Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats
Abstract
1. Introduction
2. Pathogenesis of DM in Humans, Dogs, and Cats
2.1. Type 1 vs. Type 2 Distribution Across Species
2.1.1. Brief Description
2.1.2. Key Findings
2.1.3. Academic Discussion
2.2. Multifactorial Pathogenesis of T2DM
2.2.1. Brief Description
2.2.2. Key Findings
2.2.3. Academic Discussion
2.3. Hormonal Modulators of Glucose Homeostasis
2.3.1. Brief Description
2.3.2. Key Findings
2.3.3. Academic Discussion
2.4. Inflammatory Mediators and Immunometabolic Dysregulation
2.4.1. Brief Description
2.4.2. Key Findings
2.4.3. Academic Discussion
3. Pharmacological Therapies
3.1. Insulin Therapies
3.1.1. Brief Description
3.1.2. Key Findings
3.1.3. Academic Discussion
3.2. Oral Hypoglycemic Agents
3.2.1. Brief Description
3.2.2. Key Findings
3.2.3. Academic Discussion
3.3. Novel and Investigational Drugs
3.3.1. Brief Description
3.3.2. Key Findings
3.3.3. Academic Discussion
4. Pharmaceutical Considerations: Formulation and Drug Delivery
4.1. Species-Specific Challenges
4.1.1. Brief Description
4.1.2. Key Findings
4.1.3. Academic Discussion
4.2. Formulation Strategies
4.2.1. Brief Description
4.2.2. Key Findings
4.2.3. Academic Discussion
4.3. Compliance and Owner Considerations
4.3.1. Brief Description
4.3.2. Key Findings
4.3.3. Academic Discussion
5. Regulatory and Clinical Approval Status
5.1. Human-Approved Antidiabetic Agents
5.1.1. Key Findings
5.1.2. Academic Discussion
5.2. Veterinary-Approved Antidiabetic Agents
5.2.1. Key Findings
5.2.2. Academic Discussion
5.3. Off-Label Use and Regulatory Considerations
5.3.1. Key Findings
5.3.2. Academic Discussion
5.4. Emerging Approvals and Translational Perspectives
5.4.1. Key Findings
5.4.2. Academic Discussion
6. Future Directions and Translational Implications
6.1. Cross-Species Insights for Translational Research
Academic Discussion
6.2. Veterinary Research Informing Human Therapies
Academic Discussion
6.3. Companion Animals as Preclinical Models
Academic Discussion
6.4. Integrated One Health Approach
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CGM | Continuous glucose monitoring |
DM | Diabetes mellitus |
DPP-4 | Dipeptidyl peptidase-4 |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
GI | Gastrointestinal |
GLP-1 | Glucagon-like peptide-1 |
GLP-1 RA | Glucagon-like peptide-1 receptor agonist |
IAPP | Islet amyloid polypeptide |
MODY3 | Maturity-onset diabetes of the young type 3 |
NPH | Neutral protamine hagedorn |
PZI | Protamine zinc insulin |
SGLT2 | Sodium-glucose co-transporter 2 |
SNP | Single nucleotide polymorphism |
T1DM | Type 1 diabetes mellitus |
T2DM | Type 2 diabetes mellitus |
References
- Hoenig, M. Comparative aspects of diabetes mellitus in dogs and cats. Mol. Cell. Endocrinol. 2002, 197, 221–229. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004, 27 (Suppl. S1), S5–S10. [Google Scholar] [CrossRef]
- O’Brien, T.D. Pathogenesis of feline diabetes mellitus. Mol. Cell. Endocrinol. 2002, 197, 213–219. [Google Scholar] [CrossRef]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef]
- King, H.; Aubert, R.E.; Herman, W.H. Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care 1998, 21, 1414–1431. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 12th ed.; International Diabetes Federation: Brussels, Belgium, 2023. [Google Scholar]
- Dal Canto, E.; Ceriello, A.; Ryden, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef]
- Garofolo, M.; Gualdani, E.; Giannarelli, R.; Aragona, M.; Campi, F.; Lucchesi, D.; Daniele, G.; Miccoli, R.; Francesconi, P.; Del Prato, S.; et al. Microvascular complications burden (nephropathy, retinopathy and peripheral polyneuropathy) affects risk of major vascular events and all-cause mortality in type 1 diabetes: A 10-year follow-up study. Cardiovasc. Diabetol. 2019, 18, 159. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.K.; Rodrigues, T.C.; Canani, L.H.; Gross, J.L.; Azevedo, M.J. Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: Meta-analysis of observational studies. Diabetes Care 2011, 34, 1238–1244. [Google Scholar] [CrossRef]
- Moshref, M.; Tangey, B.; Gilor, C.; Papas, K.K.; Williamson, P.; Loomba-Albrecht, L.; Sheehy, P.; Kol, A. Concise Review: Canine Diabetes Mellitus as a Translational Model for Innovative Regenerative Medicine Approaches. Stem. Cells Transl. Med. 2019, 8, 450–455. [Google Scholar] [CrossRef]
- Nelson, R.W.; Reusch, C.E. Animal models of disease: Classification and etiology of diabetes in dogs and cats. J. Endocrinol. 2014, 222, T1–T9. [Google Scholar] [CrossRef] [PubMed]
- Vaitaitis, G.; Webb, T.; Webb, C.; Sharkey, C.; Sharkey, S.; Waid, D.; Wagner, D.H. Canine diabetes mellitus demonstrates multiple markers of chronic inflammation including Th40 cell increases and elevated systemic-immune inflammation index, consistent with autoimmune dysregulation. Front. Immunol. 2023, 14, 1319947. [Google Scholar] [CrossRef]
