Oral Lipid Nanoparticles for Improving the Efficiency of Drug Delivery Systems in Ulcerative Colitis: Recent Advances and Future Prospects
Abstract
:1. Introduction
2. Oral LNPs Enhance the Delivery Efficiency of Drugs for Treating UC
2.1. Challenges of Oral Drug Delivery Systems in Treating UC
2.1.1. Gastrointestinal Barriers to Drug Absorption
2.1.2. Impact of UC on Gastrointestinal Physiology
2.2. Advantages of Oral LNP in Improving Drug Delivery Efficiency
2.3. Main Approaches to Enhancing Oral LNPs for UC Treatment
2.3.1. Enhancing Drug Bioavailability in Intestinal Tissue
2.3.2. Optimizing Drug Targeting to the UC Site
Passive Targeting
Active Targeting
3. Application of Oral LNPs in Enhancing Drug Delivery Efficiency for UC Treatment
4. Challenges and Future of Oral LNP-Based Drug Delivery Systems for UC Treatment
4.1. Challenges in Oral LNP Preparation Technology
4.2. Development Trends and Future Directions in Oral LNP Treatment for UC
4.3. Economic and Regulatory Challenges in Oral LNP Treatment for UC
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van der Post, S.; Jabbar, K.S.; Birchenough, G.; Arike, L.; Akhtar, N.; Sjovall, H.; Johansson, M.E.; Hansson, G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 2019, 68, 2142–2151. [Google Scholar] [CrossRef]
- Martini, E.; Krug, S.M.; Siegmund, B.; Neurath, M.F.; Becker, C. Mend your fences: The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 33–46. [Google Scholar] [CrossRef]
- Sartor, R.B. Mechanisms of disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 390–407. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Liu, X.J.; Hao, J.Y. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. J. Dig. Dis. 2020, 21, 147–159. [Google Scholar] [CrossRef]
- Gajendran, M.; Loganathan, P.; Jimenez, G.; Catinella, A.P.; Ng, N.; Umapathy, C.; Ziade, N.; Hashash, J.G. A comprehensive review and update on ulcerative colitis. Disease-a-Month 2019, 65, 100851. [Google Scholar] [CrossRef] [PubMed]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.; Chan, F.K.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Ham, M.; Moss, A.C. Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Rev. Clin. Pharmacol. 2012, 5, 113–123. [Google Scholar] [CrossRef]
- Katz, J.A. Treatment of inflammatory bowel disease with corticosteroids. Gastroenterol. Clin. 2004, 33, 171–189. [Google Scholar] [CrossRef]
- Nielsen, O.H.; Coskun, M.; Steenholdt, C.; Rogler, G. The role and advances of immunomodulator therapy for inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 177–189. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Marano, C.; Zhang, H.; Strauss, R.; Johanns, J.; Adedokun, O.J.; Guzzo, C.; Colombel, J.-F.; Reinisch, W.; et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 2014, 146, 85–95. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.-F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.-J.; Danese, S.; et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Murphy, M.; Malter, L. A Review of Available Medical Therapies to Treat Moderate to Severe Inflammatory Bowel Disease in 2023. Am. J. Gastroenterol. 2022, 119, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Lasa, J.S.; Olivera, P.A.; Danese, S.; Peyrin-Biroulet, L. Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 161–170. [Google Scholar] [CrossRef]
- Zhang, M.; Merlin, D. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflamm. Bowel Dis. 2018, 24, 1401–1415. [Google Scholar] [CrossRef]
