Linking Phubbing Behavior to Self-Reported Attentional Failures and Media Multitasking
Abstract
:1. Introduction
1.1. Past Research
1.2. Current Research
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Generic Scale of Phubbing (GSP)
2.2.2. Attentional Control: Shifting (AC-S) and Distraction (AC-D)
2.2.3. Mind Wandering: Deliberate (MW-D) and Spontaneous (MW-S)
2.2.4. Mindful Attention Awareness Scale—Lapses Only (MAAS-LO)
2.2.5. Attention-Related Cognitive Errors Scale (ARCES)
2.2.6. Media Multitasking Index—Version 2 (MMI-2)
2.2.7. Short Media Multitasking Measure (MMM-S)
2.2.8. Media Use
2.2.9. Barratt Impulsiveness Scale (BIS-11)
2.2.10. Short Self-Regulation Questionnaire (SSRQ)
2.2.11. Social Connectedness Scale (SCS)
2.3. Procedure
3. Results
3.1. Correlations between Phubbing Behavior and Everyday Attentional Failures
3.2. Correlations between Phubbing Behavior, Demographics, and Select Psychosocial and Personality Variables
3.3. Correlations between Phubbing Behavior and Media Multitasking
3.4. Initial Regression Model of Everyday Attentional Failures Predicting Phubbing Behavior
3.5. Expanded Regression Model of Everyday Attentional Failures, Demographics, and Select Psychosocial and Personality Variables Predicting Phubbing Behavior
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogels, E.; Perrin, A.; Rainie, L.; Anderson, M. 53% of Americans Say the Internet Has Been Essential during the COVID-19 Outbreak. Available online: https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2020/04/PI_2020.04.30_COVID-internet_REPORT.pdf (accessed on 1 October 2020).
- Rainie, L.; Zickuhr, K. Americans’ Views on Mobile Etiquette. Available online: https://www.pewresearch.org/internet/2015/08/26/americans-views-on-mobile-etiquette/ (accessed on 1 October 2020).
- McDaniel, B.T.; Drouin, M. Daily technology interruptions and emotional and relational well-being. Comput. Hum. Behav. 2019, 99, 1–8. [Google Scholar] [CrossRef]
- McDaniel, B.T.; Galovan, A.M.; Cravens, J.D.; Drouin, M. “Technoference” and implications for mothers’ and fathers’ couple and coparenting relationship quality. Comput. Hum. Behav. 2018, 80, 303–313. [Google Scholar] [CrossRef]
- McDaniel, B.T.; Coyne, S.M. “Technoference”: The interference of technology in couple relationships and implications for women’s personal and relational well-being. Psychol. Pop. Media Cult. 2016, 5, 85–98. [Google Scholar] [CrossRef]
- Chotpitayasunondh, V.; Douglas, K.M. How “phubbing” becomes the norm: The antecedents and consequences of snubbing via smartphone. Comput. Hum. Behav. 2016, 63, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Chotpitayasunondh, V.; Douglas, K.M. Measuring phone snubbing behavior: Development and validation of the Generic Scale of Phubbing (GSP) and the Generic Scale of Being Phubbed (GSBP). Comput. Hum. Behav. 2018, 88, 5–17. [Google Scholar] [CrossRef]
- Karadağ, E.; Tosuntaş, Ş.B.; Erzen, E.; Duru, P.; Bostan, N.; Şahin, B.M.; Çulha, İ.; Babadağ, B. Determinants of phubbing, which is the sum of many virtual addictions: A structural equation model. J. Behav. Addict. 2015, 4, 60–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karadağ, E.; Tosuntaş, Ş.B.; Erzen, E.; Duru, P.; Bostan, N.; Mızrak Şahin, B.; Çulha, İ.; Babadağ, B. The virtual world’s current addiction: Phubbing. Addicta 2016, 3. [Google Scholar] [CrossRef]
