Considerations on the Implications of the Internet of Things in Spanish Universities: The Usefulness Perceived by Professors
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses Development
2.1. Performance Expectancy (PE)
2.2. Effort Expectancy (EE)
2.3. Social Influence (SI)
2.4. Facilitating Conditions (FC)
2.5. Attitude Toward Using Technology (ATUT)
3. Method
3.1. Participants and Procedure
3.2. Measures
3.3. Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waghid, Y.; Waghid, Z.; Waghid, F. The fourth industrial revolution reconsidered: On advancing cosmopolitan education. South Afr. J. High. Educ. 2019, 33. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Cohen, J. The New Digital Age: Transforming Nations, Businesses, and Our Lives; Vintage: London, UK, 2014. [Google Scholar]
- Van Deursen, A.; van der Zeeuw, A.; de Boer, P.; Jansen, G.; van Rompay, T. Digital inequalities in the internet of things: Differences in attitudes, material access, skills, and usage. Inf. Commun. Soc. 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2017, 56, 508–517. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Asseo, I.; Johnson, M.; Nilsson, B.; Chalapathy, N.; Costello, T. Riding the wave in higher education. Educ. Rev. 2016, 51, 10–31. [Google Scholar]
- Marín-Marín, J.; López-Belmonte, J.; Fernández-Campoy, J.; Romero-Rodríguez, J. Big data in education. A bibliometric review. Soc. Sci. 2019, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kao, H.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia Cirp 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Kumar, D. IoT ecosystem: A survey on devices, gateways, operating systems, middleware and communication. Int. J. Wirel. Inf. Netw. 2020. [Google Scholar] [CrossRef]
- Rodney, B. Understanding the paradigm shift in education in the twenty-first century. Worldw. Hosp. Tour. Themes 2020, 12, 35–47. [Google Scholar] [CrossRef]
- Abdullah, A.; Hamad, R.; Abdulrahman, M.; Moala, H.; Elkhediri, S. CyberSecurity: A review of internet of things (IoT) security issues, challenges and techniques. In Proceedings of the 2019 2nd International Conference on Computer Applications Information Security, Riyadh, Saudi Arabia, 1–3 May 2019. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, L. Internet of things (IoT) cybersecurity research: A review of current research topics. IEEE Int. Things J. 2019, 6, 2103–2115. [Google Scholar] [CrossRef]
- International Telecommunication Union (ITU). Recommendation ITU–T Y.2060. 2012. Available online: http://handle.itu.int/11.1002/1000/11559 (accessed on 19 April 2020).
- Ashton, K. That ‘internet of things’ thing. RFID J. 2009, 22, 97–114. [Google Scholar]
- Gabbai, A. Kevin Ashton Describes “The Internet of Things”. 2015. Available online: https://www.smithsonianmag.com/innovation/kevin-ashton-describes-the-internet-of-things-180953749/ (accessed on 19 April 2020).
- Songsom, N.; Nilsook, P.; Wannapiroon, P. The synthesis of the student relationship management system using the internet of things to collect the digital footprint for higher education institutions. Int. J. Online Biomed. Eng. 2019, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Raman, A. Potentials of fog computing in higher education. Int. J. Emerg. Technol. Learn. 2019, 14, 194. [Google Scholar] [CrossRef]
- Sengupta, S. Internet of Things: Applications in Education Sector. AJANTA 2019, 8, 24–27. [Google Scholar]
- Chang, J.; Lin, W.; Chen, H. How attention level and cognitive style affect learning in a MOOC environment? Based on the perspective of brainwave analysis. Comput. Hum. Behav. 2019, 100, 209–217. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.; Fraga-Lamas, P. Towards next generation teaching, learning, and context-aware applications for higher education: A review on blockchain, IoT, fog and edge computing enabled smart campuses and universities. Appl. Sci. 2019, 9, 4479. [Google Scholar] [CrossRef] [Green Version]
