Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin–Silver Nanoparticles Against Candida albicans Strains
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Synthesis of Silver Nanoparticles
2.3. Characterization of Silver Nanoparticles
2.3.1. Dynamic Light Scattering (DLS) Studies
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. UV-Visible Spectroscopy
2.3.4. Stability Studies of Silver Nanoparticles
2.4. Minimum Inhibitory Concentration (MIC)
2.5. In Vitro Antifungal Activity
2.6. Synergism
2.6.1. Checkerboard Survival Assay
2.6.2. Time to Kill Assay Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Silver Nanoparticles
3.2. Dynamic Light Scattering Studies
3.3. Scanning Electron Microscopy
3.4. UV-Visible Spectrophotometry
3.5. Stability Studies of Gelatin AgNPs
3.6. In Vitro Antifungal Activity
3.7. Checkerboard Survival Assay
3.8. Time to Kill Assay Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muruganathan, B. Manual of Hypertension; Jaypee Brothers Medical Publishers: New Delhi, India, 2020. [Google Scholar]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Sadozai, S.K.; Khan, S.A.; Karim, N.; Becker, D.; Steinbrück, N.; Gier, S.; Baseer, A.; Breinig, F.; Kickelbick, G.; Schneider, M. Ketoconazole-loaded PLGA nanoparticles and their synergism against Candida albicans when combined with silver nanoparticles. J. Drug Deliv. Sci. Technol. 2020, 56, 101574. [Google Scholar] [CrossRef]
- Macias-Paz, I.U.; Pérez-Hernández, S.; Tavera-Tapia, A.; Luna-Arias, J.P.; Guerra-Cárdenas, J.E.; Reyna-Beltrán, E. Candida albicans the main opportunistic pathogenic fungus in humans. Rev. Argent. de Microbiol. 2023, 55, 189–198. [Google Scholar] [CrossRef]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Sadozai, S.K.; Khan, S.A.; Baseer, A.; Ullah, R.; Zeb, A.; Schneider, M. In vitro, ex vivo, and in vivo evaluation of nanoparticle-based topical formulation against Candida albicans infection. Front. Pharmacol. 2022, 13, 909851. [Google Scholar] [CrossRef] [PubMed]
- Scorzoni, L.; Fuchs, B.B.; Junqueira, J.C.; Mylonakis, E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin. Pharmacother. 2021, 22, 887–888. [Google Scholar] [CrossRef]
- Regeimbal, J.M.; Jacobs, A.C.; Corey, B.W.; Henry, M.S.; Thompson, M.G.; Pavlicek, R.L.; Quinones, J.; Hannah, R.M.; Ghebremedhin, M.; Crane, N.J.; et al. The future of antifungal drug therapy: Novel compounds and targets. Antimicrob. Agents Chemother. 2021, 65, 5806–5816. [Google Scholar]
- Wal, P.; Saraswat, N.; Vig, H. A detailed insight onto the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections. Curr. Drug Ther. 2022, 17, 148–159. [Google Scholar] [CrossRef]
- Fioriti, S.; Brescini, L.; Pallotta, F.; Canovari, B.; Morroni, G.; Barchiesi, F. Antifungal combinations against Candida species: From bench to bedside. J. Fungi 2022, 8, 1077. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Naidu, J.; Singh, S.; Nawange, S.; Jharia, N.; Saxena, M. In vitro activity of terbinafine against Indian clinical isolates of Candida albicans and non-albicans using a macrodilution method. J. Mycol. Médicale 2006, 16, 119–125. [Google Scholar] [CrossRef]
