells by Targeting Cancer Stem Cells. Oncotarget 2017, 8, 20961–20973. [Google Scholar] [CrossRef]
- Li, Y.-S.; Jie, G.-L.; Wu, Y.-L. Novel Systemic Therapies in the Management of Tyrosine Kinase Inhibitor-Pretreated Patients with Epidermal Growth Factor Receptor-Mutant Non-Small-Cell Lung Cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231193726. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gong, C.; Zhou, H.; Liu, J.; Xia, X.; Ha, W.; Jiang, Y.; Liu, Q.; Xiong, H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 5489. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Zhang, T.; Xu, J.; Yan, S.; Liang, B.; Xing, D. Epidermal Growth Factor Receptor Dual-Target Inhibitors as a Novel Therapy for Cancer: A Review. Int. J. Biol. Macromol. 2023, 253, 127440. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Li, Y.; Wang, Y.; Liu, W. Metal Complexes Bearing EGFR-inhibiting Ligands as Promising Anticancer Agents. Med. Res. Rev. 2024, 44, 1545–1565. [Google Scholar] [CrossRef]
- Sharma, S.A.; Vaibhavi, N.; Kar, B.; Das, U.; Paira, P. Target-Specific Mononuclear and Binuclear Rhenium(i) Tricarbonyl Complexes as Upcoming Anticancer Drugs. RSC Adv. 2022, 12, 20264–20295. [Google Scholar] [CrossRef]
- Palma, E.; Santos, J.F.; Fernandes, C.; Paulo, A. DNA-Targeted Complexes of Tc and Re for Biomedical Applications. Chem.—Eur. J. 2024, 30, e202303591. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Santos, I.C.; Santos, I.; Pietzsch, H.-J.; Kunstler, J.-U.; Kraus, W.; Rey, A.; Margaritis, N.; Bourkoula, A.; Chiotellis, A.; et al. Rhenium and Technetium Complexes Bearing Quinazoline Derivatives: Progress towards a 99mTc Biomarker for EGFR-TK Imaging. Dalton Trans. 2008, 3215–3225. [Google Scholar] [CrossRef] [PubMed]
- Makrypidi, K.; Kiritsis, C.; Roupa, I.; Triantopoulou, S.; Shegani, A.; Paravatou-Petsotas, M.; Chiotellis, A.; Pelecanou, M.; Papadopoulos, M.; Pirmettis, I. Evaluation of Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivatives as Potential EGFR Agents. Molecules 2023, 28, 1786. [Google Scholar] [CrossRef] [PubMed]
- Kiritsis, C.; Shegani, A.; Makrypidi, K.; Roupa, I.; Lazopoulos, A.; Panagiotopoulou, A.; Triantopoulou, S.; Paravatou-Petsotas, M.; Pietzsch, H.-J.; Pelecanou, M.; et al. Synthesis and Preclinical Evaluation of Rhenium and Technetium-99m “4 + 1” Mixed-Ligand Complexes Bearing Quinazoline Derivatives as Potential EGFR Imaging Agents. Bioorg. Med. Chem. 2022, 73, 117012. [Google Scholar] [CrossRef] [PubMed]
- Bourkoula, A.; Paravatou-Petsotas, M.; Papadopoulos, A.; Santos, I.; Pietzsch, H.-J.; Livaniou, E.; Pelecanou, M.; Papadopoulos, M.; Pirmettis, I. Synthesis and Characterization of Rhenium and Technetium-99m Tricarbonyl Complexes Bearing the 4-[3-Bromophenyl]Quinazoline Moiety as a Biomarker for EGFR-TK Imaging. Eur. J. Med. Chem. 2009, 44, 4021–4027. [Google Scholar] [CrossRef]
- Alberto, R.; Egli, A.; Abram, U.; Hegetschweiler, K.; Gramlich, V.; Schubiger, P.A. Synthesis and Reactivity of [NEt4]2[ReBr3(CO) 3 ]. Formation and Structural Characterization of the Clusters [NEt4][Re3(µ3-OH)(µ-OH)3(CO)9] and [NEt4][Re2(µ-OH)3(CO)6] by Alkaline Titration. J Chem Soc Dalton Trans 1994, 2815–2820. [Google Scholar] [CrossRef]
