Negative Impact of Social Network Services Based on Stressor-Stress-Outcome: The Role of Experience of Privacy Violations
Abstract
:1. Introduction
- (1)
- What SNS factors and user characteristics cause SNS fatigue?
- (2)
- Do these factors positively influence SNS fatigue?
- (3)
- What factors decrease SNS users’ SNS use intentions?
- (4)
- Do privacy violation experiences facilitate decreases in users’ SNS use intentions?
2. Literature Review
2.1. Technostress
2.2. SNS Studies
3. Research Model and Hypothesis Development
3.1. Irrelevant Information Overload
3.2. Open Reachability
3.3. Engagement
3.4. Maintaining Self-Reputation
3.5. SNS Fatigue, Living Disorder, and Reduced SNS Use Intention
3.6. The Moderating Effect of Experience of Privacy Violations
4. Materials and Methods
4.1. Data Collection
4.2. Development of Measures
5. Results and Discussion
5.1. Assessment of the Measurement Model
5.2. The Structural Model Test
6. Conclusions
6.1. Summary of Key Findings
6.2. Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Conflicts of Interest
Appendix A. Constructs and Related Studies
Construct | Measures | Related Studies |
Irrelevant Information Overload |
| [9] |
Open Reachability |
| [36] |
Engagement |
| [39,57] |
Maintaining Self-Reputation |
| [52,58] |
SNS Fatigue |
| [22,29] |
Living Disorder |
| [9,20] |
Experience of Privacy Violations |
| [12,59] |
Reduced Intention to Use SNSs |
| [31] |
References
- Saura, J.R.; Palos-Sánchez, P.; Cerdá Suárez, L.M. Understanding the digital marketing environment with KPIs and web analytics. Future Int. 2017, 9, 76. [Google Scholar] [CrossRef]
- Lee, A.R.; Son, S.M.; Kim, K.K. Information and communication technology overload and social networking service fatigue: A stress perspective. Comput. Hum. Behav. 2016, 55, 51–61. [Google Scholar] [CrossRef]
- Boyd, D.M.; Ellison, N.B. Social network sites: Definition, history, and scholarship. J. Comput. Med. Commun. 2008, 13, 210–230. [Google Scholar] [CrossRef]
- Cho, S.E.; Han, E.Y. A Study of SNS Use and Subsequent Changes in Social Relations: Prospect of Building a Trust Society Based on Relationships on SNS; KISDI Research Report; KISDI: Seoul, Korea, 2013. [Google Scholar]
- Li-Barber, K.T. Self-disclosure and student satisfaction with Facebook. Comput. Hum. Behav. 2012, 28, 624–630. [Google Scholar]
- Lee, S.; Park, J.G.; Lee, H.; Oh, J.; Lee, J.W. Hedonic or utilitarian: Why people keep using social network services. J. Korea Soc. IT Serv. 2015, 14, 355–373. [Google Scholar] [CrossRef]
- Lin, K.Y.; Lu, H.P. Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Comput. Hum. Behav. 2011, 27, 1152–1161. [Google Scholar] [CrossRef]
- Xu, C.; Ryan, S.; Prybutok, V.; Wen, C. It is not for fun: An examination of social network site usage. Inf. Manag. 2012, 49, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, T.S. Impact of technostress on end-user satisfaction and performance. J. Manag. Inf. Syst. 2010, 27, 303–334. [Google Scholar] [CrossRef]
- Wang, K.; Shu, Q.; Tu, Q. Technostress under different organizational environments: An empirical investigation. Compt. Hum. Behav. 2008, 24, 3002–3013. [Google Scholar] [CrossRef]
- Min, J.; Kim, B. A study on continued intention of social network services by applying privacy calculus model: Facebook and KakaoTalk cases. Inf. Syst. Rev. 2013, 15, 105–122. [Google Scholar]
- Zhou, T.; Li, H. Understanding mobile SNS continuance usage in China from the perspectives of social influence and privacy concern. Comput. Hum. Behav. 2014, 37, 283–289. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.H. A study of the stress of social network service and using reluctant intention. J. Inf. Syst. 2015, 24, 53–72. [Google Scholar]
