Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Platinum Nanoparticles
2.3. Preparation of ALG Beads
2.4. Electroless Plating of ALG Beads
2.5. Scanning Electron Microscopy (SEM)
2.6. Determination of Gold Shell Thickness
2.7. Leakage Test
2.8. Focused Ultrasound-Triggered Release
3. Results
3.1. Synthesis of ALG Beads, Pt NPs and Gold Shell
3.2. Microscopic Morphology and Thickness of the Gold Shell
3.3. Leakage Test
3.4. Focused Ultrasound Experimental Setup and Pressure Mapping
3.5. Ultrasound-Triggered Release
4. Discussion
4.1. Design Rationale of the Ultrasound-Triggerable Gold-Plated ALG Hydrogel
4.2. Optimization of the Methodology of Synthesis
4.3. Controlling the Thickness of the Gold Shell
4.4. Evaluation of the Permeability of the Gold Shell
4.5. Factors Influencing the Triggered Release by Ultrasound
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, T.; Dasgupta, A.; Zhao, Z.; Nurunnabi, M.; Mitragotri, S. Physical triggering strategies for drug delivery. Adv. Drug Deliv. Rev. 2020, 158, 36–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Jung, K.; Li, A.; Liu, J.; Boyer, C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog. Polym. Sci. 2019, 99, 101164. [Google Scholar] [CrossRef]
- Rana, A.; Adhikary, M.; Singh, P.K.; Das, B.C.; Bhatnagar, S. “Smart” drug delivery: A window to future of translational medicine. Front. Chem. 2023, 10, 1095598. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, G.; Lee, S.; Park, C.Y. Advances in ophthalmic drug delivery technology for postoperative management after cataract surgery. Expert Opin. Drug Deliv. 2022, 19, 945–964. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wu, X.; Chen, X.; Wang, B.; Xu, W. Intellective and stimuli-responsive drug delivery systems in eyes. Int. J. Pharm. 2021, 602, 120591. [Google Scholar] [CrossRef]
- Lian, X.; Hsiao, C.; Wilson, G.; Zhu, K.; Hazeltine, L.B.; Azarin, S.M.; Raval, K.K.; Zhang, J.; Kamp, T.J.; Palecek, S.P. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 2012, 109, E1848–E1857. [Google Scholar] [CrossRef]
- Raza, A.; Rasheed, T.; Nabeel, F.; Hayat, U.; Bilal, M.; Iqbal, H.M.N. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules 2019, 24, 1117. [Google Scholar] [CrossRef]
- Chen, G.; Jaskula-Sztul, R.; Esquibel, C.R.; Lou, I.; Zheng, Q.; Dammalapati, A.; Harrison, A.; Eliceiri, K.W.; Tang, W.; Chen, H.; et al. Neuroendocrine Tumor-Targeted Upconversion Nanoparticle-Based Micelles for Simultaneous NIR-Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging. Adv. Funct. Mater. 2017, 27, 1604671. [Google Scholar] [CrossRef]
- Abundo, M.P.; Tifrea, A.T.; Buss, M.T.; Barturen-Larrea, P.; Jin, Z.; Malounda, D.; Shapiro, M.G. Ultrasound-actuated drug delivery with acoustic percolation switches. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Guo, H.; Hamilton, M.; Offutt, S.J.; Gloeckner, C.D.; Li, T.; Kim, Y.; Legon, W.; Alford, J.K.; Lim, H.H. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron 2018, 98, 1020–1030.e4. [Google Scholar] [CrossRef]
- Graham, R.; Zachs, D.; Cotero, V.; D’Agostino, C.; Ntiloudi, D.; Kaiser, C.R.W.; Graf, J.; Wallace, K.; Ramdeo, R.; Coleman, T.; et al. First-in-human demonstration of splenic ultrasound stimulation for non-invasively controlling inflammation. medRxiv 2020. preprint. [Google Scholar] [CrossRef]
