Investigating the Relationship between Personality and Technology Acceptance with a Focus on the Smartphone from a Gender Perspective: Results of an Exploratory Survey Study
Abstract
:1. Introduction
1.1. General Introduction
1.2. Conceptual Framework and Related Work
1.2.1. Research Stream 1: Personality and Technology Acceptance
1.2.2. Research Stream 2: Gender Differences in Attitude toward and Usage of Information and Communication Technologies
1.2.3. Research Stream 3: Gender Differences in Personality
1.3. Summary
2. Materials and Methods
2.1. Sample
2.2. Self-Report Measures
2.2.1. Demographics
2.2.2. HEXACO-PI-R
2.2.3. Technology Acceptance
2.3. Statistical Analyses
3. Results
3.1. Associations with Age (a potential Covariate)
3.2. Research Streams 2 and 3: Effects of Gender on TAM and Personality Scales
3.3. Research Stream 1: Associations between Personality and TAM Scales and Moderation Effects of Gender
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Partial Correlations between the HEXACO-PI-R Scales and the Scales to Assess Technology Acceptance
Appendix A.1. Smartphone Business
PU | PeU | ITU | PUs | |
---|---|---|---|---|
Total (N = 686) | ||||
Honesty–Humility | r = −0.26, p < 0.001 | r = −0.17, p < 0.001 | r = −0.19, p < 0.001 | r = −0.19, p < 0.001 |
Emotionality | r = −0.05, p = 0.235 | r = −0.13, p < 0.001 | r = −0.00, p = 0.976 | r = −0.07, p = 0.055 |
Extraversion | r = 0.16, p < 0.001 | r = 0.19, p < 0.001 | r = 0.14, p < 0.001 | r = 0.10, p = 0.007 |
Agreeableness | r = −0.04, p = 0.280 | r = 0.04, p = 0.286 | r = −0.08, p = 0.033 | r = 0.01, p = 0.878 |
Conscientiousness | r = 0.02, p = 0.663 | r = 0.08, p = 0.033 | r = −0.03, p = 0.403 | r = −0.02, p = 0.571 |
Openness | r = −0.12, p = 0.002 | r = −0.05, p = 0.198 | r = −0.05, p = 0.214 | r = −0.08, p = 0.048 |
Altruism | r = −0.08, p = 0.038 | r = −0.04, p = 0.259 | r = −0.01, p = 0.696 | r = −0.14, p < 0.001 |
Appendix A.2. Smartphone Personal
PU | PeU | ITU | PUs | |
---|---|---|---|---|
Total (N = 686) | ||||
Honesty–Humility | r = −0.21, p < 0.001 | r = −0.15, p < 0.001 | r = −0.12, p = 0.001 | r = −0.12, p = 0.001 |
Emotionality | r = 0.06, p = 0.145 | r = −0.06, p = 0.101 | r = 0.10, p = 0.008 | r = 0.10, p = 0.007 |
Extraversion | r = 0.13, p < 0.001 | r = 0.17, p < 0.001 | r = 0.11, p = 0.004 | r = 0.10, p = 0.006 |
Agreeableness | r = −0.05, p = 0.177 | r = 0.03, p = 0.388 | r = −0.10, p = 0.012 | r = −0.02, p = 0.601 |
Conscientiousness | r = 0.09, p = 0.015 | r = 0.10, p = 0.009 | r = 0.05, p = 0.213 | r = 0.04, p = 0.241 |
Openness | r = −0.10, p = 0.007 | r = −0.06, p = 0.124 | r = −0.07, p = 0.057 | r = −0.05, p = 0.210 |
Altruism | r = −0.01, p = 0.862 | r = −0.01, p = 0.832 | r = 0.03, p = 0.409 | r = 0.01, p = 0.737 |
References
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kozar, K.A.; Larsen, K.R.T. The Technology Acceptance Model: Past, present, and future. CAIS 2003, 12, 752–780. [Google Scholar] [CrossRef]
- Legris, P.; Ingham, J.; Collerette, P. Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 2003, 40, 191–204. [Google Scholar] [CrossRef]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inf. Manag. 2006, 43, 740–755. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V. Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the Technology Acceptance Model. Inf. Syst. Res. 2000, 11, 342–365. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef] [Green Version]