- Yasmin, F.; Najeeb, H.; Shaikh, S.; Hasanain, M.; Naeem, U.; Moeed, A.; Koritala, T.; Hasan, S.; Surani, S. Novel drug delivery systems for inflammatory bowel disease. World J. Gastroenterol. 2022, 28, 1922. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine 2016, 11, 1169–1185. [Google Scholar] [CrossRef]
- Kucharzik, T.; Koletzko, S.; Kannengiesser, K.; Dignass, A. Ulcerative colitis—Diagnostic and therapeutic algorithms. Dtsch. Ärzteblatt Int. 2020, 117, 564. [Google Scholar] [CrossRef]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017, 112, 234–248. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol. 2016, 12, 31–40. [Google Scholar] [CrossRef]
- Song, C.; Chai, Z.; Chen, S.; Zhang, H.; Zhang, X.; Zhou, Y.J.E.; Medicine, M. Intestinal mucus components and secretion mechanisms: What we do and do not know. Exp. Mol. Med. 2023, 55, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; He, C.; Xia, Y.; Ocansey, D.K.W.; Mao, F. Intestinal mucus barrier: A potential therapeutic target for IBD. Autoimmun. Rev. 2024, 24, 103717. [Google Scholar] [CrossRef]
- John, L.J.; Fromm, M.; Schulzke, J.-D. Epithelial barriers in intestinal inflammation. Antioxid. Redox Signal. 2011, 15, 1255–1270. [Google Scholar] [CrossRef]
- Fallingborg, J.; Christensen, L.A.; Jacobsen, B.A.; Rasmussen, S.N. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci. 1993, 38, 1989–1993. [Google Scholar] [CrossRef]
- Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- McAlindon, M.E.; Gray, T.; Galvin, A.; Sewell, H.F.; Podolsky, D.K.; Mahida, Y.R. Differential lamina propria cell migration via basement membrane pores of inflammatory bowel disease mucosa. Gastroenterology 1998, 115, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.-H.; Zhu, C.-X.; Quan, Y.-S.; Yang, Z.-Y.; Wu, S.; Luo, W.-W.; Tan, B.; Wang, X.-Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018, 24, 5. [Google Scholar] [CrossRef]
- Severino, P.; Andreani, T.; Macedo, A.S.; Fangueiro, J.F.; Santana, M.H.A.; Silva, A.M.; Souto, E.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J. Drug Deliv. 2012, 2012, 750891. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Liu, Y.; Yang, G.; Falconer, R.J.; Zhao, C.-X. Lipid nanoparticles for drug delivery. J. Drug Deliv. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Cullis, P.R.; Hope, M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467–1475. [Google Scholar] [CrossRef]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238-IN27. [Google Scholar] [CrossRef]
- Barenholz, Y.C. Doxil®—The first FDA-approved nano-drug: From an idea to a product. In Handbook of Harnessing Biomaterials in Nanomedicine; Jenny Stanford Publishing: New Delhi, India, 2021; pp. 463–528. [Google Scholar]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles—From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Biopharmaceutics. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers–A systematic review of in vitro data. Eur. J. Pharm. Biopharm. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2012, 64, 83–101. [Google Scholar] [CrossRef]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2023, 15, 1593. [Google Scholar] [CrossRef]
- Wang, C.; Han, Z.; Wu, Y.; Lu, X.; Tang, X.; Xiao, J.; Li, N. Enhancing stability and anti-inflammatory properties of curcumin in ulcerative colitis therapy using liposomes mediated colon-specific drug delivery system. Food Chem. Toxicol. 2021, 151, 112123. [Google Scholar] [CrossRef] [PubMed]
