Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Fiber Formation from Isomalt or Sucrose
2.2.2. Optimizing the Process Parameters: Statistical Analysis
2.2.3. Preparation of Ibuprofen Sodium-Loaded Isomalt-Based Fibers
2.2.4. Storage Conditions
2.2.5. Characterization Methods
Microscopic Analysis
Macroscopical Morphology Monitoring
Differential Scanning Calorimetry (DSC) Measurements
X-Ray Diffraction (XRD) Measurements
In Vitro Drug Release Test
3. Results
3.1. Fiber Formation and Process Parameter Optimization
3.2. Microscopic Analysis
3.3. Macroscopical Morphology Monitoring
3.4. Differential Scanning Calorimetry (DSC) Measurements
3.5. X-Ray Diffraction (XRD) Measurements
3.6. In Vitro Drug Release Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodson, A.; Pepper, T. Confectionery technology and the pros and cons of using non-sucrose sweeteners. Food Chem. 1985, 16, 271–280. [Google Scholar] [CrossRef]
- Schweitzer, L.; Wouters, R.; Theis, S. Replacing sugar with the polyol isomalt: Technological advances and nutritional benefits focusing on blood glucose management. Int. J. Nutraceuticals Funct. Foods Nov. Foods 2024, 1, 551–559. [Google Scholar]
- Grembecka, M. Sugar alcohols—Their role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 2015, 241, 1–14. [Google Scholar] [CrossRef]
- Sievenpiper, J.L.; Purkayastha, S.; Grotz, V.L.; Mora, M.; Zhou, J.; Hennings, K.; Goody, C.M.; Germana, K. Dietary guidance, sensory, health and safety considerations when choosing low and no-calorie sweeteners. Nutrients 2025, 17, 793. [Google Scholar] [CrossRef]
- Sheskey, P.J.; Cook, W.G.; Cable, C.G. (Eds.) Isomalt. In Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, UK, 2017; pp. 487–490. [Google Scholar]
- Paál, T.; Kőszeginé, S.H.; Nagy, A.; Kertész, P.; Posgayné Kovács, E.; Takács, M.; Németh, T.; Haraszti, C. (Eds.) Magyar Gyógyszerkönyv, 8th ed.; Izomalt cikkely; Medicina: Budapest, Hungary, 2004; Volume 2, pp. 2113–2114. [Google Scholar]
- Schiweck, H.; Munir, M.; Rapp, K.; Schneider, B.; Vogel, M. New developments in the use of sucrose as an industrial bulk chemical. Zuckerindustrie 1990, 115, 555–565. [Google Scholar]
- Rose, T.; Kunz, M. Production of isomalt. Landbauforsch. Völk 2002, 241, 75–80. [Google Scholar]
- Kállai, N.; Luhn, O.; Dredán, J.; Kovács, K.; Lengyel, M.; Antal, I. Evaluation of drug release from coated pellets based on isomalt, sugar, and microcrystalline cellulose inert cores. AAPS PharmSciTech 2010, 11, 383–391. [Google Scholar] [CrossRef]
- Kállai-Szabó, N.; Luhn, O.; Bernard, J.; Kállai-Szabó, B.; Zelkó, R.; Antal, I. Comparative dissolution study of drug and inert isomalt based core material from layered pellets. J. Pharm. Biomed. Anal. 2014, 98, 339–344. [Google Scholar] [CrossRef]
- Langer, M.; Höltje, M.; Urbanetz, N.A.; Brandt, B.; Höltje, H.-D.; Lippold, B. Investigations on the predictability of the formation of glassy solid solutions of drugs in sugar alcohols. Int. J. Pharm. 2003, 252, 167–179. [Google Scholar] [CrossRef]
- Poka, M.S.; Milne, M.; Wessels, A.; Aucamp, M. Sugars and polyols of natural origin as carriers for solubility and dissolution enhancement. Pharmaceutics 2023, 15, 2557. [Google Scholar] [CrossRef]
- Kállai-Szabó, N.; Lengyel, M.; Farkas, D.; Barna, Á.T.; Fleck, C.; Basa, B.; Antal, I. Review on Starter Pellets: Inert and Functional Cores. Pharmaceutics 2022, 14, 1299. [Google Scholar] [CrossRef]
- Kállai-Szabó, N.; Farkas, D.; Lengyel, M.; Basa, B.; Fleck, C.; Antal, I. Microparticles and multi-unit systems for advanced drug delivery. Eur. J. Pharm. Sci. 2024, 194, 106704. [Google Scholar] [CrossRef]