- Schepers, J.; Wetzels, M. A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Inf. Manag. 2007, 44, 90–103. [Google Scholar] [CrossRef]
- Montag, C.; Panksepp, J. Primary emotional systems and personality: An evolutionary perspective. Front. Psychol. 2017, 8, 464. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.; Pearson, A.W.; Pearson, R.; Kellermanns, F.W. Five-factor model personality traits as predictors of perceived and actual usage of technology. Eur. J. Inf. Syst. 2015, 24, 374–390. [Google Scholar] [CrossRef]
- Devaraj, S.; Easley, R.F.; Crant, J.M. How does personality matter? Relating the five-factor model to technology acceptance and use. Inf. Syst. Res. 2008, 19, 93–105. [Google Scholar] [CrossRef]
- McElroy, J.C.; Hendrickson, A.; Townsend, A.M.; DeMarie, S.M. Dispositional factors in internet use: Personality versus cognitive style. MIS Q. Manag. Inf. Syst. 2007, 31, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, G.B.; Johnsen, J.-A.K.; Almås-Sørensen, L.; Vittersø, J. Personality and technology acceptance: The influence of personality factors on the core constructs of the Technology Acceptance Model. Behav. Inf. Technol. 2013, 32, 323–334. [Google Scholar] [CrossRef]
- Costa, P.T.; Terracciano, A.; McCrae, R.R. Gender differences in personality traits across cultures: Robust and surprising findings. J. Personal. Soc. Psychol. 2001, 81, 322–331. [Google Scholar] [CrossRef]
- Feingold, A. Gender differences in personality: A meta-analysis. Psychol. Bull. 1994, 116, 429–456. [Google Scholar] [CrossRef]
- Lee, K.; Ashton, M.C. Psychometric properties of the HEXACO-100. Assessment 2018, 25, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Moshagen, M.; Hilbig, B.E.; Zettler, I. Faktorenstruktur, psychometrische Eigenschaften und Messinvarianz der deutschsprachigen Version des 60-Item HEXACO Persönlichkeitsinventars. Diagnostica 2014, 60, 86–97. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G. Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Q. 2000, 24, 115–139. [Google Scholar] [CrossRef]
- Cyr, D.; Bonanni, C. Gender and website design in e-business. Int. J. Electron. Bus. 2005, 3, 565–582. [Google Scholar] [CrossRef]
- Powell, P.L.; Johnson, J.E.V. Gender and DSS design: The research implications. Decis. Support Syst. 1995, 14, 27–58. [Google Scholar] [CrossRef]
- Riedl, R.; Hubert, M.; Kenning, P. Are there neural gender differences in online trust? An fMRI study on the perceived trustworthiness of eBay offers. MIS Q. 2010, 34, 397–428. [Google Scholar] [CrossRef] [Green Version]
- Maier, C. Personality within Information Systems Research: A literature analysis. In Proceedings of the ECIS 2012 Proceedings, Barcelona, Spain, 11–13 June 2012; Volume 101. [Google Scholar]
- Benbasat, I.; Taylor, R.N. The impact of cognitive styles on information system design. MIS Q. 1978, 2, 43–54. [Google Scholar] [CrossRef]
- Harrison, A.W.; Rainer, R.K. The influence of individual differences on skill in end-user computing. J. Manag. Inf. Syst. 1992, 9, 93–111. [Google Scholar] [CrossRef]
- Jahng, J.J.; Jain, H.; Ramamurthy, K. Personality traits and effectiveness of presentation of product information in e-business systems. Eur. J. Inf. Syst. 2002, 11, 181–195. [Google Scholar] [CrossRef]