- Xian, J.; Zhong, X.; Gu, H.; Wang, X.; Li, J.; Li, J.; Wu, Y.; Zhang, C.; Zhang, J. Colonic delivery of celastrol-loaded layer-by-layer liposomes with pectin/trimethylated chitosan coating to enhance its anti-ulcerative colitis effects. Pharmaceutics 2021, 13, 2005. [Google Scholar] [CrossRef]
- Aib, S.; Iqbal, K.; Khan, N.; Khalid, S.; Adnan, M.; Umair, S.M.; Dar, M.J. pH-sensitive liposomes for colonic co-delivery of mesalazine and curcumin for the treatment of ulcerative colitis. J. Drug Deliv. Sci. Technol. 2022, 72, 103335. [Google Scholar] [CrossRef]
- Wu, M.; Ping, H.; Wang, K.; Ding, H.; Zhang, M.; Yang, Z.; Du, Q. Oral delivery of pectin-chitosan hydrogels entrapping macrophage-targeted curcumin-loaded liposomes for the treatment of ulcerative colitis. Pharmaceutics 2023, 647, 123510. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Y.; Yuan, Y.; Guo, J.; Li, H.; Li, Q.; Liu, S. Liposome-embedded SOD attenuated DSS-induced ulcerative colitis in mice by ameliorating oxidative stress and intestinal barrier dysfunction. Food Funct. 2023, 14, 4392–4405. [Google Scholar] [CrossRef]
- Xian, S.; Zhu, J.; Wang, Y.; Song, H.; Wang, H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv. 2023, 30, 2183821. [Google Scholar] [CrossRef]
- Zhao, J.; Hao, S.; Chen, Y.; Ye, X.; Fang, P.; Hu, H. Tauroursodeoxycholic acid liposome alleviates DSS-induced ulcerative colitis through restoring intestinal barrier and gut microbiota. Colloids Surf. B Biointerfaces 2024, 236, 113798. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, Y.; Li, S.; Wu, D.; Xu, Y.; Hu, J. Phosphatidylserine-functionalized liposomes-in-microgels for delivering genistein to effectively treat ulcerative colitis. J. Mater. Chem. B 2023, 11, 10404–10417. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, Y.; Zheng, X.; Zheng, X.; Lin, Y.; Guo, S.; Liu, C. Effects of folate-chicory acid liposome on macrophage polarization and TLR4/NF-κB signaling pathway in ulcerative colitis mouse. Phytomedicine 2024, 128, 155415. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Shen, N.; Tan, W.; Wang, X.; Liu, Y.; Liang, J.; Li, H.; Gao, Z. Layer-by-layer coated probiotics with chitosan and liposomes exhibit enhanced therapeutic effects for DSS-induced colitis in mice. Int. J. Biol. Macromol. 2024, 269, 132063. [Google Scholar] [CrossRef]
- Li, Q.-q.; Yan, J.-h.; Zhou, Z.-e.; Geng, X.; Xiong, J.-H. Enhanced anti-inflammatory activity of chlorogenic acid via folic acid-TPGS-modified liposomes encapsulation: Characterization and In vivo evaluation on colitis mice. Front. Pharmacol. 2024, 15, 1437773. [Google Scholar] [CrossRef]
- Dianzani, C.; Foglietta, F.; Ferrara, B.; Rosa, A.C.; Muntoni, E.; Gasco, P.; Della Pepa, C.; Canaparo, R.; Serpe, L. Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: Effects in an in vivo model. World J. Gastroenterol. 2017, 23, 4200. [Google Scholar] [CrossRef]
- Naeem, M.; Oshi, M.A.; Kim, J.; Lee, J.; Cao, J.; Nurhasni, H.; Im, E.; Jung, Y.; Yoo, J.-W. Biology; Medicine. pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 823–834. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, S.; Wadhwa, J. Improved uptake and therapeutic intervention of curcumin via designing binary lipid nanoparticulate formulation for oral delivery in inflammatory bowel disorder. Artif. Cells Nanomed. Biotechnol. 2019, 47, 45–55. [Google Scholar] [CrossRef]
