From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission
Abstract
:1. Introduction
2. Historical Background
3. FSO Communication System Constructions
4. Laser Wavelengths Versus FSO Links
5. FSO and Safety Concerns for Humans
6. FSO Advantages and Disadvantages
7. The Communication Networks in the Future
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, B.; Wu, C. Safety informatics as a new, promising and sustainable area of safety science in the information age. J. Clean. Prod. 2020, 252, 119852. [Google Scholar] [CrossRef]
- Information Age. Available online: https://www.information-age.com/ (accessed on 25 September 2020).
- Chuan, N.B.; Premadi, A.; Ab-Rahman, M.S.; Jumari, K. Optical power budget and cost estimation for Intelligent Fiber-To-the-Home (i-FTTH). In International Conference on Photonics 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5. [Google Scholar]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. J. Lightw. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Publications Office of the European Union. Available online: https://op.europa.eu/en/publication-detail/-/publication/d7952782-9aea-11e6-868c-01aa75ed71a1/language-en/format-PDF/source-150221638 (accessed on 25 September 2020).
- Cong, L.N.; Thai, H.D.; Wang, P.; Dusit, N.; In, K.D.; Zhu, H. Data Collection and Wireless Communication in Internet of Things (IoT) Using Economic Analysis and Pricing Models: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2546–2590. [Google Scholar]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Tom, S.; Ali, S. History of Wireless Communication. Rev. Bus. Inf. Syst. RBIS 2011, 15, 37–42. [Google Scholar]
- Uysal, M.; Capsoni, C.; Ghassemlooy, Z.; Boucouvalas, A.C.; Udvary, E. Optical Wireless Communications: An Emerging Technology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–634. [Google Scholar]
- Sorrentino, R.; Bianchi, G. Microwave and RF Engineering; John Wiley & Sons: New York, NY, USA, 2010; pp. 1–912. [Google Scholar]
- Parida, S.; Majhi, S.; Das, S.K. Wireless Powered Microwave and mm Wave based Communication Networks—A Survey. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020; pp. 98–102. [Google Scholar]
- Kaushal, H.; Jain, V.K.; Kar, S. Free Space Optical Communication; Springer: Gurgaon, Haryana, 2017; pp. 1–209. [Google Scholar]
- Klotzkin, D.J. Introduction to Semiconductor Lasers for Optical Communications; Springer: New York, NY, USA, 2020; pp. 1–285. [Google Scholar]
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 231–2258. [Google Scholar] [CrossRef]
- Khan, M.T.A.; Shemis, M.A.; Alkhazraji, E.; Ragheb, A.M.; Esmail, M.A.; Fathallah, H.A.; Alshebeili, S.A.; Khan, M.Z.M. Optical wireless communication at 100 Gb/s using L-band Quantum-dash laser. In Conference on Lasers and Electro-Optics Pacific Rim; Optical Society of America: Washington, DC, USA, 2017; pp. 1–3. [Google Scholar]
- Bouchet, O.; Sizun, H.; Boisrobert, C.; de Fornel, F.; Favennec, P. Free-Space Optics Propagation and Communication; ISTE Ltd.: London, UK, 2006; pp. 1–219. [Google Scholar]
- Malik, A.; Singh, P. Free Space Optics: Current Applications and Future Challenges. Int. J. Opt. 2015, 2015, 945483. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, J.; Chen, H.; Huang, Y.; Li, Y.; Song, Y.; Fontaine, N.K.; Ryf, R.; Wang, M. Secure Free-Space Optical Communication Via Amplified Spontaneous Emission (ASE). In Proceedings of the Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Althunibat, S.; Mesleh, R.; Qaraqe, K. Secure Index-Modulation Based Hybrid Free Space Optical and Millimeter Wave Links. IEEE Trans. Veh. Technol. 2020, 69, 6325–6332. [Google Scholar] [CrossRef]
- Ghassemlooy, Z. Free Space Optical Communications. J. Lightw. Technol. 2006, 24, 4750–4762. [Google Scholar]
- Darrigol, O. A History of Optics from Greek Antiquity to the Nineteenth Century; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Agrawal, G.P.; Al-Amri, M.D.; El-Gomati, M.; Suhail, Z.M. (Eds.) Optics in Our Time. In Optical Communication: Its History and Recent Progress; Springer: Cham, Switzerland, 2016; pp. 1–504. [Google Scholar]
- Holzmann, G.J. Data Communications: The First 2500 Years. In Proceeding of the IFIP 13th World Computer Congress, Hamburg, Germany, 28 August–2 September 1994; pp. 271–278. [Google Scholar]
- Chappe, I.U.J. Histoire de la Télégraphie; University of Michigan Library: Ann Arbor, MI, USA, 1824; pp. 1–432. (In French) [Google Scholar]
- Dawson, K. Electromagnetic telegraphy: Early ideas, proposals and apparatus. In History of Technology; Hall, R.A., Smith, N., Eds.; Bloomsbury Publishing: London, UK, 2016; pp. 113–142. [Google Scholar]
- Oersted, H.C. Experiments on the effect of a current of electricity on the magnetic needles. Ann. Philos. 1820, 16, 273–276. [Google Scholar]
- Holzmann, G.J.; Pehrson, B. The Early History of Data Networks; Wiley: Hoboken, NY, USA, 2003; pp. 1–304. [Google Scholar]
- Burns, R.W. Communications: An International History of the Formative Years; Institution of Electrical Engineers: London, UK, 2004; pp. 1–652. [Google Scholar]
- Galvin, K. Battle Management Language: History, Employment and NATO Technical Activities; STO-EN-MSG-141. Available online: https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-MSG-141/EN-MSG-141-01.pdf (accessed on 19 October 2020).