- Ayyagari, R.; Grover, V.; Purvis, R. Technostress: Technological antecedents and implications. MIS Quart. 2011, 35, 831–858. [Google Scholar] [CrossRef]
- Şahin, Y.L.; Çoklar, N.A. Social networking users’ views on technology and the determination of technostress levels. Procedia Soc. Behav. Sci. 2009, 1, 1437–1442. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chang, C.T.; Lin, Y.; Cheng, Z.H. The dark side of smartphone usage: Psychological traits, compulsive behavior and technostress. Comput. Hum. Behav. 2014, 31, 373–383. [Google Scholar] [CrossRef]
- Brandtzæg, P.B. Social networking sites: Their users and social implications—A longitudinal study. J. Comput. Med. Commun. 2012, 17, 467–488. [Google Scholar] [CrossRef]
- Al-Saggaf, Y.; Nielsen, S. Self-disclosure on facebook among female users and its relationship to feelings of loneliness. Comput. Hum. Behav. 2014, 36, 460–468. [Google Scholar] [CrossRef]
- Brod, C. Technostress: The Human Cost of the Computer Revolution; Addison Wesley Publishing Company: Boston, MA, USA, 1984. [Google Scholar]
- Ravindran, T.; Yeow Kuan, A.C.; Hoe Lian, D.G. Antecedents and effects of social network fatigue. J. Assoc. Inf. Sci. Technol. 2014, 65, 2306–2320. [Google Scholar] [CrossRef]
- Kwak, K.T.; Chun, Y.J.; Oh, S.H.; Choi, S.G.; Lee, I.; Kim, J.W. Why people feel stressful in using mobile social network; From socio-technical perspective based on Kakaotalk user survey data. Korean Manag. Rev. 2012, 41, 1405–1434. [Google Scholar]
- Yamakami, T. Towards understanding SNS fatigue: Exploration of social experience in the virtual world. In Proceedings of the 7th International Conference on Computing and Convergence Technology, Seoul, Korea, 3–5 December 2012. [Google Scholar]
- Cao, X.; Adeel Luqman, A.M.; Ahmed Ali, A. Excessive use of mobile social networking sites and poor academic performance: Antecedents and consequences from stressor-strain-outcome perspective. Comput. Hum. Behav. 2018, 85, 163–174. [Google Scholar] [CrossRef]
- Cao, X.; Sun, J. Exploring the effect of overload on the discontinuous intention of social media users: An SOR perspective. Comput. Hum. Behav. 2018, 81, 10–18. [Google Scholar] [CrossRef]
- Dhir, A.; Tsai, C.C. Understanding the relationship between intensity and gratifications of Facebook use among adolescents and young adults. Telemat. Inf. 2017, 34, 350–364. [Google Scholar] [CrossRef]
- Dhir, A.; Yossatorn, Y.; Kaur, P.; Chen, S. Online social media fatigue and psychological wellbeing - A study of compulsive use, fear of missing out, fatigue, anxiety and depression. Int. J. Inf. Manag. 2018, 40, 141–152. [Google Scholar] [CrossRef]
- Luqman, A.; Cao, X.; Ali, A.; Masood, A.; Yu, L. Empirical investigation of Facebook discontinues usage intentions based on SOR paradigm. Comput. Hum. Behav. 2017, 70, 544–555. [Google Scholar] [CrossRef]
- Whelan, E.; Islam, N.; Brooks, S. Cognitive control and social media overload. In Proceedings of the Americas Conference on Information Systems, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Bevan, J.L.; Gomez, R.; Sparks, L. Disclosures about important life events on facebook: Relationships with stress and quality of life. Comput. Hum. Behav. 2014, 39, 246–253. [Google Scholar] [CrossRef]
- Çoklar, A.N.; Şahin, Y.L. Technostress levels of social network users based on ICTs in Turkey. Eur. J. Soc. Sci. 2011, 23, 171–182. [Google Scholar]
- Maier, C.; Laumer, S.; Eckhardt, A.; Weitzel, T. Giving too much social support: Social overload on social networking sites. Eur. J. Inf. Syst. 2015, 24, 447–464. [Google Scholar] [CrossRef]