- Al-Saggaf, Y.; O’Donnell, S.B. Phubbing: Perceptions, reasons behind, predictors, and impacts. Hum. Behav. Emerg. Technol. 2019, 1, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Al-Saggaf, Y.; MacCulloch, R. Phubbing: How frequent? who is phubbed? in which situation? and using which apps? In Proceedings of the 39th International Conference on Information Systems (ICIS), Association for Information Systems, Marriott Marquis, San Francisco, CA, USA, 13–16 December 2018. [Google Scholar]
- Erzen, E.; Odaci, H.; Yeniçeri, İ. Phubbing: Which personality traits are prone to phubbing? Soc. Sci. Comput. Rev. 2019, 1–14. [Google Scholar] [CrossRef]
- Balta, S.; Emirtekin, E.; Kircaburun, K.; Griffiths, M.D. Neuroticism, trait fear of missing out, and phubbing: The mediating role of state fear of missing out and problematic Instagram use. Int. J. Ment. Health Addict. 2020, 18, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.M.; Hitzfeld, S. I ought to put down that phone but I phub nevertheless: Examining the predictors of phubbing behavior. Soc. Sci. Comput. Rev. 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wilmer, H.H.; Chein, J.M. Mobile technology habits: Patterns of association among device usage, intertemporal preference, impulse control, and reward sensitivity. Psychon. Bull. Rev. 2016, 23, 1607–1614. [Google Scholar] [CrossRef]
- Wilmer, H.H.; Sherman, L.E.; Chein, J.M. Smartphones and cognition: A review of research exploring the links between mobile technology habits and cognitive functioning. Front. Psychol. 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Liebherr, M.; Schubert, P.; Antons, S.; Montag, C.; Brand, M. Smartphones and attention, curse or blessing?–A review on the effects of smartphone usage on attention, inhibition, and working memory. Comput. Hum. Behav. Rep. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Frost, P.; Donahue, P.; Goeben, K.; Connor, M.; Cheong, H.S.; Schroeder, A. An examination of the potential lingering effects of smartphone use on cognition. Appl. Cognit. Psychol. 2019, 33, 1055–1067. [Google Scholar] [CrossRef]
- Marty-Dugas, J.; Ralph, B.C.W.; Oakman, J.M.; Smilek, D. The relation between smartphone use and everyday inattention. Psychol. Conscious. Theory Res. Pract. 2018, 5, 46–62. [Google Scholar] [CrossRef] [Green Version]
- Abramova, O.; Baumann, A.; Krasnova, H.; Lessmann, S. To phub or not to phub: Understanding off-task smartphone usage and its consequences in the academic environment. In Proceedings of the 25th European Conference on Information Systems (ECIS), Guimarães, Portugal, 5–10 June 2017; pp. 1984–1999. [Google Scholar]
- Amichai-Hamburger, Y.; Shir, E. Intimacy and smartphone multitasking–A new oxymoron? Psychol. Rep. 2016, 119. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Christofferson, K. On the phone when we’re hanging out: Digital social multitasking (DSMT) and its socioemotional implications. J. Youth Adolesc. 2020, 49, 1209–1224. [Google Scholar] [CrossRef]
