The Prediction of the In Vitro Release Curves for PLGA-Based Drug Delivery Systems with Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. PLGA Carrier Characteristics
2.2. Drug Molecular Descriptors
2.3. The Dataset Construction and Experimental Conditions
2.4. Model Design and Training
2.5. Comparative Semi-Empirical Models
3. Results and Discussion
3.1. Training and Verification Results for Neural Networks
3.2. Comparison Between DrugNet and Semi-Empirical Models
3.2.1. The Semi-Empirical Models
3.2.2. DrugNet
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trucillo, P. Drug carriers: Classification, administration, release profiles, and industrial approach. Processes 2021, 9, 470. [Google Scholar] [CrossRef]
- Ghitman, J.; Biru, E.I.; Stan, R.; Iovu, H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des. 2020, 193, 108805. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Mir, M.; Ahmed, N.; ur Rehman, A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces 2017, 159, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Lagreca, E.; Onesto, V.; Di Natale, C.; La Manna, S.; Netti, P.A.; Vecchione, R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater. 2020, 9, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Barzegar-Jalali, M. Kinetic analysis of drug release from nanoparticles. J. Pharm. Pharm. Sci. 2008, 11, 167–177. [Google Scholar] [CrossRef]
- Jahromi, L.P.; Ghazali, M.; Ashrafi, H.; Azadi, A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020, 6, e03451. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, Y.; Chen, Y.; Shukla, A.J. Application of artificial neural networks in the design of controlled release drug delivery systems. Adv. Drug Deliv. Rev. 2003, 55, 1201–1215. [Google Scholar] [CrossRef]
- Adekoya, O.C.; Yibowei, M.E.; Adekoya, G.J.; Sadiku, E.R.; Hamam, Y.; Ray, S.S. A mini-review on the application of machine learning in polymer nanogels for drug delivery. Mater. Today Proc. 2022, 62, S141–S144. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Atyabi, F.; Dinarvand, R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019, 151, 169–190. [Google Scholar] [CrossRef]
- Rafienia, M.; Amiri, M.; Janmaleki, M.; Sadeghian, A. Application of artificial neural networks in controlled drug delivery systems. Appl. Artif. Intell. 2010, 24, 807–820. [Google Scholar] [CrossRef]
- Petrović, J.; Ibrić, S.; Betz, G.; Đurić, Z. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees. Int. J. Pharm. 2012, 428, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Koshari, S.H.; Chang, D.P.; Wang, N.B.; Zarraga, I.E.; Rajagopal, K.; Lenhoff, A.M.; Wagner, N.J. Data-driven development of predictive models for sustained drug release. J. Pharm. Sci. 2019, 108, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Householder, K.T.; DiPerna, D.M.; Chung, E.P.; Wohlleb, G.M.; Dhruv, H.D.; Berens, M.E.; Sirianni, R.W. Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int. J. Pharm. 2015, 479, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Malathi, S.; Nandhakumar, P.; Pandiyan, V.; Webster, T.J.; Balasubramanian, S. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int. J. Nanomed. 2015, 10, 2207–2218. [Google Scholar]
- Alai, M.; Lin, W.J. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: In vitro and in vivo evaluations. Int. J. Nanomed. 2015, 10, 4029–4041. [Google Scholar]