- Zakowiecki, D.; Szczepanska, M.; Hess, T.; Cal, K.; Mikolaszek, B.; Paszkowska, J.; Wiater, M.; Hoc, D.; Garbacz, G. Preparation of delayed-release multiparticulate formulations of diclofenac sodium and evaluation of their dissolution characteristics using biorelevant dissolution methods. J. Drug Deliv. Sci. Technol. 2020, 60, 101986. [Google Scholar] [CrossRef]
- Zakowiecki, D.; Frankiewicz, M.; Hess, T.; Cal, K.; Gajda, M.; Dabrowska, J.; Kubiak, B.; Paszkowska, J.; Wiater, M.; Hoc, D. Development of a biphasic-release multiple-unit pellet system with diclofenac sodium using novel calcium phosphate-based starter pellets. Pharmaceutics 2021, 13, 805. [Google Scholar] [CrossRef]
- Chachlioutaki, K.; Li, X.; Koltsakidis, S.; Abdelhakim, H.E.; Bouropoulos, N.; Tzetzis, D.; Karavasili, C.; Fatouros, D.G. How sugar types and fabrication methods affect palatability in paediatric-friendly oromucosal pullulan films of chlorpromazine hydrochloride. Carbohydr. Polym. 2025, 348, 122802. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, S.; Kobayashi, M.; Aoki, S.; Terukina, T.; Kanazawa, T.; Kojima, H.; Kondo, H. 3D-printed fast-dissolving oral dosage forms via fused deposition modeling based on sugar alcohol and poly (vinyl alcohol)—Preparation, drug release studies and in vivo oral absorption. Pharmaceutics 2023, 15, 395. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, E.; Morelli, L.; Salvioni, L.; Giustra, M.; De Santes, B.; Spena, F.; Barbieri, L.; Garbujo, S.; Viganò, M.; Novati, B. Co-processed materials testing as excipients to produce Orally Disintegrating Tablets (ODT) using binder jet 3D-printing technology. Eur. J. Pharm. Biopharm. 2024, 194, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Bogdahn, M.; Torner, J.; Krause, J.; Grimm, M.; Weitschies, W. Influence of the geometry of 3D printed solid oral dosage forms on their swallowability. Eur. J. Pharm. Biopharm. 2021, 167, 65–72. [Google Scholar] [CrossRef]
- Tuderman, A.-K.; Strachan, C.J.; Juppo, A.M. Isomalt and its diastereomer mixtures as stabilizing excipients with freeze-dried lactate dehydrogenase. Int. J. Pharm. 2018, 538, 287–295. [Google Scholar] [CrossRef]
- Sáska, Z.; Dredán, J.; Luhn, O.; Balogh, E.; Shafir, G.; Antal, I. Evaluation of the impact of mixing speed on the compressibility and compactibility of paracetamol-isomalt containing granules with factorial design. Powder Technol. 2011, 213, 132–140. [Google Scholar] [CrossRef]
- Chauhan, N.N.; Patel, J.K. Design and Development of Agglomerated Isomalt. Int. J. Pharm. Compd. 2023, 27, 78–87. [Google Scholar]
- Baumgartner, A.; Planinšek, O. Effect of process parameters in high shear granulation on characteristics of a novel co-processed mesoporous silica material. Eur. J. Pharm. Sci. 2023, 188, 106528. [Google Scholar] [CrossRef] [PubMed]
- Ndindayino, F.; Henrist, D.; Kiekens, F.; Vervaet, C.; Remon, J.P. Characterization and evaluation of isomalt performance in direct compression. Int. J. Pharm. 1999, 189, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Bolhuis, G.K.; Engelhart, J.J.; Eissens, A.C. Compaction properties of isomalt. Eur. J. Pharm. Biopharm. 2009, 72, 621–625. [Google Scholar] [CrossRef]
- Quodbach, J.; Mosig, J.; Kleinebudde, P. Compaction behavior of isomalt after roll compaction. Pharmaceutics 2012, 4, 494–500. [Google Scholar] [CrossRef]
- Lura, A.; Luhn, O.; Gonzales, J.S.; Breitkreutz, J. New orodispersible mini-tablets for paediatric use–A comparison of isomalt with a mannitol based co-processed excipient. Int. J. Pharm. 2019, 572, 118804. [Google Scholar] [CrossRef]
- Tablet Formulations with galenIQ™ for Sweet Taste. Available online: https://www.beneo.com/pharmaceutical-excipients/pharma-applications/tablets (accessed on 23 May 2025).