- Koch, I.; Poljac, E.; Müller, H.; Kiesel, A. Cognitive structure, flexibility, and plasticity in human multitasking—An integrative review of dual-task and task-switching research. Psychol. Bull. 2018, 144, 557–583. [Google Scholar] [CrossRef]
- Ward, N.; Hussey, E.K.; Cunningham, E.C.; Paul, E.J.; McWilliams, T.; Kramer, A.F. Building the multitasking brain: An integrated perspective on functional brain activation during task-switching and dual-tasking. Neuropsychologia 2019, 132, 107149. [Google Scholar] [CrossRef]
- Ophir, E.; Nass, C.; Wagner, A.D. Cognitive control in media multitaskers. Proc. Natl. Acad. Sci. USA 2009, 106, 15583–15587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segijn, C.M.; Xiong, S.; Duff, B.R.L. Manipulating and measuring media multitasking: Implications of previous research and guidelines for future research. Commun. Methods Meas. 2019, 13, 83–101. [Google Scholar] [CrossRef]
- Duff, B.; Yoon, G.; Wang, Z.; Anghelcev, G. Doing it all: An exploratory study of predictors of media multitasking. J. Interact. Advert. 2014, 14, 11–23. [Google Scholar] [CrossRef]
- Sanbonmatsu, D.M.; Strayer, D.L.; Medeiros-Ward, N.; Watson, J.M. Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking. PLoS ONE 2013, 8, e54402. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liang, L. Exploring the relationships among university students’ media multitasking, personality and academic performance: A quantitative study. In Proceedings of the International Scientific Conference: Lodging the Theory in Social and Educational Practice, Vladivostok, Russia, 25–27 April 2018; pp. 1–10. [Google Scholar]
- Becker, M.; Alzahabi, R.; Hopwood, C. Media multitasking is associated with symptoms of depression and social anxiety. Cyberpsychol. Behav. Soc. Netw. 2012, 16, 1–5. [Google Scholar] [CrossRef]
- Wang, Z.; Tchernev, J.M. The “myth” of media multitasking: Reciprocal dynamics of media multitasking, personal needs, and gratifications. J. Commun. 2012, 62, 493–513. [Google Scholar] [CrossRef]
- Magen, H. The relations between executive functions, media multitasking and polychronicity. Comput. Hum. Behav. 2017, 67, 1–9. [Google Scholar] [CrossRef]
- Baumgartner, S.E.; Weeda, W.D.; van der Heijden, L.L.; Huizinga, M. The relationship between media multitasking and executive function in early adolescents. J. Early Adolesc. 2014, 34, 1120–1144. [Google Scholar] [CrossRef] [Green Version]
- Wiradhany, W.; Koerts, J. Everyday functioning-related cognitive correlates of media multitasking: A mini meta-analysis. Media Psychol. 2019, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Ralph, B.C.W.; Thomson, D.R.; Cheyne, J.A.; Smilek, D. Media multitasking and failures of attention in everyday life. Psychol. Res. 2014, 78, 661–669. [Google Scholar] [CrossRef]
- Yildirim, C.; Dark, V.J. The mediating role of mindfulness in the relationship between media multitasking and mind wandering. In Proceedings of the Technology, Mind, and Society; ACM Press: Washington, DC, USA, 2018; pp. 1–5. [Google Scholar]
- Irwin, M.L. The Dynamics of Media Use, Attention, and Behavioral Control. Ph.D. Thesis, The Ohio State University, Colombus, OH, USA, 2017. [Google Scholar]
- Peer, E.; Vosgerau, J.; Acquisti, A. Reputation as a sufficient condition for data quality on amazon Mechanical Turk. Behav. Res. 2014, 46, 1023–1031. [Google Scholar] [CrossRef]