- O’Donnell, A.; Moollan, A.; Baneham, S.; Ozgul, M.; Pabari, R.M.; Cox, D.; Kirby, B.P.; Ramtoola, Z. Intranasal and intravenous administration of octa-arginine modified poly (lactic-co-glycolic acid) nanoparticles facilitates central nervous system delivery of loperamide. J. Pharm. Pharmacol. 2015, 67, 525–536. [Google Scholar] [CrossRef]
- Shin, S.B.; Cho, H.Y.; Kim, D.D.; Choi, H.G.; Lee, Y.B. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur. J. Pharm. Biopharm. 2010, 74, 164–171. [Google Scholar] [CrossRef]
- Yuan, Z.; Gu, X. Preparation, characterization, and in vivo study of rhein-loaded poly (lactic-co-glycolic acid) nanoparticles for oral delivery. Drug Des. Dev. Ther. 2015, 9, 2301–2309. [Google Scholar]
- Chereddy, K.K.; Lopes, A.; Koussoroplis, S.; Payen, V.; Moia, C.; Zhu, H.; Sonveaux, P.; Carmeliet, P.; des Rieux, A.; Vandermeulen, G.; et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1975–1984. [Google Scholar] [CrossRef]
- Ramalho, M.J.; Loureiro, J.A.; Gomes, B.; Frasco, M.F.; Coelho, M.A.; Pereira, M.C. PLGA nanoparticles as a platform for vitamin D-based cancer therapy. Beilstein J. Nanotechnol. 2015, 6, 1306–1318. [Google Scholar] [CrossRef]
- Ruozi, B.; Belletti, D.; Sharma, H.S.; Sharma, A.; Muresanu, D.F.; Mössler, H.; Forni, F.; Vandelli, M.A.; Tosi, G. PLGA nanoparticles loaded cerebrolysin: Studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol. Neurobiol. 2015, 52, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, B.; Manoochehri, S.; Kamalinia, G.; Samadi, N.; Amini, M.; Mostafavi, S.H.; Maghazei, S.; Atyabi, F.; Dinarvand, R. Preparation and antibacterial activity evaluation of 18-β-glycyrrhetinic acid loaded PLGA nanoparticles. Iran. J. Pharm. Res. IJPR 2015, 14, 373. [Google Scholar] [PubMed]
- Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R.K.; Bhatnagar, P.; Chauhan, L.K.S.; Saxena, P.N.; Arun, J.; Chaudhari, B.P.; Patel, D.K.; et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015, 9, 4850–4871. [Google Scholar] [CrossRef]
- Osman, R.; Kan, P.L.; Awad, G.; Mortada, N.; Abd-Elhameed, E.S.; Alpar, O. Enhanced properties of discrete pulmonary deoxyribonuclease I (DNaseI) loaded PLGA nanoparticles during encapsulation and activity determination. Int. J. Pharm. 2011, 408, 257–265. [Google Scholar] [CrossRef]
- Kolate, A.; Kore, G.; Lesimple, P.; Baradia, D.; Patil, S.; Hanrahan, J.W.; Misra, A. Polymer assisted entrapment of netilmicin in PLGA nanoparticles for sustained antibacterial activity. J. Microencapsul. 2015, 32, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Menale, C.; Piccolo, M.T.; Favicchia, I.; Aruta, M.G.; Baldi, A.; Nicolucci, C.; Barba, V.; Mita, D.G.; Crispi, S.; Diano, N. Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells. Pharm. Res. 2015, 32, 362–374. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, X.Y.; Mei, X.G. Preparation and in vitro evaluation of thienorphine-loaded PLGA nanoparticles. Drug Deliv. 2016, 23, 777–783. [Google Scholar] [CrossRef]
- Ren, H.; Han, M.; Zhou, J.; Zheng, Z.F.; Lu, P.; Wang, J.J.; Wang, J.Q.; Mao, Q.J.; Gao, J.Q.; Ouyang, H.W. Repair of spinal cord injury by inhibition of astrocyte growth and inflammatory factor synthesis through local delivery of flavopiridol in PLGA nanoparticles. Biomaterials 2014, 35, 6585–6594. [Google Scholar] [CrossRef]