- Anwer, M.K.; Ahmed, M.M.; Aldawsari, M.F.; Alshahrani, S.; Fatima, F.; Ansari, M.N.; Rehman, N.U.; Al-Shdefat, R.I. Eluxadoline loaded solid lipid nanoparticles for improved colon targeting in rat model of ulcerative colitis. Pharmaceuticals 2020, 13, 255. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wang, Z.-D.; Zhou, Q.; Zhou, X.; Zhou, T.; Guan, Y.-X.; Liu, X. Surface-anchored microbial enzyme-responsive solid lipid nanoparticles enabling colonic budesonide release for ulcerative colitis treatment. J. Nanobiotechnol. 2023, 21, 145. [Google Scholar] [CrossRef]
- El-Dakroury, W.A.; Zewail, M.B.; Asaad, G.F.; Abdallah, H.M.; Shabana, M.E.; Said, A.R.; Doghish, A.S.; Azab, H.A.; Amer, D.H.; Hassan, A.E.; et al. Fexofenadine-loaded chitosan coated solid lipid nanoparticles (SLNs): A potential oral therapy for ulcerative colitis. Eur. J. Pharm. Biopharm. 2024, 196, 114205. [Google Scholar] [CrossRef] [PubMed]
- Beloqui, A.; Coco, R.; Alhouayek, M.; Solinís, M.Á.; Rodríguez-Gascón, A.; Muccioli, G.G.; Préat, V. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. Int. J. Pharm. 2013, 454, 775–783. [Google Scholar] [CrossRef]
- Beloqui, A.; Memvanga, P.B.; Coco, R.; Reimondez-Troitino, S.; Alhouayek, M.; Muccioli, G.G.; Alonso, M.J.; Csaba, N.; de la Fuente, M.; Préat, V. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf. B Biointerfaces 2016, 143, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Huguet-Casquero, A.; Xu, Y.; Gainza, E.; Pedraz, J.L.; Beloqui, A. Oral delivery of oleuropein-loaded lipid nanocarriers alleviates inflammation and oxidative stress in acute colitis. Int. J. Pharm. 2020, 586, 119515. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wu, Z.; Zhao, Z.; Wu, C.; Yuan, M.; Su, Z.; Wang, Y.; Wang, Z. Berberine-loaded nanostructured lipid carriers enhance the treatment of ulcerative colitis. Int. J. Nanomed. 2020, 15, 3937–3951. [Google Scholar] [CrossRef]
- Mishra, R.K.; Ahmad, A.; Kumar, A.; Vyawahare, A.; Raza, S.S.; Khan, R. Lipid-based nanocarrier-mediated targeted delivery of celecoxib attenuate severity of ulcerative colitis. Mater. Sci. Eng. C 2020, 116, 111103. [Google Scholar] [CrossRef]
- Altaf, S.; Zeeshan, M.; Ali, H.; Zeb, A.; Afzal, I.; Imran, A.; Mazhar, D.; Khan, S.; Shah, F.A. pH-Sensitive Tacrolimus loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Eur. J. Pharm. Biopharm. 2024, 204, 114461. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Han, M.K.; Collins, J.F.; Merlin, D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine 2017, 12, 1927–1943. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, M.; Lama, S.; Wang, L.; Merlin, D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J. Control. Release 2020, 323, 293–310. [Google Scholar] [CrossRef]
- Yang, C.; Sung, J.; Long, D.; Alghoul, Z.; Merlin, D. Prevention of ulcerative colitis by autologous metabolite transfer from colitogenic microbiota treated with lipid nanoparticles encapsulating an anti-inflammatory drug candidate. Pharmaceutics 2022, 14, 1233. [Google Scholar] [CrossRef]
- Ma, L.; Ma, Y.; Gao, Q.; Liu, S.; Zhu, Z.; Shi, X.; Dai, F.; Reis, R.L.; Kundu, S.C.; Cai, K.; et al. Mulberry Leaf Lipid Nanoparticles: A Naturally Targeted CRISPR/Cas9 Oral Delivery Platform for Alleviation of Colon Diseases. Small 2024, 20, 2307247. [Google Scholar] [CrossRef] [PubMed]
- Zu, M.; Liu, G.; Xu, H.; Zhu, Z.; Zhen, J.; Li, B.; Shi, X.; Shahbazi, M.A.; Reis, R.L.; Kundu, S.C.; et al. Extracellular vesicles from nanomedicine-trained intestinal microbiota substitute for fecal microbiota transplant in treating ulcerative colitis. Adv. Mater. 2024, 36, 2409138. [Google Scholar] [CrossRef]