- Lam, P.; Kok, S.H.L.; Lee, K.K.H.; Lam, K.H.; Hau, D.K.P.; Wong, W.Y.; Bian, Z.; Gambari, R.; Chui, C.H. Sensitization of Candida albicans to terbinafine by berberine and berberrubine. Biomed. Rep. 2016, 4, 449–452. [Google Scholar] [CrossRef]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef] [PubMed]
- Atriwal, T.; Azeem, K.; Husain, F.M.; Hussain, A.; Khan, M.N.; Alajmi, M.F.; Abid, M. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Front. Microbiol. 2021, 12, 638609. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Arastehfar, A.; Arendrup, M.C.; Brüggemann, R.; Carvalho, A.; Chiller, T.; Chen, S.; Egger, M.; Feys, S.; Gangneux, J.-P.; et al. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin. Microbiol. Rev. 2024, 37, e00074-23. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; De Filippis, A.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.G.; Delattre, V.; Frost, V.J.; Buck, G.W.; Phu, J.V.; Fernandez, T.G.; Pavel, I.E. Nanosilver: An old antibacterial agent with great promise in the fight against antibiotic resistance. Antibiotics 2023, 12, 1264. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ. Sci. Technol. 2016, 50, 8840–8848. [Google Scholar] [CrossRef] [PubMed]
- Matras, E.; Gorczyca, A.; Przemieniecki, S.W.; Oćwieja, M. Surface properties-dependent antifungal activity of silver nanoparticles. Sci. Rep. 2022, 12, 18046. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A. Nanosynthetic and ecofriendly approaches to produce green silver nanoparticles. In Green Synthesis of Silver Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–19. [Google Scholar]
- Rosman, N.S.R.; Harun, N.A.; Idris, I.; Ismail, W.I.W. Nanobiotechnology: Nature-inspired silver nanoparticles towards green synthesis. Energy Environ. 2021, 32, 1183–1206. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Kiew, S.F.; Boakye-Ansah, S.; Lau, S.Y.; Barhoum, A.; Danquah, M.K.; Rodrigues, J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 2022, 14, 2534–2571. [Google Scholar] [CrossRef] [PubMed]
- Darroudi, M.; Ahmad, M.B.; Abdullah, A.H.; Ibrahim, N.A. Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int. J. Nanomed. 2011, 6, 569–574. [Google Scholar] [CrossRef]
- Ullah, H.; Ullah, I.; Rehman, G.; Hamayun, M.; Ali, S.; Rahman, A.; Lee, I.-J. Magnesium and zinc oxide nanoparticles from datura alba improve cognitive impairment and blood brain barrier leakage. Molecules 2022, 27, 4753. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A. Mini-Review: Opportunities and challenges in the techniques used for preparation of gelatin nanoparticles. Pak. J. Pharm. Sci. 2020, 33, 221–228. [Google Scholar] [PubMed]
- Khan, S.A.; Schneider, M. Stabilization of gelatin nanoparticles without crosslinking. Macromol. Biosci. 2014, 14, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Babick, F. Dynamic light scattering (DLS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–172. [Google Scholar]
- Sa-Barreto, L.C.; Alvarez-Lorenzo, C.; Concheiro, A.; Martinez-Pacheco, R.; Gomez-Amoza, J.L. SEM-image textural features and drug release behavior of Eudragit-based matrix pellets. J. Drug Deliv. Sci. Technol. 2017, 42, 292–298. [Google Scholar] [CrossRef]