- White, A.L.; Langton, C.; Wille, M.L.; Hitchcock, J.; Cayre, O.J.; Biggs, S.; Blakey, I.; Whittaker, A.K.; Rose, S.; Puttick, S. Ultrasound-triggered release from metal shell microcapsules. J. Colloid Interface Sci. 2019, 554, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Aryal, M.; Porter, T. Emerging Therapeutic Strategies for Brain Tumors. NeuroMol. Med. 2022, 24, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Barmin, R.A.; Moosavifar, M.; Dasgupta, A.; Herrmann, A.; Kiessling, F.; Pallares, R.M.; Lammers, T. Polymeric materials for ultrasound imaging and therapy. Chem. Sci. 2023, 14, 11941–11954. [Google Scholar] [CrossRef]
- Al Refaai, K.A.; AlSawaftah, N.A.; Abuwatfa, W.; Husseini, G.A. Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review. Pharmaceutics 2024, 16, 1383. [Google Scholar] [CrossRef]
- Athanassiadis, A.G.; Ma, Z.; Moreno-Gomez, N.; Melde, K.; Choi, E.; Goyal, R.; Fischer, P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem. Rev. 2022, 122, 5165–5208. [Google Scholar] [CrossRef]
- Wei, P.; Cornel, E.J.; Du, J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv. Transl. Res. 2021, 11, 1323–1339. [Google Scholar] [CrossRef]
- Menikheim, S.; Leckron, J.; Bernstein, S.; Lavik, E.B. On-Demand and Long-Term Drug Delivery from Degradable Nanocapsules. ACS Appl. Bio Mater. 2020, 3, 7369–7375. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Ko, M.J.; Moon, H.; Sim, W.; Cho, A.S.; Gil, G.; Kim, H.R. Ultrasound-Responsive Liposomes for Targeted Drug Delivery Combined with Focused Ultrasound. Pharmaceutics 2022, 14, 1314. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, Y.; Tong, R. Ultrasound-Mediated Polymeric Micelle Drug Delivery. In Therapeutic Ultrasound; Escoffre, J.-M., Bouakaz, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 365–384. ISBN 978-3-319-22536-4. [Google Scholar]
- Yeingst, T.J.; Arrizabalaga, J.H.; Hayes, D.J. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022, 8, 554. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Higashi, K.; Azuma, T.; Okamoto, A. Supramolecular Polymeric Hydrogels for Ultrasound-Guided Protein Release. Biotechnol. J. 2019, 14, 1800530. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, L.-G.; Fan, X.-M.; Pang, J.-L. Ultrasound Responsive Smart Implantable Hydrogels for Targeted Delivery of Drugs: Reviewing Current Practices. Int. J. Nanomed. 2022, 17, 5001. [Google Scholar] [CrossRef] [PubMed]
- Huebsch, N.; Kearney, C.J.; Zhao, X.; Kim, J.; Cezar, C.A.; Suo, Z.; Mooney, D.J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. USA 2014, 111, 9762–9767. [Google Scholar] [CrossRef] [PubMed]
- Arrizabalaga, J.H.; Smallcomb, M.; Abu-Laban, M.; Liu, Y.; Yeingst, T.J.; Dhawan, A.; Simon, J.C.; Hayes, D.J. Ultrasound-Responsive Hydrogels for On-Demand Protein Release. ACS Appl. Bio Mater. 2022, 5, 3212–3218. [Google Scholar] [CrossRef]
- Xu, X.; Chang, S.; Zhang, X.; Hou, T.; Yao, H.; Zhang, S.; Zhu, Y.; Cui, X.; Wang, X. Fabrication of a controlled-release delivery system for relieving sciatica nerve pain using an ultrasound-responsive microcapsule. Front. Bioeng. Biotechnol. 2022, 10, 1072205. [Google Scholar] [CrossRef]