- Zöller, K.; To, D.; Knoll, P.; Bernkop-Schnürch, A. Digestion of lipid excipients and lipid-based nanocarriers by pancreatic lipase and pancreatin. Eur. J. Pharm. Biopharm. 2022, 176, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017, 16, 82–96. [Google Scholar] [CrossRef]
- Gulbake, A.; Jain, S.K. Chitosan: A potential polymer for colon-specific drug delivery system. Expert Opin. Drug Deliv. 2012, 9, 713–729. [Google Scholar] [CrossRef]
- Chen, S.-q.; Song, Y.-q.; Wang, C.; Tao, S.; Yu, F.-y.; Lou, H.-y.; Hu, F.-q.; Yuan, H. Chitosan-modified lipid nanodrug delivery system for the targeted and responsive treatment of ulcerative colitis. Carbohydr. Polym. 2020, 230, 115613. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Hou, T.; Zeng, H.; Kalambhe, D.; Wang, B.; Shen, X.; Huang, Y. Macrophage-based nanotherapeutic strategies in ulcerative colitis. J. Control. Release 2020, 320, 363–380. [Google Scholar] [CrossRef]
- Low, P.S.; Henne, W.A.; Doorneweerd, D.D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 2008, 41, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Alghoul, Z.; Long, D.; Yang, C.; Merlin, D. Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials 2022, 288, 121707. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Qi, C.; Ruan, S.; Cao, G.; Ma, Z.; Zhang, X. Selenized polymer-lipid hybrid nanoparticles for oral delivery of tripterine with ameliorative oral anti-enteritis activity and bioavailability. Pharmaceutics 2023, 15, 821. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, T.; Zhang, X.; Chen, J.; Sun, F.; Li, Y.; Teng, L. Oral delivery of superoxide dismutase by lipid polymer hybrid nanoparticles for the treatment of ulcerative colitis. Chin. Chem. Lett. 2022, 33, 4617–4622. [Google Scholar] [CrossRef]
- Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D.; et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 2019, 14, 1084–1087. [Google Scholar] [CrossRef]
- Pilkington, E.H.; Suys, E.J.; Trevaskis, N.L.; Wheatley, A.K.; Zukancic, D.; Algarni, A.; Al-Wassiti, H.; Davis, T.P.; Pouton, C.W.; Kent, S.; et al. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 2021, 131, 16–40. [Google Scholar] [CrossRef]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 11. [Google Scholar] [CrossRef]
- Thi, T.T.H.; Suys, E.J.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021, 9, 359. [Google Scholar] [CrossRef]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015, 5, 305. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Üner, M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Die Pharm.-Int. J. Pharm. Sci. 2006, 61, 375–386. [Google Scholar]
- Muzaffar, F.; Singh, U.K.; Chauhan, L. Review on microemulsion as futuristic drug delivery. Int. J. Pharm. Pharm. Sci. 2013, 5, 39–53. [Google Scholar]
- Yuan, Y.; Wu, Y.; Cheng, J.; Yang, K.; Xia, Y.; Wu, H.; Pan, X. Applications of artificial intelligence to lipid nanoparticle delivery. Particuology 2024, 90, 88–97. [Google Scholar] [CrossRef]
- Kumari, K.; Singh, H.R.; Sampath, M.K. Enhanced amoxicillin delivery via artificial intelligence (AI)-based optimized lipid nanoparticles for Helicobacter pylori. Biologia 2024, 80, 133–148. [Google Scholar] [CrossRef]
- Yang, C.; Long, D.; Sung, J.; Alghoul, Z.; Merlin, D. Orally administered natural lipid nanoparticle-loaded 6-shogaol shapes the anti-inflammatory microbiota and metabolome. Pharmaceutics 2021, 13, 1355. [Google Scholar] [CrossRef] [PubMed]
- Landesman-Milo, D.; Peer, D. Transforming nanomedicines from lab scale production to novel clinical modality. Bioconjugate Chem. 2016, 27, 855–862. [Google Scholar] [CrossRef]