- Joshi, G.; Kumar, A.; Sawant, K. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur. J. Pharm. Sci. 2014, 60, 80–89. [Google Scholar] [CrossRef]
- Verderio, P.; Pandolfi, L.; Mazzucchelli, S.; Marinozzi, M.R.; Vanna, R.; Gramatica, F.; Corsi, F.; Colombo, M.; Morasso, C.; Prosperi, D. Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells. Mol. Pharm. 2014, 11, 2864–2875. [Google Scholar] [CrossRef] [PubMed]
- Shah, U.; Joshi, G.; Sawant, K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater. Sci. Eng. C 2014, 35, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Pai, R.S. Optimization (Central Composite Design) and Validation of HPLC Method for Investigation of Emtricitabine Loaded Poly (lactic-co-glycolic acid) Nanoparticles: In Vitro Drug Release and In Vivo Pharmacokinetic Studies. Sci. World J. 2014, 2014, 583090. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.S.; Athawale, R.B.; Bajaj, A.N.; Shrikhande, S.S.; Goel, P.N.; Nikam, Y.; Gude, R.P. Unraveling the cytotoxic potential of Temozolomide loaded into PLGA nanoparticles. DARU J. Pharm. Sci. 2014, 22, 1–9. [Google Scholar] [CrossRef]
- Ghasemian, E.; Vatanara, A.; Rouholamini Najafabadi, A.; Rouini, M.R.; Gilani, K.; Darabi, M. Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design. DARU J. Pharm. Sci. 2013, 21, 1–10. [Google Scholar] [CrossRef]
- Xiao, X.; Zeng, X.; Zhang, X.; Ma, L.; Liu, X.; Yu, H.; Mei, L.; Liu, Z. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Int. J. Nanomed. 2013, 8, 4553–4562. [Google Scholar]
- Li, M.; Czyszczon, E.A.; Reineke, J.J. Delineating intracellular pharmacokinetics of paclitaxel delivered by PLGA nanoparticles. Drug Deliv. Transl. Res. 2013, 3, 551–561. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, Z.j.; Yuan, Y.; Xing, E.m.; Qin, Y.; Peng, Z.j.; Zhang, Z.p.; Yang, K.y. Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2013, 33, 754–758. [Google Scholar] [CrossRef]
- Bonelli, P.; Tuccillo, F.M.; Federico, A.; Napolitano, M.; Borrelli, A.; Melisi, D.; Rimoli, M.G.; Palaia, R.; Arra, C.; Carinci, F. Ibuprofen delivered by poly (lactic-co-glycolic acid)(PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations. Int. J. Nanomed. 2012, 7, 5683–5691. [Google Scholar] [CrossRef]
- Yadav, K.S.; Sawant, K.K. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. Aaps Pharmscitech. 2010, 11, 1456–1465. [Google Scholar] [CrossRef]
- Nair, K.L.; Thulasidasan, A.K.T.; Deepa, G.; Anto, R.J.; Kumar, G.V. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int. J. Pharm. 2012, 425, 44–52. [Google Scholar] [CrossRef]
- Blum, J.S.; Weller, C.E.; Booth, C.J.; Babar, I.A.; Liang, X.; Slack, F.J.; Saltzman, W.M. Prevention of K-Ras-and Pten-mediated intravaginal tumors by treatment with camptothecin-loaded PLGA nanoparticles. Drug Deliv. Transl. Res. 2011, 1, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Iannitelli, A.; Grande, R.; Di Stefano, A.; Di Giulio, M.; Sozio, P.; Bessa, L.J.; Laserra, S.; Paolini, C.; Protasi, F.; Cellini, L. Potential antibacterial activity of carvacrol-loaded poly (DL-lactide-co-glycolide)(PLGA) nanoparticles against microbial biofilm. Int. J. Mol. Sci. 2011, 12, 5039–5051. [Google Scholar] [CrossRef]
- Fu, J.; You, L.; Sun, D.; Zhang, L.; Zhao, J.; Li, P. Shikonin-loaded PLGA nanoparticles: A promising strategy for Psoriasis Treatment. Heliyon 2024, 10, e31909. [Google Scholar] [CrossRef] [PubMed]