- Schönbrodt, F.D.; Perugini, M. At what sample size do correlations stabilize? J. Res. Personal. 2013, 47, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Tabachnick, B.L.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education: Boston, MA, USA, 2012; ISBN 0-205-84957-1. [Google Scholar]
- Carriere, J.S.A.; Seli, P.; Smilek, D. Wandering in both mind and body: Individual differences in mind wandering and inattention predict fidgeting. Can. J. Exp. Psychol.Rev. Can. Psychol. Expérimentale 2013, 67, 19–31. [Google Scholar] [CrossRef]
- Derryberry, D.; Reed, M.A. Anxiety-related attentional biases and their regulation by attentional control. J. Abnorm. Psychol. 2002, 111, 225–236. [Google Scholar] [CrossRef]
- Carriere, J.S.A.; Cheyne, J.A.; Smilek, D. Everyday attention lapses and memory failures: The affective consequences of mindlessness. Conscious. Cogn. 2008, 17, 835–847. [Google Scholar] [CrossRef]
- Brown, K.W.; Ryan, R.M. The benefits of being present: Mindfulness and its role in psychological well-being. J. Pers. Soc. Psychol. 2003, 84, 822–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheyne, J.A.; Carriere, J.S.A.; Smilek, D. Absent-mindedness: Lapses of conscious awareness and everyday cognitive failures. Conscious. Cogn. 2006, 15, 578–592. [Google Scholar] [CrossRef] [Green Version]
- Ralph, B.C.W.; Thomson, D.R.; Carriere, J.S.; Smilek, D. Media multitasking and behavioral measures of sustained attention. Atten. Percept. Psychophys. 2015, 77, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Ralph, B.C.W.; Smilek, D. Individual differences in media multitasking and performance on the N-Back. Atten. Percept. Psychophys. 2017, 79, 582–592. [Google Scholar] [CrossRef]
- Baumgartner, S.E.; Lemmens, J.S.; Weeda, W.D.; Huizinga, M. Measuring media multitasking: Development of a short measure of media multitasking for adolescents. J. Media Psychol. 2017, 29, 1–10. [Google Scholar] [CrossRef]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Carey, K.B.; Neal, D.J.; Collins, S.E. A psychometric analysis of the Self-Regulation Questionnaire. Addict. Behav. 2004, 29, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Miller, W.R.; Lawendowski, L.A. The Self-Regulation Questionnaire. In Innovations in Clinical Practice: A Source Book; Professional Resource Press/Professional Resource Exchange: Sarasota, FL, USA, 1999; Volume 17, pp. 281–292. [Google Scholar]
- Lee, R.M.; Robbins, S.B. Measuring belongingness: The Social Connectedness and the Social Assurance Scales. J. Couns. Psychol. 1995, 42, 232–241. [Google Scholar] [CrossRef]
- Hauser, D.J.; Schwarz, N. Attentive Turkers: MTurk Participants perform better on online attention checks than do subject pool participants. Behav. Res. 2016, 48, 400–407. [Google Scholar] [CrossRef]
- Keith, T.Z. Multiple Regression and Beyond: An Introduction to Multiple Regression and Structural Equation Modeling, 3rd ed.; Routledge: New York, NY, USA, 2019; ISBN 978-1-138-06142-2. [Google Scholar]
- Billieux, J.; Van der Linden, M.; Rochat, L. The role of impulsivity in actual and problematic use of the mobile phone. Appl. Cognit. Psychol. 2008, 22, 1195–1210. [Google Scholar] [CrossRef]