- Park, K.; Ryu, J.I.; Lee, Y.H. A study on the negative emotion of using social networking services and its discontinuance intention. Knowl. Manag. Res. 2014, 15, 89–106. [Google Scholar]
- Kim, K.; Kim, H.J.; Bae, Y. Exploring the concept and determinants of SNS (Social Network Service) fatigue. Inf. Soc. Med. 2013, 26, 102–129. [Google Scholar]
- Salehan, M.; Negahban, A. Social networking on smartphones: When mobile phones become addictive. Comput. Hum. Behav. 2013, 29, 2632–2639. [Google Scholar] [CrossRef]
- Kim, S.H. Moderating effects of job relevance and experience on mobile wireless technology acceptance: Adoption of a smartphone by individuals. Inf. Manag. 2008, 45, 387–393. [Google Scholar] [CrossRef]
- Kim, S.H.; Garrison, G. Investigating mobile wireless technology adoption: An extension of the technology acceptance model. Inf. Syst. Front. 2009, 11, 323–333. [Google Scholar] [CrossRef]
- Ellison, N.B.; Steinfield, C.; Lampe, C. The benefits of Facebook friends: Social capital and college students’ use of online social network sites. J. Compt. Med. Commun. 2007, 12, 1143–1168. [Google Scholar] [CrossRef]
- Wohn, D.Y.; LaRose, R. Effects of loneliness and differential usage of facebook on college adjustment of first-year students. Comput. Educ. 2014, 76, 158–167. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Marketing in hypermedia computer-mediated environments: Conceptual foundations. J. Mark. 1996, 60, 50–68. [Google Scholar] [CrossRef]
- Kuss, D.; Griffiths, M.D. Online social networking and addiction—A review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, D.; Tzavellas, E.; Balta, G.; Paparrigopoulos, T. P02-232-social network addiction: A new clinical disorder? Eur. Psychiatry 2010, 25, 855. [Google Scholar] [CrossRef]
- Mohamed, N.; Ahmad, I.H. Information privacy concerns, antecedents and privacy measure use in social networking sites: Evidence from Malaysia. Comput. Hum. Behav. 2012, 28, 2366–2375. [Google Scholar] [CrossRef]
- Ku, Y.; Chu, T.; Tseng, C. Gratifications for using CMC technologies: A comparison among SNS, IM, and E-Mail. Comput. Hum. Behav. 2013, 29, 226–234. [Google Scholar] [CrossRef]
- Boomsma, A. Robustness of lisrel against small sample sizes in factor analysis models. In Systems under Indirection Observation: Causality, Structure, Prediction (Part I); Jöreskog, K.G., Amsterdam, H.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1982; pp. 149–173. [Google Scholar]
- Hair, J., Jr.; Sarstedt, M.; Lucas Hopkins, L.; Kuppelwieser, V. Partial least squares structural equation modeling (PLS-SEM) An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach for structural equation modeling. In Modern Methods for Business Research; Marcoulides, G.A., Hillsdale, N.J., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 1999; pp. 295–336. [Google Scholar]
- Harman, H.H. Modern Factor Analysis, 2nd ed.; University of Chicago Press: Chicago, IL, USA, 1967. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, N.K.; Kim, S.S.; Patil, A. Common method variance in IS research: A comparison of alternative approaches and a reanalysis of past research. Manag. Sci. 2006, 52, 1865–1883. [Google Scholar] [CrossRef]
- Teo, T.; Lim, V.K.; Lai, R.Y. Intrinsic and extrinsic motivation in internet usage. Omega 1999, 27, 25–37. [Google Scholar] [CrossRef]
- Kang, I.; Shin, M.M.; Park, C. Internet addiction as a manageable resource: A focus on social network services. Online Inf. Rev. 2013, 37, 28–41. [Google Scholar] [CrossRef]
- Statista. Number of Social Media Users Worldwide from 2010 to 2021 (in Billions). 2017. Available online: http://dir.md/statistics/219903/number-of-worldwide-social-network-users/?host=www.statista.com (accessed on 29 May 2019).