- Bell, A.G. On the production and reproduction of sound by light. Am. J. Sci. 1880, 20, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Forge, S. Military Communications: From Ancient Times to the 21st Century; Abc-Clio: Santa Barbara, CA, USA, 2008; Volume 10, pp. 73–74. [Google Scholar]
- Singer, J.R. Masers; John Wiley and Sons Inc.: New York, NY, USA, 1959; pp. 1–160. [Google Scholar]
- Gould, R.G. The LASER, Light Amplification by Stimulated Emission of Radiation; Franken, P.A., Sands, R.H., Eds.; The Ann Arbor Conference on Optical Pumping, The University of Michigan: Ann Arbor, MI, USA, 1959. [Google Scholar]
- Essiambre, R.J.; Kramer, G.; Winzer, P.J.; Foschini, G.J.; Goebel, B. Capacity Limits of Optical Fiber Networks. J. Lightw. Technol. 2010, 28, 662–701. [Google Scholar] [CrossRef]
- Kolker, M. Laser Communications. Ann. N. Y. Acad. Sci. 1969, 163, 118–143. [Google Scholar] [CrossRef]
- Cable Free Solutions. Available online: www.cablefreesolutions.com/index2.htm (accessed on 16 September 2020).
- Davis, C.C.; Smolyaninov, I.I.; Milner, S.D. Flexible optical wireless links and networks. IEEE Commun. Mag. 2003, 41, 51–57. [Google Scholar] [CrossRef]
- Nisar, S.; Li, L.; Sheikh, M.A. Laser Glass Cutting Techniques—A Review. J. Laser Appl. 2013, 25, 11. [Google Scholar] [CrossRef]
- Rappaport, T.S. The wireless revolution. IEEE Commun. Mag. 1991, 29, 52–71. [Google Scholar] [CrossRef]
- Caplan, D.O. Laser communication transmitter and receiver design. J. Opt. Fiber Commun. Rep. 2007, 4, 225–362. [Google Scholar] [CrossRef]
- Zafar, F.; Bakaul, M.; Parthiban, R. Laser-Diode-Based Visible Light Communication: Toward Gigabit Class Communication. IEEE Commun. Mag. 2017, 55, 144–151. [Google Scholar] [CrossRef]
- Tyagi, S.; Singh, S. Analytical modeling of AlGaAs/GaAs vertical cavity surface emitting lasers (vcsels) operating at 850 nm for free-space optical communication. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 182–185. [Google Scholar] [CrossRef]
- Energy Watch News. Available online: https://energywatchnews.com/laser-li-fi-ten-times-faster-led-li-fi/ (accessed on 25 September 2020).
- Ramirez-Iniguez, R.; Idrus, S.M.; Sun, Z. Optical Fiber Communication; CRC Press: London, UK; New York, NY, USA, 2008. [Google Scholar]
- Razavi, B. Design of Integrated Circuits for Optical Communications; McGraw Hill: New York, NY, USA, 2003; pp. 1–384. [Google Scholar]
- Bloom, S. The Physics of Free-Space Optics; M–A1; AirFiber Inc.: 2001; 802-006-000. Available online: https://www.urbe.edu/info-consultas/web-profesor/12697883/articulos/Free%20Space%20Optics%20FSO/Physics-of-FSO.pdf (accessed on 19 October 2020).