- Lazopoulos, A.; Triantis, C.; Shegani, A.; Papasavva, A.; Raptopoulou, C.P.; Psycharis, V.; Chiotellis, A.; Pelecanou, M.; Pirmettis, I.; Papadopoulos, M.S. Effective Labeling of Amine Pharmacophores through the Employment of 2,3-Pyrazinedicarboxylic Anhydride and the Generation of Fac- [M(CO) 3 (PyA)P] and Cis–Trans -[M(CO) 2 (PyA)P 2 ] Complexes (PyA = Pyrazine-2-Carboxylate, P = Phosphine, M = Re, 99m Tc). Inorg. Chem. 2021, 60, 17509–17516. [Google Scholar] [CrossRef]
- Stouraitis, A.; Sagnou, M.; Mavroidi, B.; Kiritsis, C.; Shegani, A.; Raptopoulou, C.; Psycharis, V.; Methenitis, C.; Pirmettis, I.; Papadopoulos, M.; et al. Mixed Ligand Re and 99mTc Tricarbonyl Complexes Bearing Two Important Pharmacophores: 2-(4′-Aminophenyl)Benzothiazole and Curcumin. Inorg. Chim. Acta 2024, 571, 122172. [Google Scholar] [CrossRef]
- Buch, K.; Peters, T.; Nawroth, T.; Sänger, M.; Schmidberger, H.; Langguth, P. Determination of Cell Survival after Irradiation via Clonogenic Assay versus Multiple MTT Assay—A Comparative Study. Radiat. Oncol. 2012, 7, 1. [Google Scholar] [CrossRef]
- Cui, J.; Wang, M.-C.; Zhang, Y.-M.; Ren, M.-Z.; Wang, S.-X.; Nan, K.-J.; Song, L.-P. Combination of S-1 and Gefitinib Increases the Sensitivity to Radiotherapy in Lung Cancer Cells. Cancer Chemother. Pharmacol. 2018, 81, 717–726. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Rewcastle, G.W.; Denny, W.A.; Bridges, A.J.; Zhou, H.; Cody, D.R.; McMichael, A.; Fry, D.W. Tyrosine Kinase Inhibitors. 5. Synthesis and Structure-Activity Relationships for 4-[(Phenylmethyl)Amino]- and 4-(Phenylamino)Quinazolines as Potent Adenosine 5′-Triphosphate Binding Site Inhibitors of the Tyrosine Kinase Domain of the Epidermal Growth Factor Receptor. J. Med. Chem. 1995, 38, 3482–3487. [Google Scholar] [CrossRef] [PubMed]
- Marker, S.C.; MacMillan, S.N.; Zipfel, W.R.; Li, Z.; Ford, P.C.; Wilson, J.J. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines. Inorg. Chem. 2018, 57, 1311–1331. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Zhang, L.; Xu, S.; Luo, J.; Lu, X.; Zhang, Z.; Xu, T.; Liu, Y.; Tu, Z.; Xu, Y.; et al. Design, Synthesis, and Biological Evaluation of Novel Conformationally Constrained Inhibitors Targeting Epidermal Growth Factor Receptor Threonine 790 → Methionine 790 Mutant. J. Med. Chem. 2012, 55, 2711–2723. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Y.; Zhu, X.; Wu, B.; Wang, Q.; Zhen, Y.; Shu, X.; Liu, K.; Zhou, Y.; Ma, X. Novel Quinazoline Derivatives Bearing Various 4-Aniline Moieties as Potent EGFR Inhibitors with Enhanced Activity Against NSCLC Cell Lines. Chem. Biol. Drug Des. 2016, 87, 635–643. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liu, J.; Chen, L.; Zhao, L.; Li, B.; Wang, W. Synthesis and in Vitro Biological Evaluation of Novel Quinazoline Derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 1584–1587. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Xu, H.; Li, X.; Zhao, L.; Wang, W.; Li, B.; Zhang, X. 6,7-Dimorpholinoalkoxy Quinazoline Derivatives as Potent EGFR Inhibitors with Enhanced Antiproliferative Activities against Tumor Cells. Eur. J. Med. Chem. 2018, 147, 77–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Li, X.; Gao, L.; Hao, Y.; Li, B.; Yan, Y. Novel 4-Arylaminoquinazolines Bearing N, N -Diethyl(Aminoethyl)Amino Moiety with Antitumour Activity as EGFRwt-TK Inhibitor. J. Enzyme Inhib. Med. Chem. 2019, 34, 1668–1677. [Google Scholar] [CrossRef]