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics 2022, 14, 1886. [Google Scholar] [CrossRef]
- Gdowski, A.; Johnson, K.; Shah, S.; Gryczynski, I.; Vishwanatha, J.; Ranjan, A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J. Nanobiotechnol. 2018, 16, 12. [Google Scholar] [CrossRef]
- Shegokar, R.; Nakach, M. Large-scale manufacturing of nanoparticles—An industrial outlook. Drug Deliv. Asp. 2020, 4, 57–77. [Google Scholar]
- Seimetz, D. The Key to Successful Drug Approval: An Effective Regulatory Strategy; Life Science Venturing: Herausforderung–Spezifika–Prozess: Spezifika, Germany, 2016; pp. 139–165. [Google Scholar]
- Olivencia, S.B.; Sasangohar, F. Investigating the Food and Drug Administration Biotherapeutics Review and Approval Process: Narrative Review. JMIR Form. Res. 2021, 5, e14563. [Google Scholar] [CrossRef]
- Bas, A.; Burns, N.; Gulotta, A.; Junker, J.; Drasler, B.; Lehner, R.; Aicher, L.; Constant, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding the development, standardization, and validation process of alternative in vitro test methods for regulatory approval from a researcher perspective. Small 2021, 17, 2006027. [Google Scholar] [CrossRef] [PubMed]
Feature | LPs | SLNs | NLCs |
---|---|---|---|
Structure | Phospholipid bilayer composition with an internal aqueous core | Consists of a single solid lipid matrix that forms a dense crystalline structure. | Mixing of solid and liquid lipids to form a non-perfect crystalline structure. |
Drug Encapsulation | High encapsulation efficiency for hydrophilic drugs, low encapsulation efficiency for fat-soluble drugs. | Suitable for fat-soluble drugs, encapsulation is less efficient due to the solid matrix. | Suitable for fat-soluble drugs, encapsulation efficiency is higher than SLN due to the presence of liquid oil. |
Drug release behavior | Rapid initial burst release (due to membrane permeability) or sustained release (modified via surface functionalization). | Release is sustained due to solid lipid matrix, release rate can be controlled by lipid type and surfactant. | Similar to SLN, sustained release, but initial release may be faster due to the presence of liquid oils. |
Application scenario | Vaccines, gene delivery, combination therapy requiring double loading | Hydrophobic drugs requiring slow release | Hydrophobic drugs with high drug loading requirements requiring long term stability for formulation development. |
Storage stability | Prone to oxidation/hydrolysis, requires cryoprotectants for long-term storage. | High physical stability but may undergo lipid recrystallization over time. | Improved stability due to reduced recrystallization, liquid lipids prevent drug leakage. |
Type of LNPs | Year of Publication | Preparation | Lipid Composition | LNPs-Loaded Drugs | Main Effect | Ref. |
---|---|---|---|---|---|---|
LPs | 2021 | Solvent Injection | Lecithin, cholesterol | Curcumin | Improved drug stability in acidic environments (22% drug release at pH 1.2 vs. 76% in control) | [39] |
LPs | 2021 | Thin-Film Hydration | Egg yolk lecithin, cholesterol | Celastrol | The pectin-trimethyl chitosan wrapped LPs improved stability and intestinal adhesion (mucin adhesion in the experimental group was about 1.8 times higher than in the blank group) | [40] |
LPs | 2022 | Thin-Film Hydration | Soybean phospho-lipid, cholesterol | Mesalazine, Curcumin | Eudragit S-100 wrapped LPs to achieve passive pH targeting (8% drug release at pH 1.2 and 88% at pH 7.4) | [41] |