- Boghmans, C.P.L.; Meeus, L.M.F. Orodispersible Tablets of Erythritol and Isomalt. U.S. Patent Application No. 13/701,051, 13 March 2013. [Google Scholar]
- Biswas, R.; Mondal, S.; Ansari, M.A. Orodispersible Tablets: A Novel Approach to Combat Dysphagia. Int. J. Pharm. Sci. Rev. Res. 2024, 84, 22–33. [Google Scholar] [CrossRef]
- Cherukuri, S.R.; Myers, G.L.; Battist, G.E.; Fuisz, R.C. Process for Forming Quickly Dispersing Comestible Unit and Product Therefrom. U.S. Patent No. 5,587,172, 24 December 1996. [Google Scholar]
- Fuisz, R.C.; Cherukuri, S.R. Process and Apparatus for Making Tablets and Tablets Made Therefrom. U.S. Patent No. 5,654,003, 5 August 1997. [Google Scholar]
- Badgujar, B.P.; Mundada, A.S. The technologies used for developing orally disintegrating tablets: A review. Acta Pharm. 2011, 61, 117–139. [Google Scholar] [CrossRef]
- galenIQ™|The Product Range. Available online: https://www.beneo.com/pharmaceutical-excipients/pharmaceutical-products (accessed on 23 May 2025).
- Commission, E.P. DISSOLUTION TEST FOR SOLID DOSAGE FORMS (2.9.3). In European Pharmacopoeia; Commission, E.P., Ed.; European Pharmacopoeia Commission: Strasbourg, France, 2023; p. 348. [Google Scholar]
- Király, M.; Sántha, K.; Kállai-Szabó, B.; Pencz, K.M.; Ludányi, K.; Kállai-Szabó, N.; Antal, I. Development and Dissolution Study of a β-Galactosidase Containing Drinking Straw. Pharmaceutics 2022, 14, 769. [Google Scholar] [CrossRef]
- Wong, S.N.; Weng, J.; Ip, I.; Chen, R.; Lakerveld, R.; Telford, R.; Blagden, N.; Scowen, I.J.; Chow, S.F. Rational development of a carrier-free dry powder inhalation formulation for respiratory viral infections via quality by design: A drug-drug cocrystal of favipiravir and theophylline. Pharmaceutics 2022, 14, 300. [Google Scholar] [CrossRef]
- Farkas, D.; Kállai-Szabó, N.; Sárádi-Kesztyűs, Á.; Lengyel, M.; Magramane, S.; Kiss, É.; Antal, I. Investigation of propellant-free aqueous foams as pharmaceutical carrier systems. Pharm. Dev. Technol. 2021, 26, 253–261. [Google Scholar] [CrossRef]
- Szabó, P.; Kállai-Szabó, B.; Sebe, I.; Zelkó, R. Preformulation study of fiber formation and formulation of drug-loaded microfiber based orodispersible tablets for in vitro dissolution enhancement. Int. J. Pharm. 2014, 477, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Łyszczarz, E.; Brniak, W.; Szafraniec-Szczęsny, J.; Majka, T.M.; Majda, D.; Zych, M.; Pielichowski, K.; Jachowicz, R. The impact of the preparation method on the properties of orodispersible films with aripiprazole: Electrospinning vs. casting and 3D printing methods. Pharmaceutics 2021, 13, 1122. [Google Scholar] [CrossRef] [PubMed]
- Wildy, M.; Lu, P. Electrospun nanofibers: Shaping the future of controlled and responsive drug delivery. Materials 2023, 16, 7062. [Google Scholar] [CrossRef] [PubMed]