- Özbek, V.; Alnıaçık, Ü.; Koç, F.; Akkılıç, M.E.; Kaş, E. The impact of personality on technology acceptance: A study on smart phone users. In Proceedings of the 10th International Strategic Management Conference 2014, Rome, Italy, 19–21 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Fan, X.; Du, J. Gender and attitudes toward technology use: A meta-analysis. Comput. Educ. 2017, 105, 1–13. [Google Scholar] [CrossRef]
- Goswami, A.; Dutta, S. Gender differences in technology usage—A literature review. Open J. Bus. Manag. 2016, 04, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Tarhini, A.; Hone, K.; Liu, X. Measuring the moderating effect of gender and age on e-learning acceptance in England: A structural equation modeling approach for an extended technology acceptance model. J. Educ. Comput. Res. 2014, 51, 163–184. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.W. Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Q. 1997, 21, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Park, B. Testing the moderating role of need for cognition in smartphone adoption. Behav. Inf. Technol. 2014, 33, 704–715. [Google Scholar] [CrossRef]
- Joo, J.; Sang, Y. Exploring Koreans’ smartphone usage: An integrated model of the technology acceptance model and uses and gratifications theory. Comput. Hum. Behav. 2013, 29, 2512–2518. [Google Scholar] [CrossRef]
- Kim, S.H. Moderating effects of job relevance and experience on mobile wireless technology acceptance: Adoption of a smartphone by individuals. Inf. Manag. 2008, 45, 387–393. [Google Scholar] [CrossRef]
- Newzoo. Newzoo Global Mobile Market Report 2019. Available online: https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2019-light-version/ (accessed on 28 June 2020).
- Knežević, G.; Lazarević, L.B.; Montag, C.; Davis, K. Relations between lexical and biological perspectives on personality: New evidence based on HEXACO and Affective Neuroscience Theory. J. Personal. Assess. 2020, 102, 325–336. [Google Scholar] [CrossRef]
- Sindermann, C.; Duke, É.; Montag, C. Personality associations with Facebook use and tendencies towards Facebook use disorder. Addict. Behav. Rep. 2020, 11, 100264. [Google Scholar] [CrossRef] [PubMed]
- Sindermann, C.; Elhai, J.D.; Montag, C. Predicting tendencies towards the disordered use of Facebook’s social media platforms: On the role of personality, impulsivity, and social anxiety. Psychiatry Res. 2020, 285, 112793. [Google Scholar] [CrossRef]
- Chin, W.W.; Johnson, N.; Schwarz, A. A fast form approach to measuring technology acceptance and other constructs. MIS Q. 2008, 32, 687–703. [Google Scholar] [CrossRef]
- Miles, J.; Shevlin, M. Applying Regression and Correlation: A Guide for Students and Researchers; SAGE Publications: London, UK, 2001. [Google Scholar]
- Ashton, M.C.; Lee, K. Age trends in HEXACO-PI-R self-reports. J. Res. Personal. 2016, 64, 102–111. [Google Scholar] [CrossRef]
- Montag, C.; Błaszkiewicz, K.; Sariyska, R.; Lachmann, B.; Andone, I.; Trendafilov, B.; Eibes, M.; Markowetz, A. Smartphone usage in the 21st century: Who is active on WhatsApp? BMC Res. Notes 2015, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Markowetz, A.; Błaszkiewicz, K.; Montag, C.; Switala, C.; Schlaepfer, T.E. Psycho-informatics: Big data shaping modern psychometrics. Med. Hypotheses 2014, 82, 405–411. [Google Scholar] [CrossRef]
