Latency-Based Dynamic Controller Assignment in Hybrid SDNs: Considering the Impact of Legacy Routers
Abstract
:1. Introduction
2. Related Work
3. Problem Description and Formulation
3.1. Description of SDN Controller Assignment Problem
3.2. Problem Formulation
4. Evaluation
4.1. Experimental Design
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [Google Scholar] [CrossRef]
- Farhady, H.; Lee, H.; Nakao, A. Software-defined networking: A survey. Comput. Netw. 2015, 81, 79–95. [Google Scholar] [CrossRef]
- Hong, D.K.; Ma, Y.; Banerjee, S.; Mao, Z.M. Incremental Deployment of SDN in Hybrid Enterprise and ISP Networks. In Proceedings of the Symposium on SDN Research, Santa Clara, CA, USA, 14–15 March 2016; ACM: New York, NY, USA, 2016; p. 1. [Google Scholar]
- Vissicchio, S.; Vanbever, L.; Bonaventure, O. Opportunities and research challenges of hybrid software defined networks. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 70–75. [Google Scholar] [CrossRef]
- Caria, M.; Das, T.; Jukan, A.; Hoffmann, M. Divide and conquer: Partitioning OSPF networks with SDN. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 467–474. [Google Scholar]
- Salman, O.; Elhajj, I.H.; Kayssi, A.; Chehab, A. SDN controllers: A comparative study. In Proceedings of the IEEE 2016 18th Mediterranean Electrotechnical Conference (MELECON), Limassol, Cyprus, 18–20 April 2016; pp. 1–6. [Google Scholar]
- Karakus, M.; Durresi, A. A survey: Control plane scalability issues and approaches in software-defined networking (SDN). Comput. Netw. 2017, 112, 279–293. [Google Scholar] [CrossRef]
- Bannour, F.; Souihi, S.; Mellouk, A. Distributed SDN control: Survey, taxonomy, and challenges. IEEE Commun. Surv. Tutor. 2018, 20, 333–354. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Z.; Yi, P.; Baker, T.; Lan, J. Multi-controller based software-defined networking: A survey. IEEE Access 2018, 6, 15980–15996. [Google Scholar] [CrossRef]
- Koponen, T.; Casado, M.; Gude, N.; Stribling, J.; Poutievski, L.; Zhu, M.; Ramanathan, R.; Iwata, Y.; Inoue, H.; Hama, T.; et al. Onix: A distributed control platform for large-scale production networks. OSDI 2010, 10, 1–6. [Google Scholar]
- Wang, G.; Zhao, Y.; Huang, J.; Wang, W. The controller placement problem in software defined networking: A survey. IEEE Netw. 2017, 31, 21–27. [Google Scholar] [CrossRef]
- Schiff, L.; Schmid, S.; Kuznetsov, P. In-band synchronization for distributed SDN control planes. ACM SIGCOMM Comput. Commun. Rev. 2016, 46, 37–43. [Google Scholar] [CrossRef]
- Oktian, Y.E.; Lee, S.; Lee, H.; Lam, J. Distributed SDN controller system: A survey on design choice. Comput. Netw. 2017, 121, 100–111. [Google Scholar] [CrossRef]
- Yao, G.; Bi, J.; Li, Y.; Guo, L. On the capacitated controller placement problem in software defined networks. IEEE Commun. Lett. 2014, 18, 1339–1342. [Google Scholar] [CrossRef]
- Heller, B.; Sherwood, R.; McKeown, N. The controller placement problem. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13 August 2012; pp. 7–12. [Google Scholar]
- Xiao, P.; Qu, W.; Qi, H.; Li, Z.; Xu, Y. The SDN controller placement problem for WAN. In Proceedings of the 2014 IEEE/CIC International Conference on Communications in China (ICCC), Shanghai, China, 13 October 2014; pp. 220–224. [Google Scholar]
- Jimenez, Y.; Cervello-Pastor, C.; Garcia, A.J. On the controller placement for designing a distributed SDN control layer. In Proceedings of the 2014 IFIP Networking Conference, Trondheim, Norway, 2–4 June 2014; pp. 1–9. [Google Scholar]
- Liu, B.; Wang, B.; Xi, X. Heuristics for sdn controller deployment using community detection algorithm. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 253–258. [Google Scholar]
- Lange, S.; Gebert, S.; Zinner, T.; Tran-Gia, P.; Hock, D.; Jarschel, M.; Hoffmann, M. Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans. Netw. Serv. Manag. 2015, 12, 4–17. [Google Scholar] [CrossRef]
- Dixit, A.; Hao, F.; Mukherjee, S.; Lakshman, T.; Kompella, R. Towards an elastic distributed SDN controller. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 7–12. [Google Scholar] [CrossRef]
- Wang, T.; Liu, F.; Guo, J.; Xu, H. Dynamic SDN controller assignment in data center networks: Stable matching with transfers. In Proceedings of the IEEE INFOCOM 2016 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–15 April 2016; pp. 1–9. [Google Scholar]