- Farkas, B.; Balogh, A.; Farkas, A.; Domokos, A.; Borbás, E.; Marosi, G.; Nagy, Z.K. Medicated straws based on electrospun solid dispersions. Period. Polytech. Chem. Eng. 2018, 62, 310–316. [Google Scholar] [CrossRef]
- Alfassam, H.A.; Booq, R.Y.; Almousained, M.M.; Alajmi, A.M.; Elfaky, M.A.; Shaik, R.A.; Alsaleh, N.S.; Aodah, A.H.; Alsulimani, H.H.; Halwani, A.A. Fabrication and evaluation of centrifugal spun Miconazole-loaded sugar-based fibers. J. Drug Deliv. Sci. Technol. 2024, 98, 105872. [Google Scholar] [CrossRef]
- Sheskey, P.J.; Cook, W.G.; Cable, C.G. (Eds.) Ethanol. In Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, UK, 2017; pp. 356–359. [Google Scholar]
- Comoglu, T.; Ozyilmaz, E.D. Pharmaceutical excipients in pediatric and geriatric drug formulations: Safety, efficacy, and regulatory perspectives. Pharm. Dev. Technol. 2025, 30, 1–9. [Google Scholar] [CrossRef]
- Szabó, E.; Záhonyi, P.; Gyürkés, M.; Nagy, B.; Galata, D.L.; Madarász, L.; Hirsch, E.; Farkas, A.; Andersen, S.K.; Vígh, T. Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. Eur. J. Pharm. Sci. 2021, 164, 105907. [Google Scholar] [CrossRef]
- Vass, P.; Hirsch, E.; Kóczián, R.; Démuth, B.; Farkas, A.; Fehér, C.; Szabó, E.; Németh, Á.; Andersen, S.K.; Vigh, T. Scaled-up production and tableting of grindable electrospun fibers containing a protein-type drug. Pharmaceutics 2019, 11, 329. [Google Scholar] [CrossRef]
- Labuza, T.P.; Labuza, P.S. Influence of temperature and relative humidity on the physical states of cotton candy. J. Food Process. Preserv. 2004, 28, 274–287. [Google Scholar] [CrossRef]
- Byl, E.; Lebeer, S.; Kiekens, F. Elastic recovery of filler-binders to safeguard viability of Lactobacillus rhamnosus GG during direct compression. Eur. J. Pharm. Biopharm. 2019, 135, 36–43. [Google Scholar] [CrossRef]
- Terashima, Y. Thermal study on cotton candy by differential scanning calorimetry. Chem. Phys. Lett. 2022, 805, 139953. [Google Scholar] [CrossRef]
- Koskinen, A.-K.; Fraser-Miller, S.; Bøtker, J.; Heljo, V.; Barnsley, J.; Gordon, K.; Strachan, C.; Juppo, A. Physical Stability of Freeze-Dried Isomalt Diastereomer Mixtures. Pharm. Res. 2016, 33, 1752–1768. [Google Scholar] [CrossRef]
- Censi, R.; Martena, V.; Hoti, E.; Malaj, L.; Di Martino, P. Sodium ibuprofen dihydrate and anhydrous: Study of the dehydration and hydration mechanisms. J. Therm. Anal. Calorim. 2013, 111, 2009–2018. [Google Scholar] [CrossRef]
- Perkkalainen, P.; Pitkänen, I.; Huuskonen, J. Crystal structure and IR spectrum of 1-O-α-d-glucopyranosyl-d-mannitol–ethanol (2/1). J. Mol. Struct. 1999, 510, 179–189. [Google Scholar] [CrossRef]
Property | galenIQTM 720 | galenIQTM 721 | |
---|---|---|---|
Type | agglomerated | agglomerated | |
GPS:GPM ratio | 1:1 | 3:1 | |
Solubility in water at 20 °C (g/100 g) | 25 | 42 | |
Particle size distribution (µm) | d10 | 95 | 90 |