- Nelson, R.W. Oral medications for treating diabetes mellitus in dogs and cats. J. Small Anim. Pract. 2000, 41, 486–490. [Google Scholar] [CrossRef]
- Wiedmeyer, C.E.; de Clue, A.E. Continuous glucose monitoring in dogs and cats. J. Vet. Intern. Med. 2008, 22, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.N.; Mochel, J.P.; Neuhoff, S.; Pade, D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS J. 2021, 23, 59. [Google Scholar] [CrossRef] [PubMed]
- Court, M.H. Feline drug metabolism and disposition: Pharmacokinetic evidence for species differences and molecular mechanisms. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1039–1054. [Google Scholar] [CrossRef]
- Vinik, A. Advancing therapy in type 2 diabetes mellitus with early, comprehensive progression from oral agents to insulin therapy. Clin. Ther. 2007, 29, 1236–1253. [Google Scholar] [CrossRef]
- Garber, A.J. Incretin-based therapies in the management of type 2 diabetes: Rationale and reality in a managed care setting. Am. J. Manag. Care 2010, 16, S187–S194. [Google Scholar]
- Kramer, C.K.; Retnakaran, R.; Zinman, B. Insulin and insulin analogs as antidiabetic therapy: A perspective from clinical trials. Cell Metab. 2021, 33, 740–747. [Google Scholar] [CrossRef]
- Palm, C.A.; Feldman, E.C. Oral hypoglycemics in cats with diabetes mellitus. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 407–415. [Google Scholar] [CrossRef]
- Michiels, L.; Reusch, C.E.; Boari, A.; Petrie, G.; Mandigers, P.; Thollot, I.G.; Rosenberg, D.; Mooney, C.; Bonfanti, U.; Font, A.; et al. Treatment of 46 cats with porcine lente insulin—A prospective, multicentre study. J. Feline Med. Surg. 2008, 10, 439–451. [Google Scholar] [CrossRef]
- Huang, B.; An, H.; Chu, J.; Ke, S.; Ke, J.; Qiu, Y.; Zhang, J.; Zhu, H.; Lin, J.; Yang, M.; et al. Glucose-Responsive and Analgesic Gel for Diabetic Subcutaneous Abscess Treatment by Simultaneously Boosting Photodynamic Therapy and Relieving Hypoxia. Adv. Sci. 2025, e02830. [Google Scholar] [CrossRef]
- Jayedi, A.; Daneshvar, M.; Jibril, A.T.; Sluyter, J.D.; Waterhouse, M.; Romero, B.D.; Neale, R.E.; Manson, J.E.; Shab-Bidar, S. Serum 25(OH)D Concentration, Vitamin D Supplementation, and Risk of Cardiovascular Disease and Mortality in Patients with Type 2 Diabetes or Prediabetes: A Systematic Review and Dose-Response Meta-Analysis. Am. J. Clin. Nutr. 2023, 118, 697–707. [Google Scholar] [CrossRef]
- Desouza, C.; Chatterjee, R.; Vickery, E.M.; Nelson, J.; Johnson, K.C.; Kashyap, S.R.; Lewis, M.R.; Margolis, K.; Pratley, R.; Rasouli, N.; et al. The effect of vitamin D supplementation on cardiovascular risk in patients with prediabetes: A secondary analysis of the D2d study. J. Diabetes Complicat. 2022, 36, 108230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, Y.; Li, W.; Wang, Y.; Zhang, H.; Xu, D.; Chen, R.; Tang, L.; Tang, H. Association between serum vitamin D level and cardiovascular disease in Chinese patients with type 2 diabetes mellitus: A cross-sectional study. Sci. Rep. 2025, 15, 6454. [Google Scholar] [CrossRef]
- Toutain, P.L.; Ferran, A.; Bousquet-Melou, A. Species differences in pharmacokinetics and pharmacodynamics. Handb. Exp. Pharmacol. 2010, 199, 19–48. [Google Scholar] [CrossRef]
- Hong, Y.; Yu, H.; Wang, L.; Chen, X.; Huang, Y.; Yang, J.; Ren, S. Transdermal Insulin Delivery and Microneedles-based Minimally Invasive Delivery Systems. Curr. Pharm. Des. 2022, 28, 3175–3193. [Google Scholar] [CrossRef]
- Martinez-Navarrete, M.; Perez-Lopez, A.; Guillot, A.J.; Cordeiro, A.S.; Melero, A.; Aparicio-Blanco, J. Latest advances in glucose-responsive microneedle-based systems for transdermal insulin delivery. Int. J. Biol. Macromol. 2024, 263, 130301. [Google Scholar] [CrossRef]
- Shipp, L.; Liu, F.; Kerai-Varsani, L.; Okwuosa, T.C. Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J. Control. Release 2022, 352, 1071–1092. [Google Scholar] [CrossRef] [PubMed]
- Surman, S.; Fleeman, L. Continuous glucose monitoring in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 381–406. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef]
- Patterson, C.C.; Harjutsalo, V.; Rosenbauer, J.; Neu, A.; Cinek, O.; Skrivarhaug, T.; Rami-Merhar, B.; Soltesz, G.; Svensson, J.; Parslow, R.C.; et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: A multicentre prospective registration study. Diabetologia 2019, 62, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Catchpole, B.; Ristic, J.M.; Fleeman, L.M.; Davison, L.J. Canine diabetes mellitus: Can old dogs teach us new tricks? Diabetologia 2005, 48, 1948–1956. [Google Scholar] [CrossRef]
- Shields, E.J.; Lam, C.J.; Cox, A.R.; Rankin, M.M.; Van Winkle, T.J.; Hess, R.S.; Kushner, J.A. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS ONE 2015, 10, e0129809. [Google Scholar] [CrossRef]
- Roomp, K.; Rand, J.S. Management of diabetic cats with long-acting insulin. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 251–266. [Google Scholar] [CrossRef]
- Lutz, T.A.; Rand, J.S. Pathogenesis of feline diabetes mellitus. Vet. Clin. N. Am. Small Anim. Pract. 1995, 25, 527–552. [Google Scholar] [CrossRef]