- Sun, G. Research on the cooperative development of university and industry economy based on internet of things technology. Trans. Emerg. Telecommun. Technol. 2020, e3917. [Google Scholar] [CrossRef]
- Kuandee, W.; Nilsook, P.; Wannapiroon, P. Asset supply chain management system-based IoT technology for higher education institutions. Int. J. Online Biomed. Eng. 2019, 15, 4. [Google Scholar] [CrossRef]
- Aldowah, H.; Ul Rehman, S.; Ghazal, S.; Naufal Umar, I. Internet of things in higher education: A study on future learning. J. Phys. Conf. Ser. 2017, 892, 012017. [Google Scholar] [CrossRef]
- Tianbo, Z. The internet of things promoting higher education revolution. 2012 Fourth Int. Conf. Multimed. Inf. Netw. Secur. 2012. [Google Scholar] [CrossRef]
- Militaru, G.; Simion, C.; Deselnicu, D.; Ioanid, A.; Niculescu, C. Examining students’ acceptance of internet of things technology in higher education. In Proceedings of the 30th International Business-Information-Management-Association Conference, Soliman, Madrid, Spain, 8–9 November 2017; pp. 3615–3623. [Google Scholar]
- Abbasy, M.; Quesada, E. Predictable influence of IoT (internet of things) in the higher education. Int. J. Inf. Educ. Technol. 2017, 7, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Majeed, A.; Ali, M. How internet-of-things (IoT) making the university campuses smart? QA higher education (QAHE) perspective. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2018. [Google Scholar] [CrossRef]
- Soler, U.; Busilo, M. Education of society as a tool to counteract disinformation in implementing new technologies. On the example of 5G mobile telecommunications network and Warsaw sewage system. In Proceedings of the 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE), Janow Podlaski, Poland, 9–12 June 2019. [Google Scholar] [CrossRef]
- Sysoieva, S.; Osadcha, K. Condition, technologies and prospects of distance learning in the higher education of Ukraine. Inf. Technol. Learn. Tools 2019, 70, 271. [Google Scholar] [CrossRef]
- Bajracharya, B.; Blackford, C. Prospects of internet of things in education system. CTE J. 2018, 6, 1–7. [Google Scholar]
- Conde-Zhingre, L.; Quezada-Sarmiento, P.; Labanda, M. The new generation of mobile networks: 5G technology and its application in the e-education context. In Proceedings of the 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, Spain, 13–16 June 2018. [Google Scholar] [CrossRef]
- Baratè, A.; Haus, G.; Ludovico, L.; Pagani, E.; Scarabottolo, N. 5G technology and its applications to music education. In Proceedings of the International Conference On E-Learning, Athens, GA, USA, 20–22 July 2017. [Google Scholar] [CrossRef]
- Dake, D.; Adjei, B. 5G enabled technologies for smart education. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Alamri, M.M.; Al-Rahmi, W. Applying the UTAUT model to explain the students’ acceptance of mobile learning system in higher education. IEEE Access 2019, 7, 174673–174686. [Google Scholar] [CrossRef]
- Arain, A.A.; Hussain, Z.; Rizvi, W.H.; Saleem, M. Extending UTAUT2 toward acceptance of mobile learning in the context of higher education. Univers. Access Inf. Soc. 2019, 18, 659–673. [Google Scholar] [CrossRef]
- Martín, A.V.; García, A.; Muñoz, J.M. Determinants of blended learning adoption in higher education. Adaptation of the Utaut model. Educ. Xx1 2014, 17, 217–240. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.W.C.; Maag, A.; Redestowicz, M.; Hoe, L.S. Unfamiliar technology: Reaction of international students to blended learning. Comput. Educ. 2018, 122, 92–103. [Google Scholar] [CrossRef]