- Field, R.D.; Jakus, M.A.; Chen, X.; Human, K.; Zhao, X.; Chitnis, P.V.; Sia, S.K. Ultrasound-Responsive Aqueous Two-Phase Microcapsules for On-Demand Drug Release. Angew. Chem. 2022, 134, e202116515. [Google Scholar] [CrossRef]
- Kubiak, T.; Zubko, M.; Józefczak, A. Ultrasound-triggered directional release from turmeric capsules. Particuology 2021, 57, 19–27. [Google Scholar] [CrossRef]
- Lim, J.I. Fabrication of porous poly(L-lactide-co-ε-caprolactone) micropowder for microbubble effect and ultrasound-mediated drug delivery. Biopolymers 2024, 115, e23587. [Google Scholar] [CrossRef]
- Sun, Q.; Du, Y.; Hall, E.A.H.; Luo, D.; Sukhorukov, G.B.; Routh, A.F. A fabrication method of gold coated colloidosomes and their application as targeted drug carriers. Soft Matter 2018, 14, 2594–2603. [Google Scholar] [CrossRef]
- Stark, K.; Hitchcock, J.P.; Fiaz, A.; White, A.L.; Baxter, E.A.; Biggs, S.; McLaughlan, J.R.; Freear, S.; Cayre, O.J. Encapsulation of Emulsion Droplets with Metal Shells for Subsequent Remote, Triggered Release. ACS Appl. Mater. Interfaces 2019, 11, 12272–12282. [Google Scholar] [CrossRef]
- Tasker, A.L.; Hitchcock, J.; Baxter, E.A.; Cayre, D.O.J.; Biggs, S. Understanding the Mechanisms of Gold Shell Growth onto Polymer Microcapsules to Control Shell Thickness. Chem. Asian J. 2017, 12, 1641–1648. [Google Scholar] [CrossRef]
- Tasker, A.L.; Puttick, S.; Hitchcock, J.; Cayre, O.J.; Blakey, I.; Whittaker, A.K.; Biggs, S. A two-step synthesis for preparing metal microcapsules with a biodegradable polymer substrate. J. Mater. Chem. B 2018, 6, 2151–2158. [Google Scholar] [CrossRef]
- Hitchcock, J.P.; Tasker, A.L.; Baxter, E.A.; Biggs, S.; Cayre, O.J. Long-term retention of small, volatile molecular species within metallic microcapsules. ACS Appl. Mater. Interfaces 2015, 7, 14808–14815. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Clement, G.T. Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics 2004, 42, 1087–1093. [Google Scholar] [CrossRef]
- Demann, E.T.K.; Stein, P.S.; Haubenreich, J.E. Gold as an Implant in Medicine and Dentistry. JLT 2005, 15, 687–698. [Google Scholar] [CrossRef]
- Patchan, M.W.; Baird, L.M.; Rhim, Y.R.; LaBarre, E.D.; Maisano, A.J.; Deacon, R.M.; Xia, Z.; Benkoski, J.J. Liquid-filled metal microcapsules. ACS Appl. Mater. Interfaces 2012, 4, 2406–2412. [Google Scholar] [CrossRef]
- Veiseh, O.; Doloff, J.C.; Ma, M.; Vegas, A.J.; Tam, H.H.; Bader, A.R.; Li, J.; Langan, E.; Wyckoff, J.; Loo, W.S.; et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater 2015, 14, 643–651. [Google Scholar] [CrossRef]
- Hitchcock, J.P.; Tasker, A.L.; Stark, K.; Leeson, A.; Baxter, E.A.; Biggs, S.; Cayre, O.J. Adsorption of Catalytic Nanoparticles onto Polymer Substrates for Controlled Deposition of Microcapsule Metal Shells. Langmuir 2018, 34, 1473–1480. [Google Scholar] [CrossRef]
- Lim, F.; Sun, A.M. Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science 1980, 210, 908–910. [Google Scholar] [CrossRef]
- Casper, J.; Schenk, S.H.; Parhizkar, E.; Detampel, P.; Dehshahri, A.; Huwyler, J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J. Control. Release 2023, 362, 667–691. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.S.; Cha, J.N.; Stucky, G.D.; Wong, M.S. Charge-Driven Flocculation of Poly(l-lysine)Gold Nanoparticle Assemblies Leading to Hollow Microspheres. J. Am. Chem. Soc. 2004, 126, 5292–5299. [Google Scholar] [CrossRef] [PubMed]