- Gottlieb, S.; Rand, J.S.; Marshall, R.; Morton, J. Glycemic status and predictors of relapse for diabetic cats in remission. J. Vet. Intern. Med. 2015, 29, 184–192. [Google Scholar] [CrossRef]
- Hoenig, M.; Hall, G.; Ferguson, D.; Jordan, K.; Henson, M.; Johnson, K.; O’Brien, T. A feline model of experimentally induced islet amyloidosis. Am. J. Pathol. 2000, 157, 2143–2150. [Google Scholar] [CrossRef]
- Zini, E.; Hafner, M.; Osto, M.; Franchini, M.; Ackermann, M.; Lutz, T.A.; Reusch, C.E. Predictors of clinical remission in cats with diabetes mellitus. J. Vet. Intern. Med. 2010, 24, 1314–1321. [Google Scholar] [CrossRef]
- Rak, M.B.; Gilor, C.; Niessen, S.J.M.; Furrow, E. Spontaneous remission and relapse of diabetes mellitus in a male dog. J. Vet. Intern. Med. 2024, 38, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Ahmad, A.; Ashraf, H. Metabolic Profile of Offspring of Mothers with Gestational Diabetes Mellitus. Indian J. Endocrinol. Metab. 2024, 28, 192–196. [Google Scholar] [CrossRef]
- Norrman, E.; Petzold, M.; Gissler, M.; Spangmose, A.L.; Opdahl, S.; Henningsen, A.K.; Pinborg, A.; Tiitinen, A.; Rosengren, A.; Romundstad, L.B.; et al. Cardiovascular disease, obesity, and type 2 diabetes in children born after assisted reproductive technology: A population-based cohort study. PLoS Med. 2021, 18, e1003723. [Google Scholar] [CrossRef]
- Xiang, Y.X.; Xu, Z.; Xiao, R.; Yao, Y.L.; Tang, X.J.; Fu, L.J.; Geng, L.H.; Zhong, Z.H.; Ding, Y.B. Interacting and joint effects of assisted reproductive technology and gestational diabetes mellitus on preterm birth and the mediating role of gestational diabetes mellitus: A cohort study using a propensity score. J. Assist. Reprod. Genet. 2025, 42, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Sasako, T.; Yamauchi, T.; Ueki, K. Intensified Multifactorial Intervention in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2023, 47, 185–197. [Google Scholar] [CrossRef]
- Prentki, M.; Nolan, C.J. Islet beta cell failure in type 2 diabetes. J. Clin. Investig. 2006, 116, 1802–1812. [Google Scholar] [CrossRef]
- Xu, G.; Kaneto, H.; Laybutt, D.R.; Duvivier-Kali, V.F.; Trivedi, N.; Suzuma, K.; King, G.L.; Weir, G.C.; Bonner-Weir, S. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: Possible contribution to impaired incretin effects in diabetes. Diabetes 2007, 56, 1551–1558. [Google Scholar] [CrossRef]
- Ramnanan, C.J.; Edgerton, D.S.; Kraft, G.; Cherrington, A.D. Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes. Metab. 2011, 13 (Suppl. S1), 118–125. [Google Scholar] [CrossRef] [PubMed]
- Engin, A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. Adv. Exp. Med. Biol. 2024, 1460, 431–462. [Google Scholar] [CrossRef]
- Sergi, D.; Naumovski, N.; Heilbronn, L.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front. Physiol. 2019, 10, 532. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Obin, M.S.; Zhao, L. The gut microbiota, obesity and insulin resistance. Mol. Asp. Med. 2013, 34, 39–58. [Google Scholar] [CrossRef]
- Hull, R.L.; Westermark, G.T.; Westermark, P.; Kahn, S.E. Islet amyloid: A critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 3629–3643. [Google Scholar] [CrossRef]
- Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S.; et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: Sglt2 Protein Inhibition Decreases Renal Lipid Accumulation, Inflammation, and The Development of Nephropathy in Diabetic Mice. J. Biol. Chem. 2017, 292, 5335–5348. [Google Scholar] [CrossRef] [PubMed]
- Katashima, C.K.; Silva, V.R.R.; Lenhare, L.; Marin, R.M.; Carvalheira, J.B.C. iNOS promotes hypothalamic insulin resistance associated with deregulation of energy balance and obesity in rodents. Sci. Rep. 2017, 7, 9265. [Google Scholar] [CrossRef] [PubMed]
- Verkest, K.R.; Fleeman, L.M.; Morton, J.M.; Ishioka, K.; Rand, J.S. Compensation for obesity-induced insulin resistance in dogs: Assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis. Domest. Anim. Endocrinol. 2011, 41, 24–34. [Google Scholar] [CrossRef]
- Fleeman, L.; Barrett, R. Cushing’s Syndrome and Other Causes of Insulin Resistance in Dogs. Vet. Clin. N. Am. Small Anim. Pract. 2023, 53, 711–730. [Google Scholar] [CrossRef]
- Rand, J. Current understanding of feline diabetes: Part 1, pathogenesis. J. Feline Med. Surg. 1999, 1, 143–153. [Google Scholar] [CrossRef]
- Dai, B.; Wu, Q.; Zeng, C.; Zhang, J.; Cao, L.; Xiao, Z.; Yang, M. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance. J. Ethnopharmacol. 2016, 192, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. The biology of incretin hormones. Cell Metab. 2006, 3, 153–165. [Google Scholar] [CrossRef]
- Nauck, M.A.; Vardarli, I.; Deacon, C.F.; Holst, J.J.; Meier, J.J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: What is up, what is down? Diabetologia 2011, 54, 10–18. [Google Scholar] [CrossRef]
