Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting
Abstract
:Highlights
- GO increased the storage modulus of scaffolds from 36.1 Pa to 97.1 Pa.
- Yield shear stress enhanced from 97.2 Pa to 507.1 Pa with GO.
- Optimal mechanical properties achieved with 1% GO: modulus 614 MPa and strength 46.3 MPa.
- GO incorporation increased the melting temperature to 60.78 °C and glass transition to 31.14 °C.
- Roughened scaffold surface improved cell adhesion and cellular distribution confirmed by DAPI staining.
- Antibacterial zones increased against E. coli (26.21 mm) and S. aureus (15.38 mm).
- Rheological results showed shear-thinning viscosity improvement up to 89.3 Pa·s with GO.
- Elongation at break improved to 10.4% with 5% GO addition.
- GO scaffolds enhanced cell viability to over 100% at 1:8 concentration.
- PCL/GO scaffolds successfully mimicked native meniscus properties with biofunctional and mechanical advantages.
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of GO and PCL/GO
2.2. Fabrication of 3D Bioprinted Scaffolds Using PCL/GO Solutions
3. Physical Properties and Characterizations
3.1. Rheological Characterization
3.2. Mechanical Properties
3.3. Uniaxial Tensile Tests
3.4. Morphological Properties
3.5. FTIR Analysis
3.6. DSC Analysis
3.7. In Vitro Swelling and Degradation Test
3.8. Antibacterial Analysis
3.9. Cytotoxicity
3.10. Cell Adhesion
3.11. Statistical Analysis
4. Results and Discussion
4.1. Rheological Analysis
4.2. Mechanical Analysis
4.3. SEM Analysis
4.4. DSC Analysis
4.5. FTIR Analysis
4.6. Swelling and Weight Loss Rate
4.7. Antibacterials Result
4.8. Cytotoxicity Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, T.; Pan, Z.; Yin, F. In Vivo Studies of Mesenchymal Stem Cells in the Treatment of Meniscus Injury. Orthop. Surg. 2021, 13, 2185–2195. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.G.; Houston, M.N.; Cameron, K.L. The Epidemiology of Meniscus Injury. Sports Med. Arthrosc. 2021, 29, E24–E33. [Google Scholar] [CrossRef] [PubMed]
- Badlani, J.T.; Borrero, C.; Golla, S.; Harner, C.D.; Irrgang, J.J. The effects of meniscus injury on the development of knee osteoarthritis: Data from the osteoarthritis initiative. Am. J. Sports Med. 2013, 41, 1238–1244. [Google Scholar] [CrossRef]
- Tarafder, S.; Park, G.; Lee, C.H. Explant models for meniscus metabolism, injury, repair, and healing. Connect. Tissue Res. 2020, 61, 292–303. [Google Scholar] [CrossRef]
- Szojka, A.R.A.; Liang, Y.; de Cássia Marqueti, R.; Moore, C.N.; Erkut, E.J.N.; Kunze, M.; Mulet-Sierra, A.; Jomha, N.M.; Adesida, A.B. Time course of 3D fibrocartilage formation by expanded human meniscus fibrochondrocytes in hypoxia. J. Orthop. Res. 2022, 40, 495–503. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Wang, C.; Chen, B. Understanding the cutting mechanisms of composite structured soft tissues. Int. J. Mach. Tools Manuf. 2021, 161, 103685. [Google Scholar] [CrossRef]
- Jacob, G.; Shimomura, K.; Krych, A.J.; Nakamura, N. The meniscus tear: A review of stem cell therapies. Cells 2020, 9, 92. [Google Scholar] [CrossRef]
- Nelson, A.; Voinier, S.; Tran, J.; Gilchrist, K.H.; Helgeson, M.; Ho, V.B.; Klarmann, G.J. Methods for Testing Meniscal Repair Using a 3D-Printed Meniscus. Appl. Biosci. 2024, 3, 102–122. [Google Scholar] [CrossRef]