- Turel, O.; Serenko, A.; Bontis, N. Family and work-related consequences of addiction to organizational pervasive technologies. Inf. Manag. 2011, 48, 88–95. [Google Scholar] [CrossRef]
- Carte, T.A.; Russell, C. In pursuit of moderation: Nine common errors and their solutions. MIS Quart. 2003, 27, 479–501. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, H.S. Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. Int. J. Inf. Manag. 2013, 33, 318–332. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. How to acquire customers on the web. Harv. Bus. Rev. 2000, 78, 179–188. [Google Scholar]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of social media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Dinev, T.; Hart, P. Internet privacy concerns and their antecedents–measurement validity and a regression model. Behav. Inf. Technol. 2004, 23, 413–422. [Google Scholar] [CrossRef]
Study | Summary of Findings |
---|---|
Cao et al. [23] |
|
Cao and Sun [24] |
|
Dhir et al. [25] |
|
Dhir and Tsai [26] |
|
Luqman et al. [27] |
|
Whelan et al. [28] |
|
Demographic Categories | Frequency | Percentage | |
---|---|---|---|
Gender | Male | 272 | 46.98% |
Female | 307 | 53.02% | |
Length of SNS usage | Less than 3 years | 47 | 8.12% |
3 to 5 years | 86 | 14.85% | |
5 to 7 years | 137 | 23.66% | |
7 to 9 years | 195 | 33.68% | |
More than 9 years | 114 | 19.69% | |
Main SNS used (multiple responses allowed) | 429 | 74.09% | |
281 | 48.53% | ||
377 | 65.11% | ||
YouTube | 385 | 66.49% | |
Qzone | 308 | 53.20% | |
Others | 21 | 3.63% | |
Daily SNS usage time | Less than 1 h | 95 | 16.41% |
1 to 3 h | 198 | 34.20% | |
3 to 5 h | 185 | 31.95% | |
More than 5 h | 101 | 17.44% | |
Purpose of using SNSs (multiple responses allowed) | Sharing common interests with others | 362 | 62.52% |
Expressing myself | 423 | 73.06% | |
Sharing content (photos, video, etc.) | 205 | 35.41% | |
Maintaining relationships | 322 | 55.61% | |
Using applications offered by SNSs | 261 | 45.08% |
Latent Construct | Descriptive Statistics | ||||
---|---|---|---|---|---|
N | Mean | Minimum | Maximum | St.Dev | |
Irrelevant Information Overload | 579 | 5.071 | 2 | 7 | 0.063 |
Open Reachability | 579 | 0.357 | 1 | 7 | 0.076 |
Engagement | 579 | 0.416 | 2 | 7 | 0.100 |
Maintaining Self-Reputation | 579 | 0.533 | 2 | 7 | 0.137 |
SNS Fatigue | 579 | 0.448 | 1 | 7 | 0.099 |
Living Disorder | 579 | 0.556 | 2 | 7 | 0.053 |
Experience of Privacy Violations | 579 | 0.454 | 1 | 7 | 0.778 |
Reduced Intention to Use SNSs | 579 | 0.396 | 1 | 7 | 0.105 |
Latent Construct | # of Item | Removed Item | Cronbach’s Alpha |
---|---|---|---|
Irrelevant Information Overload | 3 | 0 | 0.793 |
Open Reachability | 3 | 0 | 0.822 |
Engagement | 4 | 1 | 0.870 |
Maintaining Self-Reputation | 3 | 0 | 0.800 |
SNS Fatigue | 4 | 1 | 0.826 |
Living Disorder | 4 | 1 | 0.789 |