- Gilor, C.; Rudinsky, A.J.; Hall, M.J. New Approaches to Feline Diabetes Mellitus: Glucagon-like peptide-1 analogs. J. Feline Med. Surg. 2016, 18, 733–743. [Google Scholar] [CrossRef]
- Model, J.F.A.; Rocha, D.S.; Fagundes, A.D.C.; Vinagre, A.S. Physiological and pharmacological actions of glucagon like peptide-1 (GLP-1) in domestic animals. Vet. Anim. Sci. 2022, 16, 100245. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.; Murtaugh, M.P.; O’Brien, T.D.; Westermark, P.; Betsholtz, C.; Johnson, K.H. Canine IAPP cDNA sequence provides important clues regarding diabetogenesis and amyloidogenesis in type 2 diabetes. Biochem. Biophys. Res. Commun. 1990, 169, 502–508. [Google Scholar] [CrossRef]
- Unger, R.H.; Cherrington, A.D. Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover. J. Clin. Investig. 2012, 122, 4–12. [Google Scholar] [CrossRef]
- Patra, S.; McMillan, C.J.; Snead, E.R.; Warren, A.L.; Cosford, K.; Chelikani, P.K. Feline Diabetes Is Associated with Deficits in Markers of Insulin Signaling in Peripheral Tissues. Int. J. Mol. Sci. 2024, 25, 13195. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Clark, M.; Hoenig, M. Feline comorbidities: Pathophysiology and management of the obese diabetic cat. J. Feline Med. Surg. 2021, 23, 639–648. [Google Scholar] [CrossRef]
- Tvarijonaviciute, A.; Ceron, J.J.; Holden, S.L.; Cuthbertson, D.J.; Biourge, V.; Morris, P.J.; German, A.J. Obesity-related metabolic dysfunction in dogs: A comparison with human metabolic syndrome. BMC Vet. Res. 2012, 8, 147. [Google Scholar] [CrossRef]
- Varewijck, A.J.; Janssen, J.A. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr. Relat. Cancer 2012, 19, F63–F75. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, I.B. Insulin analogues. N. Engl. J. Med. 2005, 352, 174–183. [Google Scholar] [CrossRef]
- Holman, R.R.; Turner, R.C. A practical guide to basal and prandial insulin therapy. Diabet. Med. 1985, 2, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Janez, A.; Guja, C.; Mitrakou, A.; Lalic, N.; Tankova, T.; Czupryniak, L.; Tabak, A.G.; Prazny, M.; Martinka, E.; Smircic-Duvnjak, L. Insulin Therapy in Adults with Type 1 Diabetes Mellitus: A Narrative Review. Diabetes Ther. 2020, 11, 387–409. [Google Scholar] [CrossRef] [PubMed]
- Fracassi, F.; Corradini, S.; Hafner, M.; Boretti, F.S.; Sieber-Ruckstuhl, N.S.; Reusch, C.E. Detemir insulin for the treatment of diabetes mellitus in dogs. J. Am. Vet. Med. Assoc. 2015, 247, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Harris-Samson, A.R.; Rand, J.; Ford, S.L. Detemir improves diabetic regulation in poorly controlled diabetic dogs with concurrent diseases. J. Am. Vet. Med. Assoc. 2023, 261, 327–335. [Google Scholar] [CrossRef]
- Sako, T.; Mori, A.; Lee, P.; Oda, H.; Saeki, K.; Miki, Y.; Kurishima, M.; Mimura, K.; Nozawa, S.; Mizutani, H.; et al. Time-action profiles of insulin detemir in normal and diabetic dogs. Res. Vet. Sci. 2011, 90, 396–403. [Google Scholar] [CrossRef]
- Marshall, R.D.; Rand, J.S.; Morton, J.M. Treatment of newly diagnosed diabetic cats with glargine insulin improves glycaemic control and results in higher probability of remission than protamine zinc and lente insulins. J. Feline Med. Surg. 2009, 11, 683–691. [Google Scholar] [CrossRef]
- Marshall, R.D.; Rand, J.S.; Morton, J.M. Glargine and protamine zinc insulin have a longer duration of action and result in lower mean daily glucose concentrations than lente insulin in healthy cats. J. Vet. Pharmacol. Ther. 2008, 31, 205–212. [Google Scholar] [CrossRef]
- Marshall, R.D.; Rand, J.S.; Morton, J.M. Insulin glargine has a long duration of effect following administration either once daily or twice daily in divided doses in healthy cats. J. Feline Med. Surg. 2008, 10, 488–494. [Google Scholar] [CrossRef]
- Thompson, A.; Lathan, P.; Fleeman, L. Update on insulin treatment for dogs and cats: Insulin dosing pens and more. Vet. Med. Res. Rep. 2015, 6, 129–142. [Google Scholar] [CrossRef]
- Nelson, R.W.; Lynn, R.C.; Wagner-Mann, C.C.; Michels, G.M. Efficacy of protamine zinc insulin for treatment of diabetes mellitus in cats. J. Am. Vet. Med. Assoc. 2001, 218, 38–42. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. Addendum. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, 1979. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Drug Therapies for Diabetes. Int. J. Mol. Sci. 2023, 24, 17147. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Rand, J. Current understanding of feline diabetes: Part 2, treatment. J. Feline Med. Surg. 2000, 2, 3–17. [Google Scholar] [CrossRef]
- Nelson, R.; Spann, D.; Elliott, D.; Brondos, A.; Vulliet, R. Evaluation of the oral antihyperglycemic drug metformin in normal and diabetic cats. J. Vet. Intern. Med. 2004, 18, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Wypij, J.M. Pilot study of oral metformin in cancer-bearing cats. Vet. Comp. Oncol. 2017, 15, 345–354. [Google Scholar] [CrossRef]