- Lv, H.; Deng, G.; Lai, J.; Yu, Y.; Chen, F.; Yao, J. Advances in 3D Bioprinting of Biomimetic and Engineered Meniscal Grafts. Macromol. Biosci. 2023, 23, 2300199. [Google Scholar] [CrossRef]
- Klarmann, G.J.; Gaston, J.; Ho, V.B. A review of strategies for development of tissue engineered meniscal implants. Biomater. Biosyst. 2021, 4, 100026. [Google Scholar] [CrossRef]
- Ding, G.; Li, X.; Sun, M.; He, Y.; Zhao, F.; Wu, T.; Wang, J.; Ren, S.; Shi, W.; Xu, L.; et al. Meniscal transplantation and regeneration using functionalized polyurethane bionic scaffold and digital light processing 3D printing. Chem. Eng. J. 2022, 431, 133861. [Google Scholar] [CrossRef]
- Filardo, G.; Petretta, M.; Cavallo, C.; Roseti, L.; Durante, S.; Albisinni, U.; Grigolo, B. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Jt. Res. 2019, 8, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Bilgen, B.; Jayasuriya, C.T.; Owens, B.D. Current Concepts in Meniscus Tissue Engineering and Repair. Adv. Healthc. Mater. 2018, 7, 1701407. [Google Scholar] [CrossRef] [PubMed]
- Asgarpour, R.; Masaeli, E.; Kermani, S. Development of meniscus-inspired 3D-printed PCL scaffolds engineered with chitosan/extracellular matrix hydrogel. Polym. Adv. Technol. 2021, 32, 4721–4732. [Google Scholar] [CrossRef]
- Jeong, H.J.; Lee, S.W.; Hong, M.W.; Kim, Y.Y.; Seo, K.D.; Cho, Y.S.; Lee, S.J. Total meniscus reconstruction using a polymeric hybrid-scaffold: Combined with 3d-printed biomimetic framework and micro-particle. Polymers 2021, 13, 1910. [Google Scholar] [CrossRef]
- Kremer, A.; Ribitsch, I.; Reboredo, J.; Dürr, J.; Egerbacher, M.; Jenner, F.; Walles, H. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type i Hydrogel on a Small Intestinal Matrix—A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng.-Part A 2017, 23, 390–402. [Google Scholar] [CrossRef]
- Wang, A.; Lu, H. Traumatic avulsion of the anterior medial meniscus root combined with PCL injury: A case report. BMC Musculoskelet. Disord. 2020, 21, 642. [Google Scholar] [CrossRef]
- Abpeikar, Z.; Moradi, L.; Javdani, M.; Kargozar, S.; Soleimannejad, M.; Hasanzadeh, E.; Mirzaei, S.A.; Asadpour, S. Characterization of Macroporous Polycaprolactone/Silk Fibroin/Gelatin/Ascorbic Acid Composite Scaffolds and In Vivo Results in a Rabbit Model for Meniscus Cartilage Repair. Cartilage 2021, 13, 1583S–1601S. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Yan, J.; Zhou, W.; Gao, S.; Liu, S.; Li, Q.; Zheng, Y.; Cheng, Y.; Guo, Q. Tannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. Acta Biomater. 2021, 126, 119–131. [Google Scholar] [CrossRef]
- Berrio, M.E.; Oñate, A.; Salas, A.; Fernández, K.; Meléndrez, M.F. Synthesis and applications of graphene oxide aerogels in bone tissue regeneration: A review. Mater. Today Chem. 2021, 20, 100422. [Google Scholar] [CrossRef]
- Qi, X.; Jiang, F.; Zhou, M.; Zhang, W.; Jiang, X. Graphene oxide as a promising material in dentistry and tissue regeneration: A review. Smart Mater. Med. 2021, 2, 280–291. [Google Scholar] [CrossRef]
- Purohit, S.D.; Singh, H.; Bhaskar, R.; Yadav, I.; Bhushan, S.; Gupta, M.K.; Kumar, A.; Mishra, N.C. Fabrication of Graphene Oxide and Nanohydroxyapatite Reinforced Gelatin–Alginate Nanocomposite Scaffold for Bone Tissue Regeneration. Front. Mater. 2020, 7, 250. [Google Scholar] [CrossRef]