d50 | 200 | 180 | |
d90 | 350 | 360 | |
SPAN | 1.3 | 1.5 | |
Bulk density (g/dm3) | 400 | 400 | |
Tapped density (g/L) n = 1250 | 448 | 448 | |
Hausner ratio | 1.12 | 1.12 | |
Carr index | 10 | 10 | |
Angle of repose (°) | 33 | 31 | |
Flowability (s/100 g; orifice d = 6.0 mm) | 55 | 57 |
Coded Value | Actual Value x1 (Temperature; °C) | Actual Value x2 (Rotational Speed; rpm) |
---|---|---|
−1 | 150 | 1500 |
0 | 175 | 2100 |
+1 | 200 | 2700 |
Trial No. | Coded Value of x1 | Coded Value of x2 | Yield (%) | |
---|---|---|---|---|
1:1; GPS:GPM | 3:1; GPS:GPM | |||
1 | −1 | −1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
2 | 0 | −1 | 4.8 ± 2.1 | 4.5 ± 2.2 |
3 | +1 | −1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
4 | −1 | 0 | 51.0 ± 9.4 | 21.5 ± 9.7 |
5 | 0 | 0 | 32.9 ± 3.8 | 21.2 ± 2.0 |
6 | +1 | 0 | 6.8± 3.8 | 0.5 ± 0.4 |
7 | −1 | +1 | 63.2 ± 3.9 | 59.1 ± 5.2 |
8 | 0 | +1 | 64.7 ± 6.0 | 62.2 ± 5.0 |
9 | +1 | +1 | 13.3 ± 3.0 | 18.7 ± 3.1 |
Ratio of GPS:GPM | Model F-Value | Parameter | Coefficients | |||||
---|---|---|---|---|---|---|---|---|
b0 | b1 | b2 | b11 | b22 | b12 | |||
1:1 | 9.864 p > 0.044 | Value | 38.061 | −15.692 | 22.708 | −11.772 + | −5.872 + | −12.500 + |
Std. dev. | 7.901 | 4.327 | 4.327 | 7.496 | 7.496 | 5.300 | ||
p > |t| | 0.017 | 0.036 | 0.013 | 0.214 | 0.491 | 0.100 | ||
3:1 | 24.564 p > 0.014 | Value | 22.858 | −10.245 | 22.562 | −12.682 + | 9.668 + | −10.103 + |
Std. dev. | 4.789 | 2.623 | 2.623 | 4.543 | 4.543 | 3.213 | ||
p > |t| | 0.017 | 0.030 | 0.003 | 0.068 | 0.123 | 0.051 |
Sample | Storage Condition | Avg. Diameter ± SD (µm) |
---|---|---|
1:1 GPS:GPM (galenIQTM 720) | Fresh | 13.44 ± 3.61 |
24 h ethanol treatment | 12.26 ± 5.19 | |
3:1 GPS:GPM (galenIQTM 721) | Fresh | 15.02 ± 6.97 |
Ibuprofen sodium-loaded fiber | Fresh | 8.60 ± 2.32 |
24 h ethanol treatment | 14.30 ± 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, A.; Kecskés, B.A.; Filipszki, G.; Farkas, D.; Tóth, B.; Antal, I.; Kállai-Szabó, N. Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems. Pharmaceutics 2025, 17, 1063. https://doi.org/10.3390/pharmaceutics17081063
Kovács A, Kecskés BA, Filipszki G, Farkas D, Tóth B, Antal I, Kállai-Szabó N. Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems. Pharmaceutics. 2025; 17(8):1063. https://doi.org/10.3390/pharmaceutics17081063
Chicago/Turabian StyleKovács, Andrea, Bálint Attila Kecskés, Gábor Filipszki, Dóra Farkas, Bence Tóth, István Antal, and Nikolett Kállai-Szabó. 2025. "Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems" Pharmaceutics 17, no. 8: 1063. https://doi.org/10.3390/pharmaceutics17081063
APA StyleKovács, A., Kecskés, B. A., Filipszki, G., Farkas, D., Tóth, B., Antal, I., & Kállai-Szabó, N. (2025). Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems. Pharmaceutics, 17(8), 1063. https://doi.org/10.3390/pharmaceutics17081063