- Sikder, M.; Lead, J.R.; Chandler, G.T.; Baalousha, M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis. Sci. Total Environ. 2018, 618, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Izak-Nau, E.; Huk, A.; Reidy, B.; Uggerud, H.; Vadset, M.; Eiden, S.; Voetz, M.; Himly, M.; Duschl, A.; Dusinska, M.; et al. Impact of storage conditions and storage time on silver nanoparticles' physicochemical properties and implications for their biological effects. Rsc. Adv. 2015, 5, 84172–84185. [Google Scholar] [CrossRef]
- Arif, H.; Qayyum, S.; Akhtar, W.; Fatima, I.; Kayani, W.K.; Rahman, K.U.; Ali, S. Synthesis and Characterization of Zinc Oxide Nanoparticles at Different pH Values from Clinopodium vulgare L. and Their Assessment as an Antimicrobial Agent and Biomedical Application. Micromachines 2023, 14, 1285. [Google Scholar] [CrossRef]
- Begum, H.A.; Yaseen, S.; Zada, A.; Musa, M.; Khan, A.; Sheheryar; Alrefaei, A.F.; Almutairi, M.H.; Ali, S.; Azmat, R.; et al. Biological and Photocatalytic Activities of Silver Nanoparticles Synthesized from the Leaf Extract of Euphorbia royleana Boiss. Curr. Pharm. Des. 2024, 30, 2813–2827. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.J.F. Screening of Biotechnological Potential of Osmundea Pinnatifida: Cultivation Trials and Biological Activities. Master’s Thesis, Universidade de Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Beressa, T.B.; Deyno, S.; Alele, P.E. Antifungal activity of the essential oil of Echinops kebericho Mesfin: An in vitro study. Evid. Based Complement. Altern. Med. 2020, 2020, 3101324. [Google Scholar] [CrossRef]
- Alqahtani, A.; Marrez, D.A.; Aleraky, M.; Fagir, N.A.; Alqahtani, O.; Othman, S.; El Raey, M.A.; Attia, H.G. Characterization and Isolation of the Major Biologically Active Metabolites Isolated from Ficus retusa and Their Synergistic Effect with Tetracycline against Certain Pathogenic-Resistant Bacteria. Pharmaceuticals 2022, 15, 1473. [Google Scholar] [CrossRef] [PubMed]
- Alshareef, F. Protocol to evaluate antibacterial activity MIC, FIC and time kill method. Acta Sci. Microbiol. 2021, 4, 2–6. [Google Scholar] [CrossRef]
- Leite, M.C.A.; Bezerra, A.P.d.B.; de Sousa, J.P.; Guerra, F.Q.S.; Lima, E.d.O. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid. Based Complement. Altern. Med. 2014, 2014, 378280. [Google Scholar] [CrossRef] [PubMed]
- Nami, S.; Aghebati-Maleki, A.; Morovati, H. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed. Pharmacother. 2019, 110, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 2020, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadegan, A.; Gholami, A.; Abbaszadegan, S.; Aleyasin, Z.S.; Ghahramani, Y.; Dorostkar, S.; Hemmateenejad, B.; Ghasemi, Y.; Sharghi, H. The effects of different ionic liquid coatings and the length of alkyl chain on antimicrobial and cytotoxic properties of silver nanoparticles. Iran. Endod. J. 2017, 12, 481. [Google Scholar]
- Lanza Bayona, G.A. Nanoparticles Applications in Time-Temperature Indicators (TTIs) for Cold Chain Validation of Fruits in Cundinamarca Region; Universidad de los Andes Repository: Bogotá, Colombia, 2023. [Google Scholar] [CrossRef]