- Rogalski, A.; Bielecki, Z. Detection of Optical Radiation in Handbook of Optoelectronics; Taylor & Francis: New York, NY, USA; London, UK, 2006; pp. 73–117. [Google Scholar]
- Bielecki, Z. Maximisation of signal-to-noise ratio in infrared receivers. Opto Electron. Rev. 2002, 10, 209–216. [Google Scholar]
- Bloom, S.; Korevaar, E.; Schuster, J.; Willebrand, H. Understanding the performance of free-space optics. J. Opt. Netw. 2003, 2, 178–200. [Google Scholar] [CrossRef] [Green Version]
- Al-Akkoumi, M.K.; Refai, H.; Sluss, J.J., Jr. A tracking system for mobile FSO. In Proceedings of the Free-Space Laser Communication Technologies XX, San Jose, CA, USA, 24 January 2008; p. 68700. [Google Scholar]
- Light Pointe Wireless. Available online: https://www.lightpointe.com/ (accessed on 25 September 2020).
- FlightStrata 52E. Available online: http://www.airlinx.com/products.cfm/product/2-131-284.html (accessed on 15 October 2020).
- Free Space Optics (FSO). Available online: www.cablefree.net/cablefree-free-space-optics-fso (accessed on 15 October 2020).
- SONAbeam® 155-M. Available online: www.fsona.com/product.php?sec=155m (accessed on 15 October 2020).
- KORUZA. Available online: www.koruza.net/specs/ (accessed on 15 October 2020).
- Teramile Company. Available online: www.teramile.de/microsens/Polski/doc/Proj_SR.pdf (accessed on 25 September 2020).
- Siegel, T.; Chen, S. Investigations of Free Space Optical Communications under Real-World Atmospheric Conditions. Wirel. Pers. Commun. 2020. [Google Scholar] [CrossRef]
- Wasiu Popoola, Z.G. BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence. J. Lightw. Technol. 2009, 27, 967–973. [Google Scholar] [CrossRef]
- Srivastava, D.; Kaur, G.; Singh, G.; Singh, P. Evaluation of Atmospheric Detrimental Effects on Free Space Optical Communication System for Delhi Weather. J. Opt. Commun. 2020. [Google Scholar] [CrossRef]
- Kolwas, M.; Stacewicz, T.; Zwoździak, A. Badania Aerozolu Miejskiego; Wydawnictwo Uniwersytetu Warszawskiego: Warszawa, Poland, 2007; pp. 1–139. [Google Scholar]
- Vavoulas, A.; Sandalidis, H.G.; Varoutas, D. Weather Effects on FSO Network Connectivity. J. Opt. Commun. Netw. 2012, 4, 734–740. [Google Scholar] [CrossRef]
- Islam, A.N.; Majumder, S.P. Effect of atmospheric turbulence on the BER performance of an optical CDMA FSO link with SIK receiver. Optik 2019, 179, 867–874. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, X.; Wei, J.; Fu, X. Influence of atmospheric turbulence on FSO link performance. In Proceedings of the Asia-Pacific Optical and Wireless Communications, Wuhan, China, 4–6 November 2003. [Google Scholar]
- Ummul, K.R.; Anuar, M.S.; Rahman, A.K.; Rashidi, C.B.M.; Aljunid, S.A. The Performance in FSO Communication Due to Atmospheric Turbulence via Utilizing New Dual Diffuser Modulation Approach. Int. J. Appl. Eng. Res. 2017, 12, 1416–1420. [Google Scholar]
- Grover, M.; Singh, P.; Kaur, P. Mitigation of Scintillation Effects in WDM FSO System using Multibeam Technique. J. Telecommun. Inf. Technol. 2017, 2, 69–74. [Google Scholar] [CrossRef]
- Fu, H.; Wang, P.; Liu, T.; Cao, T.; Guo, L.; Qin, J. Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging. Appl. Opt. 2017, 56, 6432–6439. [Google Scholar] [CrossRef]
- Chaman-Motlagh, A.; Ahmadi, V.; Ghassemlooy, Z. A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers. J. Mod. Opt. 2010, 57, 37–42. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Rodenburg, B.; Malik, M.; Boyd, R.W. Free-space communication through turbulence: A comparison of plane-wave and orbital-angular-momentum encodings. J. Mod. Opt. 2014, 61, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, P. Performance Analysis of FSO Systems over Atmospheric Turbulence Channel for Indian Weather Conditions. In Turbulence and Related Phenomena; Barillé, R., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Gurdeep, S.; Vasishath, K. Free Space Optics: Atmospheric Effects & Back Up. Int. J. Res. Comput. Sci. 2011, 1, 25–30. [Google Scholar] [CrossRef]