LPs | 2023 | Thin-Film Hydration | Soybean, cholesterol phospholipid | Curcumin | Folic acid-modified LPs enable active targeting (macrophage uptake several times higher than in the blank group), Pectin chitosan hydrogel encapsulation of LPs to improve stability in the stomach and small intestine (less than 10% drug release) | [42] |
LPs | 2023 | Reverse-Phase Evaporation | Soy lecithin, cholesterol | Superoxide Dismutase | Improved enzyme drug stability (27% retention of enzyme activity at low pH and strong digestive enzymes vs. 1% in control) | [43] |
LPs | 2023 | Solvent Injection | Lecithin, cholesterol | Budesonide | The drug is linked to linoleate bonds to LPs to improve acidic stability and enable enzyme response targeting. Total of 5% release at pH 1.5, rapid release in the presence of esterase, no release in the absence of the enzyme. | [44] |
LPs | 2024 | Thin-Film Hydration | Soybean phospholipids | Emodin | Replacement of cholesterol by taurine deoxycholic acid enhances the stability of LPs in acidic environments and mucus layer penetration (3-fold higher penetration rate than normal liposomes) | [45] |
LPs | 2023 | Thin-Film Dispersion | Phosphatidylcholine, cholesterol | Genistein | The alginate microgels encapsulated LPs to enhance stability and pH targeting, with 8% release at pH 1.2 (control 60%) and 87% release at pH 6.8 (control 39%). | [46] |
LPs | 2024 | Double Emulsion Ultrasound | Egg yolk phospholipid, cholesterol | Chicory acid | Folic acid modification of LPs improves active targeting ability | [47] |
LPs | 2024 | Thin-Film Dispersion | Soybean lecithin, cholesterol | Curcumin, Probiotic | Chitosan blends encapsulating LPs elevated probiotic survival and intestinal adhesion in the gastrointestinal environment, with a 10-fold higher survival rate than the LP group. | [48] |
LPs | 2024 | Thin-Film Dispersion | Soybean lecithin, cholesterol | Chlorogenic acid | Folate-TPGS modification of LPs to improve active targeting | [49] |
SLNs | 2017 | Warm Microemulsion | Epikuron 200, Soya Lecithin | Dexamethasone, Cholesteryl butyrate | Improving the stability of Dexamethasone and Cholesteryl bu-tyrate during synergistic drug treatment | [50] |
SLNs | Hot Homogenization | Compritol, Phospholipon 90 G | Budesonide | Polyethyleneimine enhances intestinal retention by cationizing SLNs, and Eudragit S100 encapsulation confers pH-passive targeting and stability, with 16% drug release at pH 1.2 versus 60% in the blank group | [51] | |
SLNs | 2018 | Emulsification Solvent Evaporation | Tristearins, Tearic acid, Soya Lecithin | Curcumin | Use of dibasic lipids (stearic acid and tristearin) to improve drug gastrointestinal stability and storage stability | [52] |
SLNs | 2019 | Solvent Emulsification | stearic acid, Lecithin | Eluxadoline | Optimizing lipid composition to improve SLNs stability | [53] |
SLNs | 2020 | Hot Melting Ultrasonication | Compritol 888 ATO | Budesonide | Modulation of the number of layers of polyelectrolyte complexes encapsulating SLNs enhances stability and enzyme response targeting. 14% release at pH 1.2 (control 57%), 75% release under cellulase conditions, 30% without enzyme. | [54] |
SLNs | 2023 | Hot Homogenization | Cetyl palmitate | Fexofenadine | By optimizing the molecular weight of chitosan and combining it with SLNs encapsulation, the storage and release stability and adhesion of the drug were enhanced. | [55] |
NLCs | 2024 | Hot Homogenization | Precirol ATO 5, Miglyol 812 | Budesonide | Increased solubility and retention of drugs in the intestinal tract | [56] |