- Valencia, C.; Valencia, C.H.; Zuluaga, F.; Valencia, M.E.; Mina, J.H.; Grande-Tovar, C.D. Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules 2018, 23, 2651. [Google Scholar] [CrossRef] [PubMed]
- Benzait, Z.; Chen, P.; Trabzon, L. Enhanced synthesis method of graphene oxide. Nanoscale Adv. 2021, 3, 223–230. [Google Scholar] [CrossRef]
- Ozder, M.N.; Ciftci, F.; Rencuzogullari, O.; Arisan, E.D.; Ustündag, C.B. In situ synthesis and cell line studies of nano-hydroxyapatite/graphene oxide composite materials for bone support applications. Ceram. Int. 2023, 49, 14791–14803. [Google Scholar] [CrossRef]
- Ciftci, F.; Özarslan, A.C. Fabrication of polycaprolactone-chitosan/curcumin polymer composite fibers and evaluation of their in vitro release kinetic behavior and antibacterial-antifungal activity. J. Sol-Gel Sci. Technol. 2023, 109, 192–203. [Google Scholar] [CrossRef]
- Ciftci, F.; Duygulu, N.; Yilmazer, Y.; Karavelioğlu, Z.; Çakır Koç, R.; Gündüz, O.; Ustündag, C.B. Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 319–334. [Google Scholar] [CrossRef]
- Kim, J.H.; Chang, W.S.; Kim, D.; Yang, J.R.; Han, J.T.; Lee, G.W.; Kim, J.T.; Seol, S.K. 3D printing of reduced graphene oxide nanowires. Adv. Mater. 2015, 27, 157–161. [Google Scholar] [CrossRef]
- Kang, M.S.; Jeong, S.J.; Lee, S.H.; Kim, B.; Hong, S.W.; Lee, J.H.; Han, D.W. Reduced graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomater. Res. 2021, 25, 4. [Google Scholar] [CrossRef]
- Tesfai, W.; Singh, P.; Shatilla, Y.; Iqbal, M.Z.; Abdala, A.A. Rheology and microstructure of dilute graphene oxide suspension. J. Nanopart. Res. 2013, 15, 1989. [Google Scholar] [CrossRef]
- Ackermann, A.C.; Carosella, S.; Rettenmayr, M.; Fox, B.L.; Middendorf, P. Rheology, dispersion, and cure kinetics of epoxy filled with amine- and non-functionalized reduced graphene oxide for composite manufacturing. J. Appl. Polym. Sci. 2022, 139, 51664. [Google Scholar] [CrossRef]
- Zhou, F.; Han, S.; Qian, Q.; Zhu, Y. 3D printing of free-standing and flexible nitrogen doped graphene/polyaniline electrode for electrochemical energy storage. Chem. Phys. Lett. 2019, 728, 6–13. [Google Scholar] [CrossRef]
- Bahcecioglu, G.; Hasirci, N.; Bilgen, B.; Hasirci, V. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication 2019, 11, 025002. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.S.; Jeong, H.; Kim, J.H.; Lee, S.; Wajahat, M.; Han, J.T.; Cho, S.H.; Seol, S.K. Micropatterning of reduced graphene oxide by meniscus-guided printing. Carbon 2017, 123, 364–370. [Google Scholar] [CrossRef]
- Wang, X.; Dou, W. Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim. Acta 2012, 529, 25–28. [Google Scholar] [CrossRef]
- Abdollahi, R.; Taghizadeh, M.T.; Savani, S. Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly (acrylic acid) grafted onto amylose. Polym. Degrad. Stab. 2018, 147, 151–158. [Google Scholar] [CrossRef]
- Bagheri, M.; Mahmoodzadeh, A. Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers. J. Inorg. Organomet Polym. Mater. 2020, 30, 1566–1577. [Google Scholar] [CrossRef]
- Medeiros, G.S.; Muñoz, P.A.R.; de Oliveira, C.F.P.; da Silva, L.C.E.; Malhotra, R.; Gonçalves, M.C.; Rosa, V.; Fechine, G.J.M. Polymer Nanocomposites Based on Poly(ε-caprolactone), Hydroxyapatite and Graphene Oxide. J. Polym. Env. 2020, 28, 331–342. [Google Scholar] [CrossRef]
- Dalagan, J.; Barros, H. Preparation of polycaprolactone-graphene oxide hydrogel as potential drug delivery carrier. Asian J. Chem. 2021, 33, 2498–2502. [Google Scholar] [CrossRef]