- Leitgeb, E.; Gebhart, M.; Fasser, P.; Bregenzer, J.; Tanczos, J. Impact of atmospheric effects in Free Space Optics transmission systems. In Atmospheric Propagation; International Society for Optics and Photonic: San Jose, CA, USA, 2003. [Google Scholar] [CrossRef]
- Anshul, V.; Kaushal, H. Analysis of free space optical link in turbulent atmosphere. Optik 2014, 125, 2776–2779. [Google Scholar] [CrossRef]
- Rahman, A.K.; Julai, N.; Rashidi, C.B.M.; Zamhari, N.; Sahari, S.K.; Mohtadzar, N.A.A.; Sharip, M.R.M. Impact of rain weather over free space optic communication transmission. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 303–310. [Google Scholar] [CrossRef]
- Prokes, A. Atmospheric effects on availability of free space optics systems. Opt. Eng. 2009, 48, 066001. [Google Scholar] [CrossRef] [Green Version]
- Jasmine, S.; Robinson, S.; Malaisamy, K. Investigation on free space optical communication for various atmospheric conditions. In Proceedings of the 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; pp. 1030–1034. [Google Scholar] [CrossRef]
- Al-Gailani, S.A.; Mohammad, A.B.; Shaddad, R.Q.; Jamaludin, M.Y. Single and multiple transceiver simulation modules for free-space optical channel in tropical malaysian weather. In 2013 IEEE Business Engineering and Industrial Applications Colloquium; IEEE: Piscataway, NJ, USA, 2013; pp. 613–616. [Google Scholar]
- Al-Gailani, S.; Mohammad, A.B.; Shaddad, R.Q. Enhancement of free space optical link in heavy rain attenuation using multiple beam concept. Optik 2013, 124, 4798–4801. [Google Scholar] [CrossRef]
- Laser Optronics. Available online: http://www.laseroptronics.com/index.cfm/id/57-66.htm (accessed on 25 September 2020).
- Mikołajczyk, J.; Bielecki, Z.; Bugajski, M.; Piotrowski, J.; Wojtas, J.; Gawron, W.; Szabra, D.; Prokopiuk, A. Analysis Of Free-Space Optics Development. Metrol. Meas. Syst. 2017, 24, 653–674. [Google Scholar]
- Zabidi, S.A.; Islam, M.R.; Khateeb, W.A.; Naji, A.W. Investigating of rain attenuation impact on free space optics propagation in tropical region. In Proceedings of the 4th International Conference on Mechatronics, Kuala Lumpur, Malaysia, 17–19 May 2011; pp. 1–6. [Google Scholar]
- Grabner, M.; Kavicera, V. Multiple Scattering in Rain and Fog on Free-Space Optical Links. J. Lightw. Technol. 2014, 32, 513–520. [Google Scholar] [CrossRef]
- Fadhil, H.; Amphawan, A.; Shamsuddin, H.; Abd, T.H.; Al-Khafaji, H.; Aljunid, A.S.; Ahmed, N. Optimization of free space optics parameters: An optimum solution for bad weather conditions. Optik 2013, 124, 3969–3973. [Google Scholar] [CrossRef]
- Ijaz, M.; Ghassemlooy, Z.; Pesek, J.; Fiser, O.; Le Minh, H.; Bentley, E. Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions. J. Lightw. Technol. 2013, 31, 1720–1726. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Perez, J.; Leitgeb, E. On the performance of FSO communications links under sandstorm conditions. In Proceedings of the 12th International Conference on Telecommunications, Zagreb, Croatia, 26–28 June 2013; pp. 53–58. [Google Scholar]
- Rammprasath, K.; Prince, S. Analyzing the cloud attenuation on the performance of free space optical communication. In Proceedings of the 2nd International Conference on Communication and Signal Processing, Melmaruvathur, India, 3–5 April 2013; pp. 791–794. [Google Scholar]
- Naimullah, B.S.; Othman, M.; Rahman, A.K.; Sulaiman, S.I.; Ishak, S.; Hitam, S.; Aljunid, S.A. Comparison of wavelength propagation for Free Space Optical Communications. In Proceedings of the International Conference on Electronic Design, Penang, Malaysia, 1–3 December 2008; pp. 1–5. [Google Scholar]