Experience of Privacy Violations | 3 | 0 | 0.817 |
Reduced Intention to Use SNSs | 4 | 0 | 0.862 |
Latent Construct | Item | Mean | SD | Factor Loading | CR | AVE |
---|---|---|---|---|---|---|
Irrelevant Information Overload | io1 | 5.362 | 0.095 | 0.752 | 0.814 | 0.594 |
io2 | 4.846 | 0.147 | 0.800 | |||
io3 | 5.004 | 0.226 | 0.759 | |||
Open Reachability | or1 | 5.003 | 0.244 | 0.763 | 0.811 | 0.589 |
or2 | 4.628 | 0.501 | 0.810 | |||
or3 | 5.147 | 0.326 | 0.727 | |||
Engagement | eng1 | 4.863 | 0.621 | 0.863 | 0.865 | 0.681 |
eng2 | 4.772 | 0.195 | 0.779 | |||
eng4 | 5.371 | 0.432 | 0.831 | |||
Maintaining Self-Reputation | msr1 | 4.963 | 0.437 | 0.865 | 0.867 | 0.686 |
msr2 | 5.126 | 0.632 | 0.806 | |||
msr3 | 4.800 | 0.530 | 0.812 | |||
SNS Fatigue | fat1 | 5.322 | 0.685 | 0.832 | 0.885 | 0.719 |
fat2 | 5.121 | 0.280 | 0.868 | |||
fat3 | 4.654 | 0.378 | 0.844 | |||
Living Disorder | ld1 | 5.100 | 0.501 | 0.900 | 0.901 | 0.752 |
ld2 | 4.697 | 0.368 | 0.843 | |||
ld4 | 5.624 | 0.798 | 0.857 | |||
Experience of Privacy Violations | epi1 | 4.368 | 0.425 | 0.799 | 0.860 | 0.672 |
epi2 | 5.237 | 0.625 | 0.824 | |||
epi3 | 5.206 | 0.311 | 0.836 | |||
Reduced Intention to Use SNSs | riu1 | 5.583 | 0.253 | 0.811 | 0.893 | 0.677 |
riu2 | 6.007 | 0.541 | 0.827 | |||
riu3 | 5.624 | 0.339 | 0.806 | |||
riu4 | 5.320 | 0.452 | 0.846 |
Item | IIO | OR | FlO | MRS | FAT | LD | EPI | RIU |
---|---|---|---|---|---|---|---|---|
io1 | 0.874 | 0.244 | 0.382 | 0.282 | 0.368 | 0.129 | 0.333 | 0.392 |
io2 | 0.864 | 0.320 | 0.162 | 0.231 | 0.360 | 0.169 | 0.128 | 0.418 |
io3 | 0.833 | 0.301 | 0.254 | 0.218 | 0.334 | 0.290 | 0.407 | 0.531 |
or1 | 0.293 | 0.808 | 0.184 | 0.211 | 0.334 | 0.128 | 0.341 | 0.480 |
or2 | 0.303 | 0.807 | 0.141 | 0.178 | 0.317 | 0.411 | 0.215 | 0.573 |
or3 | 0.209 | 0.753 | 0.131 | 0.298 | 0.198 | 0.534 | 0.527 | 0.566 |
eng1 | 0.222 | 0.526 | 0.796 | 0.192 | 0.278 | 0.372 | 0.367 | 0.341 |
eng2 | 0.263 | 0.240 | 0.784 | 0.243 | 0.216 | 0.352 | 0.005 | 0.432 |
eng4 | 0.144 | 0.221 | 0.739 | 0.291 | 0.236 | 0.348 | 0.414 | 0.128 |
msr1 | 0.308 | 0.235 | 0.227 | 0.850 | 0.148 | 0.362 | 0.605 | 0.392 |
msr2 | 0.289 | 0.514 | 0.107 | 0.886 | 0.388 | 0.533 | 0.098 | 0.164 |
msr3 | 0.306 | 0.283 | 0.043 | 0.909 | 0.081 | 0.561 | -0.131 | 0.301 |
fat1 | 0.351 | 0.365 | 0.081 | 0.280 | 0.902 | 0.239 | 0.182 | 0.294 |
fat2 | 0.230 | 0.241 | 0.119 | 0.287 | 0.888 | 0.506 | 0.293 | 0.178 |
fat3 | 0.278 | 0.253 | 0.092 | 0.449 | 0.843 | 0.395 | 0.388 | 0.296 |
ld1 | 0.433 | 0.422 | 0.182 | 0.246 | 0.551 | 0.907 | 0.518 | 0.453 |
ld2 | 0.280 | 0.263 | 0.239 | 0.228 | 0.477 | 0.859 | 0.431 | 0.532 |
ld4 | 0.509 | 0.448 | 0.208 | 0.242 | 0.091 | 0.933 | 0.347 | 0.448 |
epi1 | 0.162 | 0.281 | 0.098 | 0.413 | 0.398 | 0.189 | 0.925 | 0.315 |
epi2 | 0.199 | 0.303 | 0.181 | 0.338 | 0.553 | 0.290 | 0.850 | 0.208 |