- Bai, J.J.; Hu, G.S.; Zhang, J.T.; Liu, B.X.; Cui, J.J.; Hou, X.R.; Yu, F.; Li, Z.Z. Preparation and Rheology of Isocyanate Functionalized Graphene Oxide/Thermoplastic Polyurethane Elastomer Nanocomposites. J. Macromol. Sci. Part B Phys. 2019, 58, 425–441. [Google Scholar] [CrossRef]
- Moradi, F.; Gholipour-Kanani, A.; Najmoddin, N.; Eslahi, N.; Bahrami, S.H.; Rabbani, S. The Effect of Bulk Electrospun Polycaprolactone-graphene Oxide Scaffold on the Healing of Defected Femur Cartilage on a Rabbit Model. Fibers Polym. 2021, 22, 1247–1255. [Google Scholar] [CrossRef]
- Shahriari, D.; Shibayama, M.; Lynam, D.A.; Wolf, K.J.; Kubota, G.; Koffler, J.Y.; Tuszynski, M.H.; Campana, W.M.; Sakamoto, J.S. Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink-resistant conduit. J. Biomed. Mater. Res.-Part A 2017, 105, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarzadeh, S.; Hakimpour, F.; Sarvari, R.; Agbolaghi, S.; Mansourpanah, Y. Nanocomposite membranes based on sodium alginate/poly(ε-caprolactone)/graphene oxide for methanol, ethanol and isopropanol dehydration via pervaporation. Polym. Bull. 2020, 77, 3367–3387. [Google Scholar] [CrossRef]
- Campillo-Fernández, A.J.; González-Reed, P.; Vidaurre, A.; Castilla-Cortázar, I. Poly(ε-caprolactone)/graphene oxide composite systems: A comparative study on hydrolytic degradation at extreme pH values. Mater. Express 2020, 10, 892–902. [Google Scholar] [CrossRef]
- Niknam, Z.; Fathi Azarbayjani, A.; Rafiaei, S.M.; Rasmi, Y.; Tayebi, L. Polycaprolactone/graphene oxide/magnesium oxide as a novel composite scaffold for bone tissue engineering: Preparation and physical/biological assessment. J. Drug Deliv. Sci. Technol. 2024, 95, 105531. [Google Scholar] [CrossRef]
- Kim, S.E.; Kim, N.E.; Park, S.; Choi, J.H.; Song, Y.; Tumursukh, N.-E.; Youn, J.; Song, J.E.; Khang, G. Evaluation of calcium phosphate–coated polycaprolactone/graphene oxide scaffold with macro- and microporous structure for bone tissue engineering. Vitr. Model. 2022, 1, 261–272. [Google Scholar] [CrossRef]
- Duan, T.; Lv, Y.; Xu, H.; Jin, J.; Wang, Z. Structural effects of residual groups of graphene oxide on poly(ε-caprolactone)/graphene oxide nanocomposite. Crystals 2018, 8, 270. [Google Scholar] [CrossRef]
- Joy, A.; Unnikrishnan, G.; Megha, M.; Haris, M.; Thomas, J.; Kolanthai, E.; Muthuswamy, S. Polycaprolactone/Graphene Oxide–Silver Nanocomposite: A Multifunctional Agent for Biomedical Applications. J. Inorg. Organomet. Polym. Mater. 2022, 32, 912–930. [Google Scholar] [CrossRef]
- Martínez-Ramón, V.; Castilla-Cortázar, I.; Vidaurre, A.; Campillo-Fernández, A.J. Production and enzymatic degradation of poly(ε-caprolactone)/graphene oxide composites. Mater. Express 2020, 10, 866–876. [Google Scholar] [CrossRef]
- Ferroni, L.; Gardin, C.; Rigoni, F.; Balliana, E.; Zanotti, F.; Scatto, M.; Riello, P.; Zavan, B. The Impact of Graphene Oxide on Polycaprolactone PCL Surfaces: Antimicrobial Activity and Osteogenic Differentiation of Mesenchymal Stem Cell. Coatings 2022, 12, 799. [Google Scholar] [CrossRef]
- Angulo-Pineda, C.; Srirussamee, K.; Palma, P.; Fuenzalida, V.M.; Cartmell, S.H.; Palza, H. Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials 2020, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009; pp. 10993–10995.