- Mostafaei, H.; Menth, M.; Obaidat, M.S. A Learning Automaton-Based Controller Placement Algorithm for Software-Defined Networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Wang, T.; Liu, F.; Xu, H. An efficient online algorithm for dynamic SDN controller assignment in data center networks. IEEE/ACM Trans. Netw. 2017, 25, 2788–2801. [Google Scholar] [CrossRef]
- Dixit, A.; Hao, F.; Mukherjee, S.; Lakshman, T.; Kompella, R.R. ElastiCon; an elastic distributed SDN controller. In Proceedings of the 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Marina del Rey, CA, USA, 20–21 October 2014; pp. 17–27. [Google Scholar]
- Ruiz-Rivera, A.; Chin, K.W.; Soh, S. GreCo: An energy aware controller association algorithm for software defined networks. IEEE Commun. Lett. 2015, 19, 541–544. [Google Scholar] [CrossRef]
- Savas, S.S.; Tornatore, M.; Dikbiyik, F.; Yayimli, A.; Martel, C.U.; Mukherjee, B. RASCAR: Recovery-aware switch-controller assignment and routing in SDN. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1222–1234. [Google Scholar] [CrossRef]
- Suh, D.; Pack, S. Low-complexity master controller assignment in distributed SDN controller environments. IEEE Commun. Lett. 2017, 22, 490–493. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.Y.; Huang, L.; Deng, H.; Huang, H.; Wang, H. Incremental deployment and throughput maximization routing for a hybrid SDN. IEEE/ACM Trans. Netw. (TON) 2017, 25, 1861–1875. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, S.; Cao, K.; Cong, P.; Wei, T.; Hu, S. A survey of deployment solutions and optimization strategies for hybrid SDN networks. IEEE Commun. Surv. Tutor. 2018, 21, 1483–1507. [Google Scholar] [CrossRef]
- Das, T.; Gurusamy, M. Resilient Controller Placement in Hybrid SDN/Legacy Networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–7. [Google Scholar]
- He, K.; Khalid, J.; Gember-Jacobson, A.; Das, S.; Prakash, C.; Akella, A.; Li, L.E.; Thottan, M. Measuring control plane latency in sdn-enabled switches. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, Santa Clara, CA, USA, 17–18 June 2015; p. 25. [Google Scholar]
- SNDlib Library. Available online: http://sndlib.zib.de (accessed on 21 April 2019).
Parameter | Meaning |
S | The set of SFDs in a hybrid SDN. |
The number of SFDs. | |
The set of LFDs in a hybrid SDN. | |
C | The set of SDN controllers. |
E | The set of physical links between forwarding devices. |
P | The location of controllers in networks. |
The capacity of SDN controllers. | |
A | The set of paths between controllers and SFDs, whose SFD-to-controller latency is in the constraints. |
D | The maximum latency constraint of control messages. |
The latency of path p. | |
Propagation latency of per kilometer of link . | |
The distance between the source and the destination of link e. | |
The service efficiency of the LFD v. | |
The propagation latency of one available path . | |
The estimated queue length of the LFD v. | |
The message processing rate of the LFD v. | |
The queuing latency of v. | |
The SFD-to-controller latency of the path for successful transmission. | |
The messages loss rate of the LFDs v. | |
The SFD-to-controller latency of the path . | |
F | The maximum tolerant time for the control message re-sending. |
The load of the SFD u. | |
The minimum latency between SFD u and a potential controller c. | |
Variables | Meaning |
Binary variables, which denote whether the SFD u is assigned to the controller c or not. |
Link transmission speed | 5 s/km | LFD service rate | 5 M packets/ms |
Queue length of LFD | 40 M packets | Mean arrive rate of LFD | 4–5 M packets/ms |
Standard deviation of arrive rate | 0.5–1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Li, E.; Kang, C.; Chang, F.; Yuan, T.; Li, X. Latency-Based Dynamic Controller Assignment in Hybrid SDNs: Considering the Impact of Legacy Routers. Future Internet 2019, 11, 168. https://doi.org/10.3390/fi11080168
Yuan J, Li E, Kang C, Chang F, Yuan T, Li X. Latency-Based Dynamic Controller Assignment in Hybrid SDNs: Considering the Impact of Legacy Routers. Future Internet. 2019; 11(8):168. https://doi.org/10.3390/fi11080168
Chicago/Turabian StyleYuan, Jie, Erxia Li, Chaoqun Kang, Fangyuan Chang, Tingting Yuan, and Xiaoyong Li. 2019. "Latency-Based Dynamic Controller Assignment in Hybrid SDNs: Considering the Impact of Legacy Routers" Future Internet 11, no. 8: 168. https://doi.org/10.3390/fi11080168
APA StyleYuan, J., Li, E., Kang, C., Chang, F., Yuan, T., & Li, X. (2019). Latency-Based Dynamic Controller Assignment in Hybrid SDNs: Considering the Impact of Legacy Routers. Future Internet, 11(8), 168. https://doi.org/10.3390/fi11080168