- Xie, Y.-Y.; Ni, P.-N.; Wang, Q.-H.; Kan, Q.; Briere, G.; Chen, P.-P.; Zhao, Z.-Z.; Delga, A.; Ren, H.-R.; Chen, H.D.; et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 2020, 15, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Bérard, P.; Couture, M.; Seymour, R.J. Excess noise factor of front and back-illuminated silicon avalanche photodiode. In Image Sensing Technologies: Materials, Devices, Systems, and Applications VII; Curran Associates, Inc.: Red Hook, NY, USA, 2020. [Google Scholar]
- Zeng, Y.; Qiang, B.; Wang, Q.J. Photonic Engineering Technology for the Development of Terahertz Quantum Cascade Lasers. Adv. Opt. Mater. 2020, 8, 1900573. [Google Scholar] [CrossRef]
- Yao, Y.; Hoffman, A.J.; Gmachl, C.F. Mid-infrared quantum cascade lasers. Nat. Photonics 2012, 6, 432–439. [Google Scholar] [CrossRef]
- Nowakowski, M.; Gutowska, M.; Szabra, D.; Mikolajczyk, J.; Wojtas, J.; Bielecki, Z. Investigation of quantum cascade Lasers for free space optics operating at the wavelength range 8–12 μm. Acta Phys. Pol. A 2011, 120, 705–708. [Google Scholar] [CrossRef]
- International Electrotechnical Commision. Available online: https://webstore.iec.ch/publication/62424 (accessed on 25 September 2020).
- IEC 60825-1:2014—Safety of laser products—Part 1: Equipment Classification and Requirements. Available online: https://infostore.saiglobal.com/preview/98701189622.pdf?sku=861160_saig_nsai_nsai_2048777 (accessed on 25 September 2020).
- Timus, O. Free Space Optics Communication for Navy Surface Ship Platforms; Naval Postgraduate School U.S.: Monterey, CA, USA, 2004; pp. 1–90. [Google Scholar]
- Singh, J.; Kumar, N. Performance analysis of different modulation format on free space optical communication system. Optik 2013, 124, 4651–4654. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Muthumani, I.; Raja, A.S. Investigations on free space optics communication system. In Proceedings of the International Conference on Information Communication & Embedded Systems, Chennai, India, 21–22 February 2013; pp. 819–824. [Google Scholar]
- Sadiku, M.N.O.; Musa, S.M. Free Space Optical Communications: An Overview. Eur. Sci. J. 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Wilczyński, G. Transmisja sygnałów otwartymi łączami optycznymi. Elektronizacja 2003, 10, 11–14. [Google Scholar]
- Fujiwara, I.; Koibuchi, M.; Ozaki, T.; Matsutani, H.; Casanova, H. Augmenting low-latency HPC network with free-space optical links. In Proceedings of the IEEE 21st International Symposium on High Performance Computer Architecture, Burlingame, CA, USA, 7–11 February 2015; pp. 390–401. [Google Scholar]
- Datch, C.A.B.; Faye, N.A.B. Resilience of Long Range FSO Link under a Tropical Weather Effects. Sci. Afr. 2019, 7, e00243. [Google Scholar]
- Biswas, A.; Khatri, F.; Boroson, D.M. Near-Sun free-space optical communications from space. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; pp. 1–6. [Google Scholar]
- Guan, Z.; Changming, Z.; Yang, S.; Wang, Y.; Ke, J.Y.; Zhang, H. Demonstration of a free-space optical communication system using a solar-pumped laser as signal transmitter. Laser Phys. Lett. 2017, 14, 055804. [Google Scholar] [CrossRef]
- Willebrand, H.; Ghuman, B. Fiber optics without fiber. IEEE Spectr. 2011, 38, 40–45. [Google Scholar] [CrossRef]
- Shaulov, G.; Patel, J.; Whitlock, B.K.; Mena, P.; Scarmozzino, R. Simulation-assisted design of free space optical transmission systems. In Proceedings of the Military Communications Conference, Atlantic City, NJ, USA, 17–20 October 2005; pp. 918–922. [Google Scholar]
- Saquib, N.; Sakib, M.S.R.; Saha, A.; Hussain, M. Free space optical connectivity for last mile solution in Bangladesh. In Proceedings of the 2nd International Conference on Education Technology and Computer, Shanghai, China, 22–24 June 2010; pp. V2:484–V2:487. [Google Scholar]
- Laser Focus World. Available online: https://www.laserfocusworld.com/fiber-optics/article/16556480/freespace-links-address-the-lastmile-problem (accessed on 25 September 2020).