- Eleraky, N.E.; Attia, M.A.; Safwat, M.A. Sertaconazole-PLGA nanoparticles for management of ocular keratitis. J. Drug Deliv. Sci. Technol. 2024, 95, 105539. [Google Scholar] [CrossRef]
- Zou, L.; Chen, F.; Bao, J.; Wang, S.; Wang, L.; Chen, M.; He, C.; Wang, Y. Preparation, characterization, and anticancer efficacy of evodiamine-loaded PLGA nanoparticles. Drug Deliv. 2016, 23, 898–906. [Google Scholar] [CrossRef]
- Sabaeifard, P.; Abdi-Ali, A.; Soudi, M.R.; Gamazo, C.; Irache, J.M. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur. J. Pharm. Sci. 2016, 93, 392–398. [Google Scholar] [CrossRef]
- Gagliardi, A.; Paolino, D.; Costa, N.; Fresta, M.; Cosco, D. Zein-vs PLGA-based nanoparticles containing rutin: A comparative investigation. Mater. Sci. Eng. C 2021, 118, 111538. [Google Scholar] [CrossRef]
- Irmak, G.; Öztürk, M.G.; Gümüşderelioğlu, M. Salinomycin encapsulated PLGA nanoparticles eliminate osteosarcoma cells via inducing/inhibiting multiple signaling pathways: Comparison with free salinomycin. J. Drug Deliv. Sci. Technol. 2020, 58, 101834. [Google Scholar] [CrossRef]
Drug Name | Source | Release Time Scale | Point Number |
---|---|---|---|
Camptothecin | [14] | 20–40 (h) | 33 |
Insulin | [15] | 20–40 (h) | 37 |
Insulin | [15] | 20–40 (h) | 33 |
Lansoprazole | [16] | 20–40 (h) | 35 |
Loperamide | [17] | 40–80 (h) | 35 |
Tacrolimus | [18] | 200–400 (h) | 35 |
Rhein | [19] | 10–20 (h) | 35 |
VEGF | [20] | 400–1000 (h) | 35 |
Calcitriol | [21] | 100–200 (h) | 35 |
Cerebrolysin | [22] | 10–20 (h) | 35 |
18--glycyrrhetinic acid | [23] | 40–80 (h) | 35 |
18--glycyrrhetinic acid | [23] | 40–80 (h) | 35 |
Dopamine | [24] | 100–200 (h) | 35 |
DNaseI | [25] | 200–400 (h) | 35 |
Netilmicin | [26] | 200–400 (h) | 35 |
Cisplatin | [27] | 200–400 (h) | 35 |
Thienorphine | [28] | 200–400 (h) | 8 |
Flavopiridol | [29] | 40–80 (h) | 8 |
Gemcitabine | [30] | 100–200 (h) | 11 |
ASC-J9 | [31] | 200–400 (h) | 21 |
Felodipine | [32] | 100–200 (h) | 11 |
Emtricitabine | [33] | 200–400 (h) | 15 |
Temazolamide | [34] | 100–200 (h) | 10 |
Sildenafil | [35] | 10–20 (h) | 8 |
Caryota mitis Profilin | [36] | 200–400 (h) | 16 |
Paclitaxel | [37] | 100–200 (h) | 6 |
Docetaxel | [38] | 100–200 (h) | 10 |
Ibuprofen | [39] | 0–10 (h) | 8 |
Cytarabine | [40] | 20–40 (h) | 7 |
Curcumin | [41] | 100–200 (h) | 13 |
Curcumin | [41] | 100–200 (h) | 12 |
Camptothecin | [42] | 400–1000 (h) | 25 |
Carvacrol | [43] | 20–40 (h) | 10 |
Shikonin | [44] | 40–80 (h) | 6 |
Sertaconazole | [45] | 20–40 (h) | 7 |
Evodiamine | [46] | 100–200 (h) | 18 |
Amikacin | [47] | 10–20 (h) | 8 |
Rutin | [48] | 40–80 (h) | 10 |
Salinomycin | [49] | 400–1000 (h) | 20 |
Sample ID | Source | K-P | Weibull | DrugNet |
---|---|---|---|---|
1 | [14] | 27.629 | 17.656 | 2.459 |
2 | [15] | 46.751 | 15.429 | 6.175 |
3 | [15] | 3.34 | 25.584 | 4.767 |
4 | [16] | 14.638 | 4.699 | 5.708 |
5 | [17] | 63.628 | 21.99 | 6.719 |
6 | [18] | 5.557 | 5.647 | 3.146 |
7 | [19] | 49.384 | 9.898 | 5.586 |
8 | [20] | 2.746 | 1.875 | 15.638 |
9 | [21] | 47.466 | 19.981 | 2.201 |
10 | [22] | 16.702 | 12.046 | 20.248 |
11 | [23] | 8.957 | 4.159 | 3.05 |
12 | [23] | 2.944 | 1.832 | 3.461 |
13 | [24] | 9.013 | 6.269 | 3.987 |
14 | [25] | 32.36 | 24.187 | 2.616 |
15 | [26] | 1.554 | 4.597 | 2.049 |
16 | [27] | 39.187 | 29.911 | 8.516 |
17 | [28] | 6.631 | 1.129 | 12.594 |
18 | [29] | 26.738 | 9.755 | 45.325 |
19 | [30] | 3.147 | 12.502 | 17.529 |
20 | [31] | 73.67 | 6.492 | 9.065 |