- Montag, C.; Duke, È.; Markowetz, A. Toward psychoinformatics: Computer science meets psychology. Comput. Math. Methods Med. 2016, 2016, 2983685. [Google Scholar] [CrossRef] [Green Version]
- Montag, C.; Elhai, J.D. A new agenda for personality psychology in the digital age? Personal. Individ. Differ. 2019, 147, 128–134. [Google Scholar] [CrossRef]
- Chittaranjan, G.; Blom, J.; Gatica-Perez, D. Mining large-scale smartphone data for personality studies. Pers. Ubiquitous Comput. 2013, 17, 433–450. [Google Scholar] [CrossRef]
- Montag, C.; Błaszkiewicz, K.; Lachmann, B.; Andone, I.; Sariyska, R.; Trendafilov, B.; Reuter, M.; Markowetz, A. correlating personality and actual phone usage: Evidence from psychoinformatics. J. Individ. Differ. 2014, 35, 158–165. [Google Scholar] [CrossRef]
- Montag, C.; Baumeister, H.; Kannen, C.; Sariyska, R.; Meßner, E.-M.; Brand, M. Concept, possibilities and pilot-testing of a new smartphone application for the social and life sciences to study human behavior including validation data from personality psychology. J 2019, 2, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Stachl, C.; Hilbert, S.; Au, J.-Q.; Buschek, D.; Luca, A.D.; Bischl, B.; Hussmann, H.; Bühner, M. Personality traits predict smartphone usage. Eur. J. Personal. 2017, 31, 701–722. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lin, Y.-C.; Lee, Y.-H.; Lin, P.-H.; Lin, S.-H.; Chang, L.-R.; Tseng, H.-W.; Yen, L.-Y.; Yang, C.C.H.; Kuo, T.B.J. Time distortion associated with smartphone addiction: Identifying smartphone addiction via a mobile application (App). J. Psychiatr. Res. 2015, 65, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Błaszkiewicz, K.; Lachmann, B.; Sariyska, R.; Andone, I.; Trendafilov, B.; Markowetz, A. Recorded behavior as a valuable resource for diagnostics in mobile phone addiction: Evidence from psychoinformatics. Behav. Sci. 2015, 5, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Montag, C.; Markowetz, A.; Blaszkiewicz, K.; Andone, I.; Lachmann, B.; Sariyska, R.; Trendafilov, B.; Eibes, M.; Kolb, J.; Reuter, M.; et al. Facebook usage on smartphones and gray matter volume of the nucleus accumbens. Behav. Brain Res. 2017, 329, 221–228. [Google Scholar] [CrossRef]
- Sariyska, R.; Rathner, E.-M.; Baumeister, H.; Montag, C. Feasibility of linking molecular genetic markers to real-world social network size tracked on smartphones. Front. Neurosci. 2018, 12, 945. [Google Scholar] [CrossRef]
- Smith, D.G. Digital phenotyping approaches and mobile devices enhance CNS biopharmaceutical research and development. Neuropsychopharmacology 2018, 43, 2504–2505. [Google Scholar] [CrossRef]
- Zuboff, S. Big other: Surveillance capitalism and the prospects of an information civilization. J. Inf. Technol. 2015, 30, 75–89. [Google Scholar] [CrossRef]
- Dagum, P.; Montag, C. Ethical Considerations of Digital Phenotyping from the Perspective of a Healthcare Practitioner. In Digital Phenotyping and Mobile Sensing: New Developments in Psychoinformatics; Baumeister, H., Montag, C., Eds.; Studies in Neuroscience, Psychology and Behavioral Economics; Springer International Publishing: Cham, Switzerland, 2019; pp. 13–28. ISBN 978-3-030-31620-4. [Google Scholar]