- Kang, H.; Buchman, J.T.; Rodriguez, R.S.; Ring, H.L.; He, J.; Bantz, K.C.; Haynes, C.L. Stabilization of silver and gold nanoparticles: Preservation and improvement of plasmonic functionalities. Chem. Rev. 2018, 119, 664–699. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, M.M. Utilizing Cinnamomum verum extract for green synthesis of silver nanoparticles: Exploring optical properties, morphology, and potential applications. J. King Saud Univ. Sci. 2024, 36, 103312. [Google Scholar] [CrossRef]
- Dai, Q.; Jia, R.; Li, H.; Yang, J.; Qin, Z. Preparation and Application of Sustained-Release Antibacterial Alginate Hydrogels by Loading Plant-Mediated Silver Nanoparticles. ACS Sustain. Chem. Eng. 2024, 12, 1388–1404. [Google Scholar] [CrossRef]
- Bayat, M.; Zargar, M.; Chudinova, E.; Astarkhanova, T.; Pakina, E. In vitro evaluation of antibacterial and antifungal activity of biogenic silver and copper nanoparticles: The first report of applying biogenic nanoparticles against Pilidium concavum and Pestalotia sp. fungi. Molecules 2021, 26, 5402. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cheng, Y.; Shi, L.; Gao, X.; Huang, Y.; Du, Z. Design, Synthesis, and Antimicrobial Activity of Amide Derivatives Containing Cyclopropane. Molecules 2024, 29, 4124. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liao, K.; Li, Y.; Zhao, L.; Liang, S.; Guo, D.; Hu, J.; Wang, D. Synergy between polyvinylpyrrolidone-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J. Nanosci. Nanotechnol. 2016, 16, 2325–2335. [Google Scholar] [CrossRef] [PubMed]
S.NO | 1% Gelatin | AgNO3 (mg) | Average Particle Sizes of AgNPs ± SD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 0 | Day 1 | Day 15 | Day 30 | Day 45 | Day 60 | |||||||||
Particle size (nm) stability studies at 2–8 °C | ||||||||||||||
Z- Ave (nm) | P.D.I | Z-Ave (nm) | P.D.I | Z-Ave (nm) | P.D.I | Z-Ave (nm) | P.D.I | Z-Ave (nm) | P.D.I | Z-Ave (nm) | P.D.I | |||
1 | 1 g | 10 mg | 55.9 ± 2.8 | 0.21 | 60.6 ± 2.7 | 0.25 | 64.4 ± 2.9 | 0.29 | 90.1 ± 2.2 | 0.38 | 110.2 ± 2.3 | 0.41 | 130.3 ± 2.9 | 0.48 |
2 | 1 g | 20 mg | 62.2 ± 2.4 | 0.18 | 63.9 ± 2.9 | 0.24 | 69.1 ± 2.5 | 0.28 | 80.8 ± 2.1 | 0.35 | 90.5 ± 2.0 | 0.40 | 110.8 ± 3.5 | 0.41 |
3 | 1 g | 30 mg | 65.6 ± 1.7 | 0.17 | 66.5 ± 1.5 | 0.21 | 69.8 ± 1.4 | 0.22 | 72.1 ± 2.0 | 0.21 | 74.4 ± 1.6 | 0.23 | 78.3 ± 1.5 | 0.25 |
Particle size (nm) stability studies at 25–28 °C | ||||||||||||||
1 | 1 g | 10 mg | 56.8 ± 2.7 | 0.25 | 62.5 ± 3.5 | 0.25 | 65.2 ± 3.1 | 0.29 | 95.1 ± 2.3 | 0.31 | 116.4 ± 2.5 | 0.44 | 140.1 ± 3.6 | 0.51 |
2 | 1 g | 20 mg | 65.2 ± 3.1 | 0.20 | 68.9 ± 3.1 | 0.24 | 73.1 ± 3.0 | 0.28 | 90.8 ± 2.1 | 0.30 | 93.5 ± 2.7 | 0.41 | 120.8 ± 2.9 | 0.45 |
3 | 1 g | 30 mg | 66.2 ± 1.1 | 0.19 | 66.9 ± 2.0 | 0.21 | 70.8 ± 2.3 | 0.22 | 73.1 ± 1.9 | 0.24 | 76.2 ± 2.0 | 0.25 | 79.1 ± 1.8 | 0.28 |
Particle size (nm) stability studies at 40 °C | ||||||||||||||
1 | 1 g | 10 mg | 59.9 ± 3.1 | 0.28 | 68.6 ± 4.0 | 0.29 | 75.4 ± 3.8 | 0.32 | 98.1 ± 2.5 | 0.35 | 116.2 ± 3.1 | 0.48 | 150.3 ± 4.5 | 0.68 |
2 | 1 g | 20 mg | 65.2 ± 2.5 | 0.25 | 69.9 ± 3.8 | 0.27 | 73.1 ± 3.0 | 0.29 | 93.8 ± 2.3 | 0.31 | 110.5 ± 2.9 | 0.41 | 130.8 ± 3.2 | 0.54 |
3 | 1 g | 30 mg | 66.8 ± 1.9 | 0.20 | 68.4 ± 2.1 | 0.21 | 71.5 ± 1.9 | 0.22 | 75.1 ± 2.0 | 0.25 | 79.1 ± 2.2 | 0.26 | 81.2 ± 1.9 | 0.29 |