- Li, H.; Yang, Z.; Gao, C.; Fu, L.; Yuan, Z.; Sui, X.; Liu, S.; Guo, Q. Preparation of platelet-derived growth factor loaded three-dimensional bio-printed meniscus scaffold. Chin. J. Tissue Eng. Res. 2021, 25, 4465–4472. [Google Scholar] [CrossRef]
- Jian, Z.; Zhuang, T.; Qinyu, T.; Liqing, P.; Kun, L.; Xujiang, L.; Diaodiao, W.; Zhen, Y.; Shuangpeng, J.; Xiang, S.; et al. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact. Mater. 2021, 6, 1711–1726. [Google Scholar] [CrossRef]
- Li, H.; Liao, Z.; Yang, Z.; Gao, C.; Fu, L.; Li, P.; Zhao, T.; Cao, F.; Chen, W.; Yuan, Z.; et al. 3D Printed Poly(ε-Caprolactone)/Meniscus Extracellular Matrix Composite Scaffold Functionalized With Kartogenin-Releasing PLGA Microspheres for Meniscus Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 662381. [Google Scholar] [CrossRef]
- Mieloch, A.A.; Semba, J.A.; Rybka, J.D. CNT-Type Dependent Cellular Adhesion on 3D-Printed Nanocomposite for Tissue Engineering. Int. J. Bioprinting 2022, 8, 70–79. [Google Scholar] [CrossRef]
- Guo, W.; Chen, M.; Wang, Z.; Tian, Y.; Zheng, J.; Gao, S.; Li, Y.; Zheng, Y.; Li, X.; Huang, J.; et al. 3D-printed cell-free PCL–MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration. Bioact. Mater. 2021, 6, 3620–3633. [Google Scholar] [CrossRef]
- Bahcecioglu, G.; Hasirci, N.; Bilgen, B.; Hasirci, V. Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. Int. J. Biol. Macromol. 2019, 122, 1152–1162. [Google Scholar] [CrossRef]
- Gopinathan, J.; Pillai, M.M.; Shanthakumari, S.; Gnanapoongothai, S.; Dinakar Rai, B.K.; Santosh Sahanand, K.; Selvakumar, R.; Bhattacharyya, A. Carbon nanofiber amalgamated 3D poly-ε-caprolactone scaffold functionalized porous-nanoarchitectures for human meniscal tissue engineering: In vitro and in vivo biocompatibility studies. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2247–2258. [Google Scholar] [CrossRef]
Weight Difference (%) | ||||
---|---|---|---|---|
Solutions | PCL (wt%) | GO (wt%) | GO (wt%) | GO (wt%) |
PCL 20%wt | 20 | - | - | - |
PCL/GO (1%wt) | 20 | (1%wt) | - | - |
PCL/GO (3%wt) | 20 | - | (3%wt) | - |
PCL/GO (5%wt) | 20 | - | - | (5%wt) |
G′ (Pa) | G″ (Pa) | Shear-Thinning Viscosity (Pa·s) | Shear Rate (s−1) | Yield Shear Stress (Pa) | |
---|---|---|---|---|---|
PCL | 36.1 ± 2.13 | 8.7± 0.19 | 19.1 ± 1.22 | 8.7 | 97.2 ± 8.09 |
PCL/GO (1%wt) | 48.5 ± 1.12 | 14.6 ± 1.33 | 39.5 ± 0.13 | 14.1 | 308.4 ± 4.17 |
PCL/GO (3%wt) | 59.1 ± 0.25 | 23.7 ± 2.11 | 50.9 ± 4.04 | 26.3 | 385.2 ± 2.09 |
PCL/GO (5%wt) | 97.1 ± 0.08 | 34.4 ± 1.04 | 89.3 ± 1.17 | 49.8 | 507.1 ± 3.63 |
E modulus (MPa) | Ultimate Stress (MPa) | Strain at Break (%) | |
---|---|---|---|
PCL | 635.3 | 45.3 | 9.2 |
PCL/GO (1%) | 614.1 | 46.3 | 9.9 |
PCL/GO (3%) | 592.1 | 43 | 9.3 |
PCL/GO (5%) | 588 | 46 | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özder, M.N.; Yelkenci, A.; Kucak, M.; Altinbay, A.; Ustündag, C.B.; Ciftci, F. Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting. Pharmaceutics 2025, 17, 346. https://doi.org/10.3390/pharmaceutics17030346
Özder MN, Yelkenci A, Kucak M, Altinbay A, Ustündag CB, Ciftci F. Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting. Pharmaceutics. 2025; 17(3):346. https://doi.org/10.3390/pharmaceutics17030346
Chicago/Turabian StyleÖzder, Melike Nur, Aslihan Yelkenci, Mine Kucak, Aylin Altinbay, Cem Bülent Ustündag, and Fatih Ciftci. 2025. "Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting" Pharmaceutics 17, no. 3: 346. https://doi.org/10.3390/pharmaceutics17030346
APA StyleÖzder, M. N., Yelkenci, A., Kucak, M., Altinbay, A., Ustündag, C. B., & Ciftci, F. (2025). Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting. Pharmaceutics, 17(3), 346. https://doi.org/10.3390/pharmaceutics17030346