- Vilsboll, T.; Zdravkovic, M.; Le-Thi, T.; Krarup, T.; Schmitz, O.; Courreges, J.P.; Verhoeven, R.; Buganova, I.; Madsbad, S. Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 2007, 30, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- Hadd, M.J.; Bienhoff, S.E.; Little, S.E.; Geller, S.; Ogne-Stevenson, J.; Dupree, T.J.; Scott-Moncrieff, J.C. Safety and effectiveness of the sodium-glucose cotransporter inhibitor bexagliflozin in cats newly diagnosed with diabetes mellitus. J. Vet. Intern. Med. 2023, 37, 915–924. [Google Scholar] [CrossRef]
- Riederer, A.; Zini, E.; Salesov, E.; Fracassi, F.; Padrutt, I.; Macha, K.; Stockle, T.M.; Lutz, T.A.; Reusch, C.E. Effect of the Glucagon-like Peptide-1 Analogue Exenatide Extended Release in Cats with Newly Diagnosed Diabetes Mellitus. J. Vet. Intern. Med. 2016, 30, 92–100. [Google Scholar] [CrossRef]
- Cowie, M.R.; Fisher, M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 2020, 17, 761–772. [Google Scholar] [CrossRef]
- Box, J.R.; Oyama, M.A.; Mosenco, A.S.; Hess, R.S. Effect of sodium-glucose cotransporter 2 inhibitor canagliflozin on interstitial glucose concentration in insulin-treated diabetic dogs. J. Vet. Intern. Med. 2024, 38, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Rhee, B.; Mahbubur, R.M.; Jin, C.; Choi, J.S.; Lim, H.W.; Huh, W.; Park, J.S.; Han, J.; Kim, S.; Lee, Y.; et al. Evaluation of safety and anti-obesity effects of DWP16001 in naturally obese dogs. BMC Vet. Res. 2022, 18, 237. [Google Scholar] [CrossRef]
- Hollander, P.A.; Levy, P.; Fineman, M.S.; Maggs, D.G.; Shen, L.Z.; Strobel, S.A.; Weyer, C.; Kolterman, O.G. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: A 1-year randomized controlled trial. Diabetes Care 2003, 26, 784–790. [Google Scholar] [CrossRef]
- Karl, D.; Philis-Tsimikas, A.; Darsow, T.; Lorenzi, G.; Kellmeyer, T.; Lutz, K.; Wang, Y.; Frias, J.P. Pramlintide as an adjunct to insulin in patients with type 2 diabetes in a clinical practice setting reduced A1C, postprandial glucose excursions, and weight. Diabetes Technol. Ther. 2007, 9, 191–199. [Google Scholar] [CrossRef]
- Furrer, D.; Kaufmann, K.; Reusch, C.E.; Lutz, T.A. Amylin reduces plasma glucagon concentration in cats. Vet. J. 2010, 184, 236–240. [Google Scholar] [CrossRef]
- Otto-Buczkowska, E.; Mazur-Dworzecka, U.; Dworzecki, T. Role of amylin in glucose homeostasis and its perspective use in diabetes management. Przegl. Lek. 2008, 65, 135–139. [Google Scholar]
- Rasheed, M.U.; Naqvi, S.A.R.; Hassan, S.U.; Haq, A.U.; Janjua, M.R.S.A.; Mahmoud, M.H.; Batiha, G.E.-S.; Rashid, H.; Rahim, M.A.; Rocha, J.M. In vitro and in vivo exploitation of cell stress pathways using methanolic extracts of Phlomis stewartii in diabetic rat’s model. Ind. Crops Prod. 2024, 217, 118861. [Google Scholar] [CrossRef]
- Hoelmkjaer, K.M.; Wewer Albrechtsen, N.J.; Holst, J.J.; Cronin, A.M.; Nielsen, D.H.; Mandrup-Poulsen, T.; Bjornvad, C.R. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats. PLoS ONE 2016, 11, e0154727. [Google Scholar] [CrossRef] [PubMed]
- Wyse, C.A.; McLellan, J.; Dickie, A.M.; Sutton, D.G.; Preston, T.; Yam, P.S. A review of methods for assessment of the rate of gastric emptying in the dog and cat: 1898–2002. J. Vet. Intern. Med. 2003, 17, 609–621. [Google Scholar] [CrossRef]
- Telles, N.J.; Simon, B.T.; Scallan, E.M.; Gould, E.N.; Papich, M.G.; He, Y.; Lee, M.T.; Lidbury, J.A.; Steiner, J.M.; Kathrani, A.; et al. Evaluation of gastrointestinal transit times and pH in healthy cats using a continuous pH monitoring system. J. Feline Med. Surg. 2022, 24, 954–961. [Google Scholar] [CrossRef]
- Rabin, B.M.; Hunt, W.A.; Bakarich, A.C.; Chedester, A.L.; Lee, J. Angiotensin II-induced taste aversion learning in cats and rats and the role of the area postrema. Physiol. Behav. 1986, 36, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Caney, S.; Bessant, C.; Gunn-Moore, D. Online survey of owners’ experiences of medicating their cats at home. J. Feline Med. Surg. 2022, 24, 1283–1293. [Google Scholar] [CrossRef]
- Odom, T.F.; Riley, C.B.; Benschop, J.; Hill, K.E. Medication compliance by cat owners prescribed treatment for home administration. J. Vet. Intern. Med. 2025, 39, e17298. [Google Scholar] [CrossRef]
- Koomgun, K.; Thengchaisri, N.; Surachetpong, W.; Nantasanti Assawarachan, S.; Prompinichpong, K.; Thongbai, A.; Steiner, J.M.; Sattasathuchana, P. Influence of hospital-induced stress on blood glucose concentrations, serum concentrations of cortisol, thyroxine and bile acids, and behaviour in cats. J. Feline Med. Surg. 2025, 27, 1098612X251320254. [Google Scholar] [CrossRef]
- Thombre, A.G. Oral delivery of medications to companion animals: Palatability considerations. Adv. Drug. Deliv. Rev. 2004, 56, 1399–1413. [Google Scholar] [CrossRef]
- Chu, X.; Bleasby, K.; Evers, R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert. Opin. Drug Metab. Toxicol. 2013, 9, 237–252. [Google Scholar] [CrossRef]
- Clark, M.; Thomaseth, K.; Heit, M.; Hoenig, M. Pharmacokinetics and pharmacodynamics of protamine zinc recombinant human insulin in healthy dogs. J. Vet. Pharmacol. Ther. 2012, 35, 342–350. [Google Scholar] [CrossRef]