- Karnthaler-Benbakka, C.; Groza, D.; Kryeziu, K.; Pichler, V.; Roller, A.; Berger, W.; Heffeter, P.; Kowol, C.R. Tumor-Targeting of EGFR Inhibitors by Hypoxia-Mediated Activation. Angew. Chem. Int. Ed. 2014, 53, 12930–12935. [Google Scholar] [CrossRef]
- Du, J.; Kang, Y.; Zhao, Y.; Zheng, W.; Zhang, Y.; Lin, Y.; Wang, Z.; Wang, Y.; Luo, Q.; Wu, K.; et al. Synthesis, Characterization, and in Vitro Antitumor Activity of Ruthenium(II) Polypyridyl Complexes Tethering EGFR-Inhibiting 4-Anilinoquinazolines. Inorg. Chem. 2016, 55, 4595–4605. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Q.; Zheng, W.; Wang, Z.; Lin, Y.; Zhang, E.; Lü, S.; Xiang, J.; Zhao, Y.; Wang, F. Luminescent Cyclometallated Platinum(ii) Complexes: Highly Promising EGFR/DNA Probes and Dual-Targeting Anticancer Agents. Inorg. Chem. Front. 2018, 5, 413–424. [Google Scholar] [CrossRef]
- Kim, J.-C.; Ali, M.A.; Nandi, A.; Mukhopadhyay, P.; Choy, H.; Cao, C.; Saha, D. Correlation of HER1/EGFR Expression and Degree of Radiosensitizing Effect of the HER1/EGFR-Tyrosine Kinase Inhibitor Erlotinib. Indian J. Biochem. Biophys. 2005, 42, 358–365. [Google Scholar] [PubMed]
- Janmaat, M.L.; Kruyt, F.A.E.; Rodriguez, J.A.; Giaccone, G. Response to Epidermal Growth Factor Receptor Inhibitors in Non-Small Cell Lung Cancer Cells: Limited Antiproliferative Effects and Absence of Apoptosis Associated with Persistent Activity of Extracellular Signal-Regulated Kinase or Akt Kinase Pathways. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003, 9, 2316–2326. [Google Scholar] [PubMed]
- Yao, M.; Shang, Y.-Y.; Zhou, Z.-W.; Yang, Y.-X.; Wu, Y.-S.; Guan, L.-F.; Wang, X.-Y.; Zhou, S.-F.; Wei, X. The Research on Lapatinib in Autophagy, Cell Cycle Arrest and Epithelial to Mesenchymal Transition via Wnt/ErK/PI3K-AKT Signaling Pathway in Human Cutaneous Squamous Cell Carcinoma. J. Cancer 2017, 8, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Feng, D.; Lv, J.; Cui, X.; Wang, Y.; Wang, Q.; Zhang, L. Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers 2023, 15, 666. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, J.; Guo, Y.; Mei, Y.; Yuan, B.; Gan, N.; Zhang, J.; Hu, J.; Hou, H. Influence of the Introduction of a Triphenylphosphine Group on the Anticancer Activity of a Copper Complex. J. Inorg. Biochem. 2020, 210, 111102. [Google Scholar] [CrossRef]
- De Souza Oliveira, M.; De Santana, Á.A.D.; Correa, R.S.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. Ru(II)-Thymine Complex Causes Cell Growth Inhibition and Induction of Caspase-Mediated Apoptosis in Human Promyelocytic Leukemia HL-60 Cells. Int. J. Mol. Sci. 2018, 19, 1609. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Q.; Long, H.; Zhang, P.; Su, H.; Liu, J. A New Gold(I) Complex-Au(PPh3)PT Is a Deubiquitinase Inhibitor and Inhibits Tumor Growth. eBioMedicine 2019, 39, 159–172. [Google Scholar] [CrossRef]
- Yan, Y.; Black, C.P.; Cowan, K.H. Irradiation-Induced G2/M Checkpoint Response Requires ERK1/2 Activation. Oncogene 2007, 26, 4689–4698. [Google Scholar] [CrossRef]