- Montag, C.; Sindermann, C.; Baumeister, H. Digital phenotyping in psychological and medical sciences: A reflection about necessary prerequisites to reduce harm and increase benefits. Curr. Opin. Psychol. 2020, 36, 19–24. [Google Scholar] [CrossRef] [PubMed]
M (SD) Men (n = 209) | M (SD) Women (n = 477) | t | df | p | Hedge’s g | |
---|---|---|---|---|---|---|
Smartphone TA | ||||||
PU | 4.06 (0.98) | 3.94 (0.84) | 1.48 | 347.43 | 0.141 | 0.130 |
PeU | 4.39 (0.86) | 4.28 (0.78) | 1.65 | 684 | 0.099 | 0.137 |
ITU | 4.86 (1.10) | 4.92 (1.05) | −0.64 | 684 | 0.522 | −0.053 |
PUs | 3.50 (1.35) | 3.27 (1.11) | 2.18 | 334.76 | 0.030 | 0.196 |
HEXACO-PI-R | ||||||
Honesty–Humility | 3.15 (0.63) | 3.44 (0.53) | −5.84 | 344.03 | <0.001 | −0.517 |
Emotionality | 2.81 (0.56) | 3.50 (0.47) | −15.63 | 340.60 | <0.001 | −1.391 |
Extraversion | 3.47 (0.56) | 3.43 (0.55) | 0.92 | 684 | 0.359 | 0.076 |
Agreeableness | 3.18 (0.54) | 3.05 (0.49) | 3.01 | 684 | 0.003 | 0.250 |
Conscientiousness | 3.43 (0.53) | 3.56 (0.48) | −3.23 | 684 | 0.001 | −0.268 |
Openness | 3.25 (0.56) | 3.28 (0.53) | −0.79 | 684 | 0.432 | −0.065 |
Altruism | 3.34 (0.69) | 3.85 (0.54) | −9.55 | 322.16 | <0.001 | −0.873 |
PU | PeU | ITU | PUs | |
---|---|---|---|---|
Total (N = 686) | ||||
Honesty–Humility | r = −0.25, p < 0.001 | r = −0.16, p < 0.001 | r = −0.17, p < 0.001 | r = −0.18, p < 0.001 |
Emotionality | r = 0.01, p = 0.894 | r = −0.10, p = 0.011 | r = 0.05, p = 0.173 | r = 0.02, p = 0.638 |
Extraversion | r = 0.15, p < 0.001 | r = 0.18, p < 0.001 | r = 0.14, p < 0.001 | r = 0.12, p = 0.002 |
Agreeableness | r = −0.05, p = 0.201 | r = 0.04, p = 0.322 | r = −0.09, p = 0.013 | r = −0.01, p = 0.830 |
Conscientiousness | r = 0.06, p = 0.132 | r = 0.09, p = 0.014 | r = 0.01, p = 0.854 | r = 0.01, p = 0.721 |
Openness | r = −0.12, p = 0.002 | r = −0.06, p = 0.146 | r = −0.06, p = 0.093 | r = −0.07, p = 0.067 |
Altruism | r = −0.05, p = 0.233 | r = −0.03, p = 0.496 | r = 0.01, p = 0.832 | r = −0.07, p = 0.062 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sindermann, C.; Riedl, R.; Montag, C. Investigating the Relationship between Personality and Technology Acceptance with a Focus on the Smartphone from a Gender Perspective: Results of an Exploratory Survey Study. Future Internet 2020, 12, 110. https://doi.org/10.3390/fi12070110
Sindermann C, Riedl R, Montag C. Investigating the Relationship between Personality and Technology Acceptance with a Focus on the Smartphone from a Gender Perspective: Results of an Exploratory Survey Study. Future Internet. 2020; 12(7):110. https://doi.org/10.3390/fi12070110
Chicago/Turabian StyleSindermann, Cornelia, René Riedl, and Christian Montag. 2020. "Investigating the Relationship between Personality and Technology Acceptance with a Focus on the Smartphone from a Gender Perspective: Results of an Exploratory Survey Study" Future Internet 12, no. 7: 110. https://doi.org/10.3390/fi12070110
APA StyleSindermann, C., Riedl, R., & Montag, C. (2020). Investigating the Relationship between Personality and Technology Acceptance with a Focus on the Smartphone from a Gender Perspective: Results of an Exploratory Survey Study. Future Internet, 12(7), 110. https://doi.org/10.3390/fi12070110