- Shinners, L.; Aggar, C.; Grace, S.; Smith, S. Exploring healthcare professionals’ understanding and experiences of artificial intelligence technology use in the delivery of healthcare: An integrative review. Health Inf. J. 2019, 1460458219874641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, K.; Kwon, O. Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telemat. Inf. 2020, 47, 101324. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Cao, T.H.; Shu, J.B.; Liu, H. Identifying key factors affecting college students’ adoption of the e-learning system in mandatory blended learning environments. Interact. Learn. Environ. 2020, in press. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. Mis Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. Mis Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Fagan, M.H. Factors influencing student acceptance of mobile learning in higher education. Comput. Sch. 2019, 36, 105–121. [Google Scholar] [CrossRef]
- Wei, J.; Vinnikova, A.; Lu, L.; Xu, J. Understanding and predicting the adoption of fitness mobile apps: Evidence from China. Health Commun. 2020, 1–12. [Google Scholar] [CrossRef]
- Baishya, K.; Vardhan, H. Extending unified theory of acceptance and use of technology with perceived monetary value for smartphone adoption at the bottom of the pyramid. Int. J. Inf. Manag. 2020, 51, 102036. [Google Scholar] [CrossRef]
- Song, C.; Woo, S.; Sohn, Y.W. Acceptance of public cloud storage services in South Korea: A multi-group analysis. Int. J. Inf. Manag. 2020, 51, 102035. [Google Scholar] [CrossRef]
- Kissi, P.S.; Oluwatobiloba, M.K.; Berko, A.Y. Factors affecting university students intentions to use debit card services: an empirical study based on UTAUT. Bus. Manag. Educ. 2017, 15, 196–210. [Google Scholar] [CrossRef]
- Nikolopoulou, K.; Gialamas, V.; Lavidas, K. Acceptance of mobile phone by university students for their studies: An investigation applying UTAUT2 model. Educ. Inf. Technol. 2020, in press. [Google Scholar] [CrossRef]
- Yuan, Y.; Fulk, J.; Shumate, M.; Monge, P.R.; Bryant, J.A.; Matsaganis, M. Individual participation in organizational information commons: The impact of team level social influence and technology-specific competence. Hum. Commun. Res. 2005, 31, 212–240. [Google Scholar] [CrossRef]
- Khechine, H.; Raymond, B.; Augier, M. The adoption of a social learning system: Intrinsic value in the UTAUT model. Br. J. Educ. Technol. 2020, in press. [Google Scholar] [CrossRef]
- Liu, L.; Su, X.; Akram, U.; Abrar, M. The user acceptance behavior to mobile digital libraries. Int. J. Enterp. Inf. Syst. 2020, 16, 1–16. [Google Scholar] [CrossRef]
- Yan, P.; Bao, H.; Selvachandran, G.; Quynh, L.; Minh, H.T.; Hoang, L.; Abdel-Baset, M.; Manogaran, G.; Varatharajan, R. Perception, acceptance and willingness of older adults in Malaysia towards online shopping: A study using the UTAUT and IRT models. J. Ambient Intell. Hum. Comput. 2020, in press. [Google Scholar] [CrossRef]
- Holzmann, P.; Schwarz, E.J.; Audretsch, D.B. Understanding the determinants of novel technology adoption among teachers: The case of 3D printing. J. Technol. Transf. 2020, 45, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Matsaganis, M. Toward reducing institutional digital divides in the media industry: Examining social media use in ethnic media organizations. Int. J. Commun. 2020, 14, 1004–1024. [Google Scholar]
- World Health Organization. Life Course. 2017. Available online: https://www.who.int/elena/life_course/ (accessed on 19 April 2020).
- Oviedo-Trespalacios, O.; Briant, O.; Kaye, S.A.; King, M. Assessing driver acceptance of technology that reduces mobile phone use while driving: The case of mobile phone applications. Accid. Anal. Prev. 2020, 135, 105348. [Google Scholar] [CrossRef]
- Tam, C.; Santos, D.; Oliveira, T. Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Inf. Syst. Front. 2020, 22, 243–257. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Ruiz, M.A.; Pardo, A.; San Martín, R. Structural equation models. Pap. Del Psicól. 2010, 31, 34–45. [Google Scholar]
- Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Ratchford, B.T. New insights about the FCB grid. J. Advert. Res. 1987, 27, 24–38. [Google Scholar]
- Campbell, D.T.; Fiske, D.W. Convergent and discriminant validation by the multitreat-multimethod matrix. Psychol. Bull. 1959, 56, 81–105. [Google Scholar] [CrossRef] [Green Version]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 1989. [Google Scholar]