NLCs | 2013 | Hot Emulsification | Precirol ATO 5, Miglyol 812N/F | Curcumin | Enhanced colonic retention rather than permeability, with permeability 30-fold lower than control. | [57] |
NLCs | 2016 | Hot Melt Emulsification | Precirol ATO 5, Olive oil | Oleuropein | Improve drug stability and intestinal mucosal aggregation | [58] |
NLCs | 2020 | Hot Homogenization | Compritol 888 ATO, Olive oil | Berberine | Improved drug stability and intestinal solubility in an acidic environment. Total of 11% drug release at pH 1.2 (39% in the blank group), higher uptake by Caco-2 cells than in the blank group | [59] |
NLCs | 2020 | Hot Emulsification | Glyceryl monostearate, Geraniol | Celecoxib | Eudragit S100 wrapped NLCs to achieve pH passive targeting. >1% drug release at pH 2 and 90% at pH 7.4 | [60] |
NLCs | 2020 | Microemulsion Technology | Compritol 888 ATO, Oleic acid | Tacrolimus | Cetyltrimethyl ammonium bromide was added as a surfactant to improve adhesion, Eudragit FS100 wrapped NLCs to achieve pH passive targeting and long-lasting sustained release. drug release rates of 13% at pH 1.2, 26% at pH 4.6, and more than 60% at pH 7.4 were achieved, allowing for controlled sustained release for up to 72 h | [61] |
Natural-LNP | 2024 | Thin-Film Dispersion | Ginger derived lipids | siRNA | Biocompatibility is higher than the commercially available liposomal formulation DC-Chol/DOPE | [62] |
Natural-LNP | 2017 | Thin-Film Dispersion | Ginger derived lipids | 6-shogaol | Improvement of drug stability in acidic environment with less than 20% drug release at pH 1.2 compared to more than 60% in the blank group | [63] |
Natural-LNP | 2020 | Thin-Film Dispersion | Ginger derived lipids | M13 | Enhancement of intestinal microbial drug uptake and modification of the composition of the inflamed intestinal microbiota and its secreted metabolites in isolated cultures | [64] |
Natural-LNP | 2022 | Thin-Film Hydration | Mulberry leaf derived lipids | CRISPR/Cas9 | Pluronic F127 encapsulation enhances stability and intestinal permeability, the galactose-terminal moiety of LNP enhances active targeting, and macrophage uptake efficiency exceeds that of the control by seven-fold | [65] |
Natural-LNP | 2024 | Thin-Film Hydration | Tea derived lipids | Curcumin | Reduce the risk of spreading harmful bacteria and increase the proportion of probiotic gut bacteria | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Yang, Z.; Liu, Y.; Cheng, L.; Long, D.; Dai, F. Oral Lipid Nanoparticles for Improving the Efficiency of Drug Delivery Systems in Ulcerative Colitis: Recent Advances and Future Prospects. Pharmaceutics 2025, 17, 547. https://doi.org/10.3390/pharmaceutics17050547
Zhu S, Yang Z, Liu Y, Cheng L, Long D, Dai F. Oral Lipid Nanoparticles for Improving the Efficiency of Drug Delivery Systems in Ulcerative Colitis: Recent Advances and Future Prospects. Pharmaceutics. 2025; 17(5):547. https://doi.org/10.3390/pharmaceutics17050547
Chicago/Turabian StyleZhu, Siyu, Zhenlin Yang, Yulong Liu, Lan Cheng, Dingpei Long, and Fangyin Dai. 2025. "Oral Lipid Nanoparticles for Improving the Efficiency of Drug Delivery Systems in Ulcerative Colitis: Recent Advances and Future Prospects" Pharmaceutics 17, no. 5: 547. https://doi.org/10.3390/pharmaceutics17050547
APA StyleZhu, S., Yang, Z., Liu, Y., Cheng, L., Long, D., & Dai, F. (2025). Oral Lipid Nanoparticles for Improving the Efficiency of Drug Delivery Systems in Ulcerative Colitis: Recent Advances and Future Prospects. Pharmaceutics, 17(5), 547. https://doi.org/10.3390/pharmaceutics17050547