- Kaymak, Y.; Rojas-Cessa, R.; Feng, J.; Ansari, N.; Zhou, M.C.; Zhang, T. A Survey on Acquisition, Tracking, and Pointing Mechanisms for Mobile Free-Space Optical Communications. IEEE Commun. Surv. Tutor. 2018, 20, 1104–1123. [Google Scholar] [CrossRef]
- Alimi, I.A.; Muga, N.J. Simple and robust transmit diversity based free-space optical communications for 5G and beyond networks. Opt. Commun. 2020, 476, 126306. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Tan, J.; Liu, Y.; Liu, J. 200 Gb/s FSO WDM Communication System Empowered by Multiwavelength Directly Modulated TOSA for 5G Wireless Networks. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Abderrahmen, T.; Mitchell, A.C.; Boon, O.; Mohamed-Slim, A. Roadmap to free space optics. J. Optical Soc. Am. B 2020, 37, A184–A201. [Google Scholar]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G Era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Raj, A.B.; Majumder, A.K. Historical perspective of free space optical communications: From the early dates to today’s developments. IET Commun. 2019, 13, 2405–2419. [Google Scholar] [CrossRef]
- NASA. Available online: gameon.nasa.gov/archived-projects-2/deep-space-optical-communications-dsoc/?fbclid=IwAR34A9HsAsIjXMoSQ9H7n2qgLhgLl8NC8q4T7nkjmU4Aaqea2P8suu-vGko (accessed on 25 September 2020).
- Deutsch, L.; Lichten, S.M.; Hoppe, D.J.; Russo, A.J.; Cornwell, D.M. Creating a NASA Deep Space Optical Communications System. In Space Operations: Inspiring Humankind’s Future; Pasquier, H., Cruzen, C., Schmidhuber, M., Lee, Y., Eds.; Springer: Cham, Switzerland, 2019; pp. 43–62. [Google Scholar]
- Nadi, M.; Rajabalipanah, H.; Cheldavi, A.; Abdolali, A. Flexible Manipulation of Emitting Beams Using Single-Aperture Circularly Polarized Digital Metasurface Antennas: Multi-Beam Radiation toward Vortex-Beam Generation. Adv. Theory Simul. 2020, 3, 1900225. [Google Scholar] [CrossRef]
FSO system | FlightStrata 52E | CableFree G2000 | SONAbeam 10G-E+ | Koruza Bridge 10 Gbps |
---|---|---|---|---|
Description | Multiple Beam System with Auto Tracking—full duplex | Multiple Beam System with Automatic Transmit Power Control (ATPC)—full-duplex | Multiple Beam System—full duplex | Single beam unit—full duplex |
Bit Rate | Up to 155 Mbps | Up to 1.5 Gbps | Up to 10 Gbps | Up to 10 Gbps |
Distance | Up to 5600 m | Up to 2000 m | Up to 1000 m | <150 m, |
Optical Transmitter | VCSEL | VCSEL | InGaAsP Laser Diode | SC SFP WDM Bi-Di module with DDM |
Wavelength | 850 nm | 780 nm | 1550 nm | 1270 nm/1310 nm |
Optical Transmit Power | −20 dBm | +19.0 dBm | +26 dBm | +0.5 dBm |
Optical Receiver | Si APD | APD | APD | SC SFP WDM Bi-Di module with DDM |
Unit Weight | 11.1 kg | 9 kg | 8 kg | 2 kg |
Operating Temperature | −25 °C to 60 °C | −20 °C to 60 °C | −40 °C to 50 °C | −40 °C to 60 °C |
Power Consumption Max. | 20 W | 45 W | 40 W | 6 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garlinska, M.; Pregowska, A.; Masztalerz, K.; Osial, M. From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission. Future Internet 2020, 12, 179. https://doi.org/10.3390/fi12110179
Garlinska M, Pregowska A, Masztalerz K, Osial M. From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission. Future Internet. 2020; 12(11):179. https://doi.org/10.3390/fi12110179
Chicago/Turabian StyleGarlinska, Magdalena, Agnieszka Pregowska, Karol Masztalerz, and Magdalena Osial. 2020. "From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission" Future Internet 12, no. 11: 179. https://doi.org/10.3390/fi12110179
APA StyleGarlinska, M., Pregowska, A., Masztalerz, K., & Osial, M. (2020). From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission. Future Internet, 12(11), 179. https://doi.org/10.3390/fi12110179