Construct | Men | Women | t | df | p | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
PE | 18.64 | 6.532 | 17.98 | 6.480 | 1.088 | 585 | 0.277 |
EE | 20.56 | 5.660 | 19.28 | 6.078 | 2.327 | 585 | 0.020 |
SI | 17.85 | 6.980 | 17.32 | 6.902 | 0.826 | 585 | 0.409 |
FC | 17.77 | 5.390 | 16.27 | 5.207 | 3.079 | 585 | 0.002 |
ATUT | 21.17 | 5.524 | 19.68 | 5.843 | 2.808 | 585 | 0.005 |
BI | 16.63 | 5.156 | 16.04 | 5.143 | 1.251 | 585 | 0.212 |
Construct | 21–35 | ≥36 | t | df | p | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
PE | 17.40 | 6.608 | 18.60 | 6.397 | −1.697 | 551 | 0.031 |
EE | 18.88 | 6.132 | 20.07 | 5.867 | −2.083 | 551 | 0.020 |
SI | 17.23 | 7.026 | 17.60 | 6.866 | −0.242 | 551 | 0.540 |
FC | 17.06 | 5.091 | 16.47 | 5.406 | 1.545 | 551 | 0.190 |
ATUT | 20 | 5.876 | 20.15 | 5.748 | −0.366 | 551 | 0.759 |
BI | 16.27 | 5.103 | 16.16 | 5.182 | 0.322 | 551 | 0.814 |
Construct | Item | Factor Loading | CR | AVE | α | Global α |
---|---|---|---|---|---|---|
PE | PE1 | 0.837 | 0.926 | 0.758 | 0.939 | 0.946 |
PE2 | 0.863 | |||||
PE3 | 0.886 | |||||
PE4 | 0.896 | |||||
EE | EE1 | 0.792 | 0.897 | 0.687 | 0.909 | |
EE2 | 0.816 | |||||
EE3 | 0.850 | |||||
EE4 | 0.856 | |||||
SI | SI1 | 0.863 | 0.919 | 0.740 | 0.927 | |
SI2 | 0.865 | |||||
SI3 | 0.811 | |||||
SI4 | 0.901 | |||||
FC | FC1 | 0.688 | 0.838 | 0.565 | 0.734 | |
FC2 | 0.734 | |||||
FC3 | 0.820 | |||||
FC4 | 0.761 | |||||
ATUT | ATUT1 | 0.728 | 0.802 | 0.510 | 0.805 | |
ATUT2 | 0.850 | |||||
ATUT3 | 0.715 | |||||
ATUT4 | 0.528 | |||||
BI | BI1 | 0.929 | 0.957 | 0.881 | 0.946 | |
BI2 | 0.935 | |||||
BI3 | 0.953 |
PE | EE | SI | FC | ATUT | BI | |
---|---|---|---|---|---|---|
PE | 0.870 | |||||
EE | 0.660 | 0.828 | ||||
SI | 0.903 | 0.711 | 0.860 | |||
FC | 0.621 | 0.494 | 0.696 | 0.752 | ||
ATUT | 0.501 | 0.750 | 0.568 | 0.433 | 0.714 | |
BI | 0.402 | 0.398 | 0.404 | 0.352 | 0.532 | 0.939 |
Hypothesis | Relationship | Path Coefficient | CR | p | Results |
---|---|---|---|---|---|
H1 | PE → BI | 0.175 | 2.688 | 0.007 | Supported |
H2 | PE ← Gender | −0.026 | −0.628 | 0.530 | Rejected |
H3 | PE ← Age | 0.114 | 2.731 | 0.006 | Supported |
H4 | EE → BI | −0.013 | −0.235 | 0.814 | Rejected |
H5 | EE ← Gender | −0.080 | −1.936 | 0.053 | Rejected |
H6 | EE ← Age | 0.093 | 2.234 | 0.026 | Supported |
H7 | SI → BI | −0.071 | −1.015 | 0.310 | Rejected |
H8 | SI ← Gender | −0.026 | −0.616 | 0.538 | Rejected |
H9 | SI ← Age | 0.051 | 1.211 | 0.226 | Rejected |
H10 | FC → BI | 0.218 | 5.228 | *** | Supported |
H11 | FC ← Gender | −0.135 | −3.245 | 0.001 | Supported |
H12 | FC ← Age | −0.051 | −1.219 | 0.223 | Rejected |
H13 | ATUT → BI | 0.376 | 8.214 | *** | Supported |
H14 | ATUT ← Gender | −0.118 | −2.826 | 0.005 | Supported |
H15 | ATUT ← Age | −0.014 | −0.325 | 0.745 | Rejected |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Rodríguez, J.-M.; Alonso-García, S.; Marín-Marín, J.-A.; Gómez-García, G. Considerations on the Implications of the Internet of Things in Spanish Universities: The Usefulness Perceived by Professors. Future Internet 2020, 12, 123. https://doi.org/10.3390/fi12080123
Romero-Rodríguez J-M, Alonso-García S, Marín-Marín J-A, Gómez-García G. Considerations on the Implications of the Internet of Things in Spanish Universities: The Usefulness Perceived by Professors. Future Internet. 2020; 12(8):123. https://doi.org/10.3390/fi12080123
Chicago/Turabian StyleRomero-Rodríguez, José-María, Santiago Alonso-García, José-Antonio Marín-Marín, and Gerardo Gómez-García. 2020. "Considerations on the Implications of the Internet of Things in Spanish Universities: The Usefulness Perceived by Professors" Future Internet 12, no. 8: 123. https://doi.org/10.3390/fi12080123
APA StyleRomero-Rodríguez, J.-M., Alonso-García, S., Marín-Marín, J.-A., & Gómez-García, G. (2020). Considerations on the Implications of the Internet of Things in Spanish Universities: The Usefulness Perceived by Professors. Future Internet, 12(8), 123. https://doi.org/10.3390/fi12080123