- Bendale, Y.; Bendale, V.; Paul, S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr. Med. Res. 2017, 6, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Buchtelova, H.; Dostalova, S.; Michalek, P.; Krizkova, S.; Strmiska, V.; Kopel, P.; Hynek, D.; Richtera, L.; Ridoskova, A.; Adam, P.; et al. Size-related cytotoxicological aspects of polyvinylpyrrolidone-capped platinum nanoparticles. Food Chem. Toxicol. 2017, 105, 337–346. [Google Scholar] [CrossRef]
- Sabaliauskas, V.; Juciute, R.; Bukelskiene, V.; Rutkunas, V.; Trumpaite-Vanagiene, R.; Puriene, A. In vitro evaluation of cytotoxicity of permanent prosthetic materials. Stomatologija 2011, 13, 75–80. [Google Scholar]
- Tarantola, M.; Pietuch, A.; Schneider, D.; Rother, J.; Sunnick, E.; Rosman, C.; Pierrat, S.; Sönnichsen, C.; Wegener, J.; Janshoff, A. Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 2011, 5, 254–268. [Google Scholar] [CrossRef]
- Hitchcock, J.; White, A.L.; Hondow, N.; Hughes, T.A.; Dupont, H.; Biggs, S.; Cayre, O.J. Metal-shell nanocapsules for the delivery of cancer drugs. J. Colloid Interface Sci. 2020, 567, 171–180. [Google Scholar] [CrossRef]
- Lensen, D.; Gelderblom, E.C.; Vriezema, D.M.; Marmottant, P.; Verdonschot, N.; Versluis, M.; De Jong, N.; Van Hest, J.C.M. Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter 2011, 7, 5417. [Google Scholar] [CrossRef]
- Marmottant, P.; Van Der Meer, S.; Emmer, M.; Versluis, M.; De Jong, N.; Hilgenfeldt, S.; Lohse, D. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 2005, 118, 3499–3505. [Google Scholar] [CrossRef]
- Schaefer, D.M.; Patil, A.; Andres, R.P.; Reifenberger, R. Nanoindentation of a supported Au cluster. Appl. Phys. Lett. 1993, 63, 1492–1494. [Google Scholar] [CrossRef]
- Marketing Clearance of Diagnostic Ultrasound Systems and Transducers—Guidance for Industry and Food and Drug Administration Staff; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2023.
- Porello, I.; Cellesi, F. Intracellular delivery of therapeutic proteins. New advancements and future directions. Front. Bioeng. Biotechnol. 2023, 11, 1211798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flowers, M.; Paulsen, A.; Kaiser, C.R.W.; Tuma, A.B.; Lim, H.H.; Ogle, B.M.; Wang, C. Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release. Pharmaceutics 2025, 17, 133. https://doi.org/10.3390/pharmaceutics17010133
Flowers M, Paulsen A, Kaiser CRW, Tuma AB, Lim HH, Ogle BM, Wang C. Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release. Pharmaceutics. 2025; 17(1):133. https://doi.org/10.3390/pharmaceutics17010133
Chicago/Turabian StyleFlowers, Marcus, Alex Paulsen, Claire R. W. Kaiser, Adam B. Tuma, Hubert H. Lim, Brenda M. Ogle, and Chun Wang. 2025. "Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release" Pharmaceutics 17, no. 1: 133. https://doi.org/10.3390/pharmaceutics17010133
APA StyleFlowers, M., Paulsen, A., Kaiser, C. R. W., Tuma, A. B., Lim, H. H., Ogle, B. M., & Wang, C. (2025). Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release. Pharmaceutics, 17(1), 133. https://doi.org/10.3390/pharmaceutics17010133