- Wrona, A.; Dziadziuszko, R.; Jassem, J. Combining Radiotherapy with Targeted Therapies in Non-Small Cell Lung Cancer: Focus on Anti-EGFR, Anti-ALK and Anti-Angiogenic Agents. Transl. Lung Cancer Res. 2021, 10, 2032–2047. [Google Scholar] [CrossRef]
- Giocanti, N.; Hennequin, C.; Rouillard, D.; Defrance, R.; Favaudon, V. Additive Interaction of Gefitinib (‘Iressa’, ZD1839) and Ionising Radiation in Human Tumour Cells in Vitro. Br. J. Cancer 2004, 91, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Stea, B.; Falsey, R.; Kislin, K.; Patel, J.; Glanzberg, H.; Carey, S.; Ambrad, A.A.; Meuillet, E.J.; Martinez, J.D. Time and Dose-Dependent Radiosensitization of the Glioblastoma Multiforme U251 Cells by the EGF Receptor Tyrosine Kinase Inhibitor ZD1839 (‘Iressa’). Cancer Lett. 2003, 202, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Kriegs, M.; Gurtner, K.; Can, Y.; Brammer, I.; Rieckmann, T.; Oertel, R.; Wysocki, M.; Dorniok, F.; Gal, A.; Grob, T.J.; et al. Radiosensitization of NSCLC Cells by EGFR Inhibition Is the Result of an Enhanced P53-Dependent G1 Arrest. Radiother. Oncol. 2015, 115, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Kriegs, M.; Kasten-Pisula, U.; Riepen, B.; Hoffer, K.; Struve, N.; Myllynen, L.; Braig, F.; Binder, M.; Rieckmann, T.; Grénman, R.; et al. Radiosensitization of HNSCC Cells by EGFR Inhibition Depends on the Induction of Cell Cycle Arrests. Oncotarget 2016, 7, 45122–45133. [Google Scholar] [CrossRef] [PubMed]
Compound | Cytotoxicity IC50 Value (μΜ) ± SD 1 |
---|---|
6-amino-4-[3-bromophenyl]quinazoline | 4.8 ± 0.2 [22] |
Complex 1 | 2.0 ± 1.0 [25] |
Complex 2 | 2.6 ± 0.3 |
Complex | G0/G1 | S | G2/M | Cell Death |
---|---|---|---|---|
Control | 46.83 ± 2.32 | 35.83 ± 1.96 | 17.34 ± 1.07 | 0.07 ± 0.10 |
1 | 78.40 ± 1.57 | 14.39 ± 0.82 | 7.21 ± 0.78 | 0.93 ± 1.61 |
2 | 54.87 ± 2.21 | 33.73 ± 2.11 | 11.41 ± 0.81 | 22.98 ± 7.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantopoulou, S.; Roupa, I.; Shegani, A.; Pirmettis, N.N.; Terzoudi, G.I.; Chiotellis, A.; Tolia, M.; Damilakis, J.; Pirmettis, I.; Paravatou-Petsota, M. Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting. Pharmaceutics 2024, 16, 1213. https://doi.org/10.3390/pharmaceutics16091213
Triantopoulou S, Roupa I, Shegani A, Pirmettis NN, Terzoudi GI, Chiotellis A, Tolia M, Damilakis J, Pirmettis I, Paravatou-Petsota M. Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting. Pharmaceutics. 2024; 16(9):1213. https://doi.org/10.3390/pharmaceutics16091213
Chicago/Turabian StyleTriantopoulou, Sotiria, Ioanna Roupa, Antonio Shegani, Nektarios N. Pirmettis, Georgia I. Terzoudi, Aristeidis Chiotellis, Maria Tolia, John Damilakis, Ioannis Pirmettis, and Maria Paravatou-Petsota. 2024. "Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting" Pharmaceutics 16, no. 9: 1213. https://doi.org/10.3390/pharmaceutics16091213
APA StyleTriantopoulou, S., Roupa, I., Shegani, A., Pirmettis, N. N., Terzoudi, G. I., Chiotellis, A., Tolia, M., Damilakis, J., Pirmettis, I., & Paravatou-Petsota, M. (2024). Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting. Pharmaceutics, 16(9), 1213. https://doi.org/10.3390/pharmaceutics16091213