21 | [32] | 8.806 | 28.458 | 3.737 |
22 | [33] | 3.032 | 13.482 | 37.949 |
23 | [34] | 7.718 | 11.115 | 35.374 |
24 | [35] | 26.282 | 33.064 | 15.017 |
25 | [36] | 6.708 | 3.505 | 4.098 |
26 | [37] | 25.273 | 7.703 | 46.85 |
27 | [38] | 30.68 | 11.166 | 2.797 |
28 | [39] | 4.523 | 6.805 | 16.989 |
29 | [40] | 40.652 | 3.897 | 13.56 |
30 | [41] | 29.529 | 12.047 | 8.091 |
31 | [41] | 5.611 | 8.519 | 7.5 |
32 | [42] | 60.37 | 27.353 | 19.663 |
33 | [43] | 104.735 | 0.918 | 12.06 |
34 | [44] | 2.705 | 3.831 | 11.066 |
35 | [45] | 176.78 | 52.661 | 46.605 |
36 | [46] | 20.648 | 11.06 | 5.895 |
37 | [47] | 123.463 | 10.139 | 25.502 |
38 | [48] | 124.397 | 11.997 | 15.682 |
39 | [49] | 54.805 | 87.494 | 10.724 |
avg | - | 34.327 | 14.894 | 13.333 |
Sample ID | Source | K-P | Weibull | DrugNet |
---|---|---|---|---|
1 | [14] | 0.786 | 0.863 | 0.981 |
2 | [15] | 0.928 | 0.976 | 0.991 |
3 | [15] | 0.996 | 0.966 | 0.994 |
4 | [16] | 0.967 | 0.989 | 0.987 |
5 | [17] | 0.892 | 0.963 | 0.989 |
6 | [18] | 0.99 | 0.99 | 0.994 |
7 | [19] | 0.924 | 0.985 | 0.991 |
8 | [20] | 0.992 | 0.994 | 0.954 |
9 | [21] | 0.891 | 0.954 | 0.995 |
10 | [22] | 0.949 | 0.963 | 0.938 |
11 | [23] | 0.984 | 0.993 | 0.995 |
12 | [23] | 0.98 | 0.988 | 0.977 |
13 | [24] | 0.952 | 0.966 | 0.979 |
14 | [25] | 0.931 | 0.948 | 0.994 |
15 | [26] | 0.996 | 0.987 | 0.994 |
16 | [27] | 0.914 | 0.934 | 0.981 |
17 | [28] | 0.982 | 0.997 | 0.966 |
18 | [29] | 0.974 | 0.990 | 0.955 |
19 | [30] | 0.996 | 0.983 | 0.976 |
20 | [31] | 0.888 | 0.99 | 0.986 |
21 | [32] | 0.988 | 0.96 | 0.995 |
22 | [33] | 0.993 | 0.971 | 0.917 |
23 | [34] | 0.975 | 0.964 | 0.885 |
24 | [35] | 0.933 | 0.915 | 0.961 |
25 | [36] | 0.981 | 0.990 | 0.989 |
26 | [37] | 0.957 | 0.987 | 0.920 |
27 | [38] | 0.94 | 0.978 | 0.994 |
28 | [39] | 0.961 | 0.941 | 0.854 |
29 | [40] | 0.942 | 0.994 | 0.981 |
30 | [41] | 0.957 | 0.983 | 0.988 |
31 | [41] | 0.988 | 0.981 | 0.983 |
32 | [42] | 0.902 | 0.956 | 0.968 |
33 | [43] | 0.856 | 0.999 | 0.983 |
34 | [44] | 0.991 | 0.988 | 0.964 |
35 | [45] | 0.808 | 0.943 | 0.949 |
36 | [46] | 0.937 | 0.966 | 0.982 |
37 | [47] | 0.843 | 0.987 | 0.967 |
38 | [48] | 0.718 | 0.973 | 0.964 |
39 | [49] | 0.829 | 0.727 | 0.967 |
avg | - | 0.934 | 0.965 | 0.970 |
Evaluation Indicators | K-P | Weibull | Ours |
---|---|---|---|
MSE | 39.317 | 15.882 | 12.662 |
0.065 | 0.046 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, B.; Chen, R.; Zhang, Q.; Wang, K. The Prediction of the In Vitro Release Curves for PLGA-Based Drug Delivery Systems with Neural Networks. Pharmaceutics 2025, 17, 513. https://doi.org/10.3390/pharmaceutics17040513
Zhang Z, Zhang B, Chen R, Zhang Q, Wang K. The Prediction of the In Vitro Release Curves for PLGA-Based Drug Delivery Systems with Neural Networks. Pharmaceutics. 2025; 17(4):513. https://doi.org/10.3390/pharmaceutics17040513
Chicago/Turabian StyleZhang, Zheng, Bolun Zhang, Ren Chen, Qian Zhang, and Kangjun Wang. 2025. "The Prediction of the In Vitro Release Curves for PLGA-Based Drug Delivery Systems with Neural Networks" Pharmaceutics 17, no. 4: 513. https://doi.org/10.3390/pharmaceutics17040513
APA StyleZhang, Z., Zhang, B., Chen, R., Zhang, Q., & Wang, K. (2025). The Prediction of the In Vitro Release Curves for PLGA-Based Drug Delivery Systems with Neural Networks. Pharmaceutics, 17(4), 513. https://doi.org/10.3390/pharmaceutics17040513