- Davison, L.J.; Slater, L.A.; Herrtage, M.E.; Church, D.B.; Judge, S.; Ristic, J.M.; Catchpole, B. Evaluation of a continuous glucose monitoring system in diabetic dogs. J. Small Anim. Pract. 2003, 44, 435–442. [Google Scholar] [CrossRef]
- Chakrabarty, A.; Gregory, J.M.; Moore, L.M.; Williams, P.E.; Farmer, B.; Cherrington, A.D.; Lord, P.; Shelton, B.; Cohen, D.; Zisser, H.C.; et al. A New Animal Model of Insulin-Glucose Dynamics in the Intraperitoneal Space Enhances Closed-Loop Control Performance. J. Process Control 2019, 76, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.J.; Maki, T.; Borland, K.M.; Mahoney, M.D.; Solomon, B.A.; Muller, T.E.; Monaco, A.P.; Chick, W.L. Biohybrid artificial pancreas: Long-term implantation studies in diabetic, pancreatectomized dogs. Sci. 1991, 252, 718–721. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Yu, H.; Li, C.; Feng, J.; Haq, F.; Khan, A.; Khan, R.U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release 2018, 288, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Yamazaki, T.; Hasegawa, R.; Ito, Y.; Sugioka, N.; Takada, K. Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technol. Ther. 2010, 12, 465–474. [Google Scholar] [CrossRef]
- Stathopoulou, T.R.; Kouki, M.; Pypendop, B.H.; Johnston, A.; Papadimitriou, S.; Pelligand, L. Evaluation of analgesic effect and absorption of buprenorphine after buccal administration in cats with oral disease. J. Feline Med. Surg. 2018, 20, 704–710. [Google Scholar] [CrossRef]
- Poudwal, S.; Misra, A.; Shende, P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J. Drug Target 2021, 29, 834–847. [Google Scholar] [CrossRef]
- Tang, L.; Wang, Y.; Gong, X.; Xiang, J.; Zhang, Y.; Xiang, Q.; Li, J. Integrated transcriptome and metabolome analysis to investigate the mechanism of intranasal insulin treatment in a rat model of vascular dementia. Front. Pharmacol. 2023, 14, 1182803. [Google Scholar] [CrossRef]
- Albuquerque, C.S.; Bauman, B.L.; Rzeznitzeck, J.; Caney, S.M.; Gunn-Moore, D.A. Priorities on treatment and monitoring of diabetic cats from the owners’ points of view. J. Feline Med. Surg. 2020, 22, 506–513. [Google Scholar] [CrossRef]
- Niessen, S.J.M.; Hazuchova, K.; Powney, S.L.; Guitian, J.; Niessen, A.P.M.; Pion, P.D.; Shaw, J.A.; Church, D.B. The Big Pet Diabetes Survey: Perceived Frequency and Triggers for Euthanasia. Vet. Sci. 2017, 4, 27. [Google Scholar] [CrossRef]
- Hulsebosch, S.E.; Pires, J.; Bannasch, M.J.; Lancaster, T.; Delpero, A.; Ragupathy, R.; Murikipudi, S.; Zion, T.; Gilor, C. Ultra-long-acting recombinant insulin for the treatment of diabetes mellitus in dogs. J. Vet. Intern. Med. 2022, 36, 1211–1219. [Google Scholar] [CrossRef]
- Ribas, M.; Lourenco, A.M.; Cavaco, A. Exploring Medication Adherence Using M-Health: A Study from Veterinary Medicine. Pharmacy 2020, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Kanji, N.; Coe, J.B.; Adams, C.L.; Shaw, J.R. Effect of veterinarian-client-patient interactions on client adherence to dentistry and surgery recommendations in companion-animal practice. J. Am. Vet. Med. Assoc. 2012, 240, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.A.; Lamos, E.M.; Davis, S.N. A review of the efficacy and safety of oral antidiabetic drugs. Expert. Opin. Drug Saf. 2013, 12, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Brunton, S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: Is one approach more successful or preferable than the other? Int. J. Clin. Pract. 2014, 68, 557–567. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Tang, H.; Dai, Q.; Shi, W.; Zhai, S.; Song, Y.; Han, J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Diabetologia 2017, 60, 1862–1872. [Google Scholar] [CrossRef]
- Zini, E.; Lunardi, F.; Zanetti, R.; Heller, R.S.; Coppola, L.M.; Ferro, S.; Guscetti, F.; Osto, M.; Lutz, T.A.; Reusch, C.E.; et al. Endocrine Pancreas in Cats with Diabetes Mellitus. Vet. Pathol. 2016, 53, 136–144. [Google Scholar] [CrossRef]
- Brown, S.A.; Nelson, R.W.; Bottoms, G.D. Models for the pharmacokinetics and pharmacodynamics of insulin in alloxan-induced diabetic dogs. J. Pharm. Sci. 1987, 76, 295–299. [Google Scholar] [CrossRef]
- Freedom of Information Summary: NADA 141–236, Vetsulin (Porcine Insulin Zinc Suspension); New A Innovation Limited: Hong Kong, China, 2004.
- Caninsulin® Vet. 40 IU/mL, Suspension for Injection. European Medicines Agency, 2013. Marketing Authorisation Granted on 1 July 2013. Available online: https://medicines.health.europa.eu/veterinary/en/600000043653 (accessed on 19 August 2025).
- Ward, C.R.; Christiansen, K.; Li, J.; Bryson, W.L.; Jerrentrup, K.A.; Kroh, C. Field efficacy and safety of protamine zinc recombinant human insulin in 276 dogs with diabetes mellitus. Domest. Anim. Endocrinol. 2021, 75, 106575. [Google Scholar] [CrossRef] [PubMed]
- Freedom of Information Summary: NADA 141–294, ProZinc (Protamine Zinc Recombinant Human Insulin); Boehringer Ingelheim Vetmedica, Inc.: Duluth, GA, USA, 2009.