epi3 | 0.064 | 0.250 | 0.300 | 0.319 | 0.348 | 0.244 | 0.930 | 0.295 |
riu1 | 0.322 | 0.246 | 0.131 | 0.407 | 0.269 | 0.137 | 0.513 | 0.960 |
riu2 | 0.314 | 0.230 | 0.228 | 0.520 | 0.393 | 0.308 | 0.351 | 0.849 |
riu3 | 0.296 | 0.058 | 0.357 | 0.298 | 0.302 | 0.414 | 0.269 | 0.914 |
riu4 | 0.235 | 0.122 | 0.320 | 0.197 | 0.225 | 0.270 | 0.470 | 0.964 |
Latent Construct | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
(1) Irrelevant Information Overload | 0.771 | |||||||
(2) Open Reachability | 0.283 | 0.767 | ||||||
(3) Engagement | 0.304 | 0.267 | 0.825 | |||||
(4) Maintaining Self-Reputation | 0.197 | 0.223 | 0.300 | 0.828 | ||||
(5) SNS Fatigue | 0.273 | 0.281 | 0.315 | 0.410 | 0.848 | |||
(6) Living Disorder | 0.362 | 0.406 | 0.299 | 0.324 | 0.283 | 0.867 | ||
(7) Experience of Privacy Violations | 0.291 | 0.472 | 0.313 | 0.357 | 0.260 | 0.400 | 0.820 | |
(8) Reduced Intention to Use SNSs | 0.416 | 0.403 | 0.355 | 0.327 | 0.394 | 0.286 | 0.367 | 0.823 |
Hypothesis | Path | Std. β | t-Value | Result | ||
---|---|---|---|---|---|---|
H1 | Irrelevant Information Overload | → | SNS Fatigue | 0.297 | 4.120 | S ** |
H2 | Open Reachability | 0.095 | 1.015 | NS | ||
H3 | Engagement | 0.323 | 5.129 | S ** | ||
H4 | Maintaining Self-Reputation | 0.406 | 5.235 | S ** | ||
H5 | SNS Fatigue | → | Living Disorder | 0.411 | 7.236 | S ** |
H6 | Living Disorder | Reduced Intention to Use SNSs | 0.324 | 4.322 | S ** |
Hypothesis (Result) | Construct | Analysis of the Main Effect | Analysis of the Interaction Effect | ||
---|---|---|---|---|---|
Std. β | t-Value | Std. β | t-Value | ||
H 7 (Supported) | Living Disorder | 0.410 | 6.884 ** | 0.413 | 7.006 ** |
Experience of Privacy Violations | 0.219 | 3.582 ** | 0.241 | 3.668 ** | |
Living Disorder × Experience of Privacy Violations | - | 0.199 | 2.421 * | ||
R2 (Reduced Intention to use SNSs) | 0.238 | 0.256 | |||
F-value | 13.911 ** (∆ = 0.018) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, H.; Choi, M.J. Negative Impact of Social Network Services Based on Stressor-Stress-Outcome: The Role of Experience of Privacy Violations. Future Internet 2019, 11, 137. https://doi.org/10.3390/fi11060137
Kim S, Park H, Choi MJ. Negative Impact of Social Network Services Based on Stressor-Stress-Outcome: The Role of Experience of Privacy Violations. Future Internet. 2019; 11(6):137. https://doi.org/10.3390/fi11060137
Chicago/Turabian StyleKim, Sanghyun, Hyunsun Park, and Moon Jong Choi. 2019. "Negative Impact of Social Network Services Based on Stressor-Stress-Outcome: The Role of Experience of Privacy Violations" Future Internet 11, no. 6: 137. https://doi.org/10.3390/fi11060137
APA StyleKim, S., Park, H., & Choi, M. J. (2019). Negative Impact of Social Network Services Based on Stressor-Stress-Outcome: The Role of Experience of Privacy Violations. Future Internet, 11(6), 137. https://doi.org/10.3390/fi11060137