Well Number | Terb Against ATCC 10231 (μg/mL) | AgNPs Against ATCC 10231 (μg/mL) | Terb Against ATCC 90028 (μg/mL) | AgNPs Against ATCC 90028 (μg/mL) | Terb Against ATCC 18804 (UG/ML) | AGNPS Against ATCC 18804 (UG/ML) |
---|---|---|---|---|---|---|
1 | 32 | 250 | 32 | 250 | 32 | 250 |
2 | 16 | 125 | 16 | 125 | 16 | 125 |
3 | 8.0 | 62.5 | 8.0 | 62.5 | 8.0 | 62.5 |
4 | 4.0 | 31.2 | 4.0 | 31.2 | 4.0 | 31.2 |
5 | 2.0 | 15.6 | 2.0 | 15.6 | 2.0 | 15.6 |
6 | 1.0 | 7.8 | 1.0 | 7.8 | 1.0 | 7.8 |
7 | 0.5 | 3.9 | 0.5 | 3.9 | 0.5 | 3.9 |
8 | 0.25 | 1.9 | 0.25 | 1.9 | 0.25 | 1.9 |
9 | 0.12 | 0.9 | 0.12 | 0.9 | 0.12 | 0.9 |
10 | 0.06 | 0.45 | 0.06 | 0.45 | 0.06 | 0.45 |
11 | Growth controls | Growth controls | Growth controls | Growth controls | Growth controls | Growth controls |
12 | Sterility | Sterility | Sterility | Sterility | Sterility | Sterility |
Microtiter Plate Well No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
C. albicans ATCC 10231 | Conc. (µg/mL) | ||||||||||
Terbinafine | 32 | 16 | 8.0 | 4.0 | 2.0 | 1.0 | 0.50 | 0.25 | 0.12 | 0.06 | |
AgNPs | 250 | 125 | 62.5 | 31.2 | 15.6 | 7.8 | 3.9 | 1.9 | 0.9 | 0.45 | |
C. albicans ATCC 18804 | Terbinafine | 32 | 16 | 8.0 | 4.0 | 2.0 | 1.0 | 0.5 | 0.25 | 0.12 | 0.06 |
AgNPs | 250 | 125 | 62.5 | 31.2 | 15.6 | 7.8 | 3.9 | 1.9 | 0.9 | 0.45 | |
C. albicans ATCC 90028 | Terbinafine | 32 | 16 | 8.0 | 4.0 | 2.0 | 1.0 | 0.50 | 0.25 | 0.12 | 0.06 |
AgNPs | 250 | 125 | 62.5 | 31.2 | 15.6 | 7.8 | 3.9 | 1.9 | 0.9 | 0.45 |
Candida Strains. | Sample | MIC (µ/mL) | FIC | FICi | Outcome | |
---|---|---|---|---|---|---|
Alone | Combination | |||||
C. albicans ATTC10231 | Terbinafine | 1.0 | 0.21 | 0.21 | 0.379 | Synergism |
AgNPs | 62.5 | 10.65 | 0.169 | |||
C. albicans ATTC18804 | Terbinafine | 0.5 | 0.12 | 0.240 | 0.388 | Synergism |
AgNPs | 62.5 | 9.25 | 0.148 | |||
C. albicans ATTC90028 | Terbinafine | 2.0 | 0.25 | 0.125 | 0.369 | Synergism |
AgNPs | 62.5 | 15.25 | 0.244 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Ali, F.; Ullah, F.; Sadozai, S.K.; Khan, S.A.; Hussain, S.; Alrefaei, A.F.; Ali, S. Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin–Silver Nanoparticles Against Candida albicans Strains. Pharmaceutics 2025, 17, 125. https://doi.org/10.3390/pharmaceutics17010125
Ullah A, Ali F, Ullah F, Sadozai SK, Khan SA, Hussain S, Alrefaei AF, Ali S. Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin–Silver Nanoparticles Against Candida albicans Strains. Pharmaceutics. 2025; 17(1):125. https://doi.org/10.3390/pharmaceutics17010125
Chicago/Turabian StyleUllah, Atif, Fawad Ali, Farman Ullah, Sajid Khan Sadozai, Saeed Ahmed Khan, Sajid Hussain, Abdulwahed Fahad Alrefaei, and Sajid Ali. 2025. "Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin–Silver Nanoparticles Against Candida albicans Strains" Pharmaceutics 17, no. 1: 125. https://doi.org/10.3390/pharmaceutics17010125
APA StyleUllah, A., Ali, F., Ullah, F., Sadozai, S. K., Khan, S. A., Hussain, S., Alrefaei, A. F., & Ali, S. (2025). Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin–Silver Nanoparticles Against Candida albicans Strains. Pharmaceutics, 17(1), 125. https://doi.org/10.3390/pharmaceutics17010125