- Goossens, M.M.; Nelson, R.W.; Feldman, E.C.; Griffey, S.M. Response to insulin treatment and survival in 104 cats with diabetes mellitus (1985–1995). J. Vet. Intern. Med. 1998, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.K.; Behrend, E. SGLT2 inhibitor use in the management of feline diabetes mellitus. J. Vet. Pharmacol. Ther. 2025, 48 (Suppl. S1), 19–30. [Google Scholar] [CrossRef] [PubMed]
- Behrend, E.; Holford, A.; Lathan, P.; Rucinsky, R.; Schulman, R. 2018 AAHA Diabetes Management Guidelines for Dogs and Cats. J. Am. Anim. Hosp. Assoc. 2018, 54, 1–21. [Google Scholar] [CrossRef]
- Sparkes, A.H.; Cannon, M.; Church, D.; Fleeman, L.; Harvey, A.; Hoenig, M.; Peterson, M.E.; Reusch, C.E.; Taylor, S.; Rosenberg, D.; et al. ISFM consensus guidelines on the practical management of diabetes mellitus in cats. J. Feline Med. Surg. 2015, 17, 235–250. [Google Scholar] [CrossRef]
- Block, G. Evidence-based veterinary medicine-potential, practice, and pitfalls. J. Vet. Intern. Med. 2024, 38, 3261–3271. [Google Scholar] [CrossRef]
- Sargeant, J.M.; Plishka, M.; Ruple, A.; Selmic, L.E.; Totton, S.C.; Vriezen, E.R. Quality of reporting of clinical trials in dogs and cats: An update. J. Vet. Intern. Med. 2021, 35, 1957–1971. [Google Scholar] [CrossRef] [PubMed]
- Baggot, J.D. Clinical pharmacokinetics in veterinary medicine. Clin. Pharmacokinet. 1992, 22, 254–273. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Pires, J.; Crakes, K.; Greathouse, R.; Quach, N.; Gilor, C. Day-to-day variability of porcine lente, insulin glargine 300 U/mL and insulin degludec in diabetic dogs. J. Vet. Intern. Med. 2021, 35, 2131–2139. [Google Scholar] [CrossRef]
- Modric, S. Regulatory framework for the availability and use of animal drugs in the United States. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1005–1012. [Google Scholar] [CrossRef]
- Kahler, S.C. Is AMDUCA enough? Animal Medicinal Drug Use Clarification Act. J. Am. Vet. Med. Assoc. 2003, 222, 423–424. [Google Scholar] [PubMed]
- Feldman, E.C.; Nelson, R.W.; Feldman, M.S. Intensive 50-week evaluation of glipizide administration in 50 cats with previously untreated diabetes mellitus. J. Am. Vet. Med. Assoc. 1997, 210, 772–777. [Google Scholar] [CrossRef]
- Lin, J.H. Species similarities and differences in pharmacokinetics. Drug Metab. Dispos. 1995, 23, 1008–1021. [Google Scholar] [CrossRef]
- Rucinsky, R.; Cook, A.; Haley, S.; Nelson, R.; Zoran, D.L.; Poundstone, M.; American Animal Hospital, A. AAHA diabetes management guidelines. J. Am. Anim. Hosp. Assoc. 2010, 46, 215–224. [Google Scholar] [CrossRef]
- Bright, S.J.; Murphy, M.J.; Steinschneider, J.C.; Lovell, R.A.; Post, L.O. Treatment of animal toxicoses: A regulatory perspective. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 481–512. [Google Scholar] [CrossRef]
- Haller, N.; Lutz, T.A. Incretin therapy in feline diabetes mellitus—A review of the current state of research. Domest. Anim. Endocrinol. 2024, 89, 106869. [Google Scholar] [CrossRef]
- Gilor, C.; Hulsebosch, S.E.; Pires, J.; Bannasch, M.J.; Lancaster, T.; Delpero, A.; Ragupathy, R.; Murikipudi, S.; Zion, T. An ultra-long-acting recombinant insulin for the treatment of diabetes mellitus in cats. J. Vet. Intern. Med. 2021, 35, 2123–2130. [Google Scholar] [CrossRef]
- Oyama, M.A.; Ellenberg, S.S.; Shaw, P.A. Clinical Trials in Veterinary Medicine: A New Era Brings New Challenges. J. Vet. Intern. Med. 2017, 31, 970–978. [Google Scholar] [CrossRef]
- Toutain, P.L.; Lees, P. Integration and modelling of pharmacokinetic and pharmacodynamic data to optimize dosage regimens in veterinary medicine. J. Vet. Pharmacol. Ther. 2004, 27, 467–477. [Google Scholar] [CrossRef]
- Keller, W.C.; Bataller, N.; Oeller, D.S. Processing and evaluation of adverse drug experience reports at the Food and Drug Administration Center for Veterinary Medicine. J. Am. Vet. Med. Assoc. 1998, 213, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Dewsbury, D.M.A.; Renter, D.G.; Bradford, B.J.; DeDonder, K.D.; Mellencamp, M.; Cernicchiaro, N. The application, value, and impact of outcomes research in animal health and veterinary medicine. Front. Vet. Sci. 2022, 9, 972057. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.S.; Yeske, P.; Morrison, R.B.; Linhares, D.C.L. Benefit-cost analysis to estimate the payback time and the economic value of two Mycoplasma hyopneumoniae elimination methods in breeding herds. Prev. Vet. Med. 2019, 168, 95–102. [Google Scholar] [CrossRef]
- Henson, M.S.; O’Brien, T.D. Feline models of type 2 diabetes mellitus. ILAR J. 2006, 47, 234–242. [Google Scholar] [CrossRef]
- Perera, T.R.W.; Skerrett-Byrne, D.A.; Gibb, Z.; Nixon, B.; Swegen, A. The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals 2022, 12, 2194. [Google Scholar] [CrossRef]
- Del Baldo, F.; Fracassi, F. Continuous Glucose Monitoring in Dogs and Cats: Application of New Technology to an Old Problem. Vet. Clin. N. Am. Small Anim. Pract. 2023, 53, 591–613. [Google Scholar] [CrossRef] [PubMed]
- Adin, C.A.; Gilor, C. The Diabetic Dog as a Translational Model for Human Islet Transplantation. Yale. J. Biol. Med. 2017, 90, 509–515. [Google Scholar]
- Cook, A.K. Monitoring methods for dogs and cats with diabetes mellitus. J. Diabetes Sci. Technol. 2012, 6, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Rand, J.S.; Fleeman, L.M.; Farrow, H.A.; Appleton, D.J.; Lederer, R. Canine and feline diabetes mellitus: Nature or nurture? J. Nutr. 2004, 134, 2072S–2080S. [Google Scholar] [CrossRef]
- Villarino, N.; Landoni, M.F. Transdermal drug delivery: A new frontier in the administration of therapeutic drugs to veterinary species. Vet. J. 2006, 172, 200–201. [Google Scholar] [CrossRef]
- Kol, A.; Arzi, B.; Athanasiou, K.A.; Farmer, D.L.; Nolta, J.A.; Rebhun, R.B.; Chen, X.; Griffiths, L.G.; Verstraete, F.J.; Murphy, C.J.; et al. Companion animals: Translational scientist’s new best friends. Sci. Transl. Med. 2015, 7, 308ps321. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, C.; Jiang, B.; Wu, S.; Cai, T.; Yu, J.; Zhu, L.; Zhou, B. Expression and clinical significance of LncRNA Kcnq1ot1 in type 2 diabetes mellitus patients with osteoarthritis. BMC Endocr. Disord. 2025, 25, 131. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “one medicine” to “one health” and systemic approaches to health and well-being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M. Carbohydrate metabolism and pathogenesis of diabetes mellitus in dogs and cats. Prog. Mol. Biol. Transl. Sci. 2014, 121, 377–412. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G. Veterinary Compounding: Regulation, Challenges, and Resources. Pharmaceutics 2017, 9, 5. [Google Scholar] [CrossRef]
- Rand, J.S.; Kinnaird, E.; Baglioni, A.; Blackshaw, J.; Priest, J. Acute stress hyperglycemia in cats is associated with struggling and increased concentrations of lactate and norepinephrine. J. Vet. Intern. Med. 2002, 16, 123–132. [Google Scholar] [CrossRef]
- Crenshaw, K.L.; Peterson, M.E.; Heeb, L.A.; Moroff, S.D.; Nichols, R. Serum fructosamine concentration as an index of glycemia in cats with diabetes mellitus and stress hyperglycemia. J. Vet. Intern. Med. 1996, 10, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Gilor, C.; Graves, T.K. Synthetic insulin analogs and their use in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 297–307. [Google Scholar] [CrossRef] [PubMed]
Species | Dominant Diabetes Type | Pathophysiological Features | Hormonal Responses | Key Notes | Symptoms |
---|---|---|---|---|---|
Humans | Type 1 and type 2 | Autoimmune β-cell loss (T1); insulin resistance, β-cell dysfunction, amyloid (T2) | GLP-1, amylin, insulin, glucagon | Type 2 is prevalent in adults; multifactorial origins | Polyuria, polydipsia, weight loss, fatigue, blurred vision |
Dogs | Type 1-like | β-cell destruction (nonautoimmune); insulin-dependent | Limited studies; possible GLP-1 analog effects | Middle-aged to older onset; irreversible | Polyuria, polydipsia, weight loss, increased appetite, cataracts |
Cats | Type 2-like | Insulin resistance, islet amyloidosis, and obesity-related inflammation | Amylin overexpression, glucagon dysregulation | Remission possible; strong dietary influence | Polyuria, polydipsia, weight loss, hindlimb weakness, lethargy |
Aspect | Humans | Dogs | Cats | Comparative Notes | Representative Drugs (Chemical Name/Formula) |
---|---|---|---|---|---|
Preferred insulin | Lispro, Glargine, Detemir, Degludec | Vetsulin, Detemir | Glargine, PZI | Glargine is effective across species; detemir dose differs | Insulin glargine (C267H404N72O78S6), insulin lispro (C257H383N65O77S6) |
Oral agents | Metformin, SGLT2i, DPP-4i, GLP-1 RA | Rare; limited metformin use | Rare; some metformin off-label | Limited bioavailability and safety data in animals | Metformin HCl (C4H11N5·HCl), empagliflozin (C23H27ClO7), Liraglutide (MW, approximately 3751 Da) |
Formulation challenges | Tablet, injection, pens | Injection (owners trained) | Injection; low oral compliance | Cats poorly tolerate oral meds; stress worsens glycemia | Oral tablets (metformin), solution pens (liraglutide), long-acting injections |
PK variability | Well-characterized | Variable absorption | Slow clearance of some agents | Enzymatic, GI differences affect dosing | Bioavailability: metformin, approximately 50–60%; GLP-1 RAs, <1% oral |
Drug/Class | Species | Route | Tmax (h) | T½ (h) | Bioavailability (%) | Notes |
---|---|---|---|---|---|---|
Insulin glargine | Human | SC | 1–2 | 12–24 | approximately 60–80 | Peakless profile |
Insulin glargine | Cat | SC | 2–4 | ~12 | Variable | May require BID dosing |
Metformin | Human | Oral | 2–3 | 4–8 | 50–60 | Food delays Tmax |
Metformin | Cat | Oral | 3–4 | 4–6 | Low | Poor palatability |
Gene | Function | Human | Dog | Cat |
---|---|---|---|---|
INS | Insulin synthesis and secretion | Highly conserved | Conserved | Conserved |
PDX1 | Pancreatic β-cell development and insulin gene transcription | Highly conserved | Conserved | Conserved |
GLUT4 (SLC2A4) | Facilitation of glucose transport in muscle and adipose tissue | Highly conserved | Moderately conserved | Moderately conserved |
KCNJ11 | ATP-sensitive potassium channel regulation of insulin release | Common SNPs linked to T2DM | Limited polymorphism data | Limited data |
HNF1A | Transcription factor involved in β-cell function | Mutations linked to MODY3 | Functional orthologs present | Functional orthologs present |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Yun, J.-H. Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats. Pharmaceutics 2025, 17, 1098. https://doi.org/10.3390/pharmaceutics17091098
Kim I, Yun J-H. Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats. Pharmaceutics. 2025; 17(9):1098. https://doi.org/10.3390/pharmaceutics17091098
Chicago/Turabian StyleKim, Iljin, and Jang-Hyuk Yun. 2025. "Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats" Pharmaceutics 17, no. 9: 1098. https://doi.org/10.3390/pharmaceutics17091098
APA StyleKim, I., & Yun, J.-H. (2025). Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats. Pharmaceutics, 17(9), 1098. https://doi.org/10.3390/pharmaceutics17091098