- Nigg, J.T. Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. J Child Psychol. Psychiatr. 2017, 58, 361–383. [Google Scholar] [CrossRef] [PubMed]
- Rogobete, D.A.; Ionescu, T.; Miclea, M. The relationship between media multitasking behavior and executive function in adolescence: A replication study. J. Early Adolesc. 2020, 1–29. [Google Scholar] [CrossRef]
- Murphy, K.; Creux, O. Examining the association between media multitasking, and performance on working memory and inhibition tasks. Comput. Hum. Behav. 2021, 114, 1–11. [Google Scholar] [CrossRef]
- Furnham, A. Response bias, social desirability and dissimulation. Personal. Ind. Diff. 1986, 7, 385–400. [Google Scholar] [CrossRef]
Mean (SE) | Min-Max | Skewness | Kurtosis | α | |
---|---|---|---|---|---|
GSP | 48.90 (1.21) | 15–99 | 0.17 | −1.14 | 0.97 |
AC-S | 2.70 (0.05) | 1–5 | −0.07 | −0.86 | 0.86 |
AC-D | 2.86 (0.05) | 1–5 | −0.25 | −0.90 | 0.85 |
MW-D | 4.16 (0.07) | 1–7 | −0.19 | −0.66 | 0.92 |
MW-S | 3.90 (0.07) | 1–7 | −0.09 | −0.81 | 0.91 |
MAAS-LO | 38.70 (0.72) | 12–72 | −0.09 | −0.89 | 0.94 |
ARCES | 33.40 (0.50) | 12–54 | 0.07 | −0.71 | 0.93 |
MMI-2 | 4.05 (0.12) | 0.18–10 | 0.36 | −1.01 | - |
MMM-S | 2.47 (0.04) | 1–4 | 0.01 | −0.78 | 0.91 |
Media Use | 4.49 (0.07) | 1.67–8 | 0.40 | −0.63 | - |
BIS-11 | 61.90 (0.67) | 35–88 | −0.12 | −1.06 | 0.89 |
SSRQ | 114.00 (1.05) | 59–155 | 0.24 | −0.75 | 0.94 |
SCS | 32.00 (0.59) | 8–48 | −0.11 | −1.15 | 0.97 |
GSP | AC-S | AC-D | MW-D | MW-S | MAAS-LO | ARCES | MMI-2 | MMM-S | Media Use | BIS-11 | SSRQ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AC-S | 0.63 *** | — | ||||||||||
AC-D | 0.45 *** | 0.64 *** | — | |||||||||
MW-D | 0.62 *** | 0.51 *** | 0.43 *** | — | ||||||||
MW-S | 0.69 *** | 0.63 *** | 0.58 *** | 0.80 *** | — | |||||||
MAAS-LO | 0.68 *** | 0.69 *** | 0.58 *** | 0.60 *** | 0.72 *** | — | ||||||
ARCES | 0.72 *** | 0.69 *** | 0.55 *** | 0.60 *** | 0.71 *** | 0.80 *** | — | |||||
MMI-2 | 0.78 *** | 0.51 *** | 0.27 *** | 0.53 *** | 0.58 *** | 0.56 *** | 0.60 *** | — | ||||
MMM-S | 0.68 *** | 0.35 *** | 0.18 *** | 0.52 *** | 0.52 *** | 0.50 *** | 0.52 *** | 0.81 *** | — | |||
Media Use | 0.60 *** | 0.31 *** | 0.12 * | 0.41 *** | 0.39 *** | 0.36 *** | 0.42 *** | 0.67 *** | 0.66 *** | — | ||
BIS-11 | 0.63 *** | 0.61 *** | 0.53 *** | 0.53 *** | 0.67 *** | 0.70 *** | 0.66 *** | 0.56 *** | 0.47 *** | 0.31 *** | — | |
SSRQ | −0.60 *** | −0.63 *** | −0.49 *** | −0.45 *** | −0.62 *** | −0.68 *** | −0.60 *** | −0.46 *** | −0.35 *** | −0.27 *** | −0.79 *** | — |
SCS | −0.47 *** | −0.57 *** | −0.48 *** | −0.37 *** | −0.55 *** | −0.59 *** | −0.52 *** | −0.35 *** | −0.22 *** | −0.16 ** | −0.58 *** | 0.68 *** |
Predictor | Estimate | SE | t | p | Stand. Estimate |
---|---|---|---|---|---|
Intercept | −13.40 | 3.08 | −4.34 | <0.001 | - |
ARCES | 0.73 | 0.14 | 5.11 | <0.001 | 0.30 |
AC-S | 4.45 | 1.24 | 3.59 | <0.001 | 0.19 |
MW-S | 3.55 | 1.09 | 3.27 | 0.001 | 0.21 |
MW-D | 2.47 | 0.94 | 2.63 | 0.009 | 0.14 |
AC-D | −2.24 | 1.07 | −2.10 | 0.037 | −0.09 |
MAAS-LO | 0.21 | 0.10 | 2.03 | 0.043 | 0.12 |
Predictor | Estimate | SE | t | p | Stand. Estimate |
---|---|---|---|---|---|
Intercept | 4.07 | 13.24 | 0.31 | 0.759 | - |
ARCES | 0.67 | 0.14 | 4.67 | <0.001 | 0.28 |
AC-S | 3.89 | 1.27 | 3.07 | 0.002 | 0.16 |
MW-D | 2.63 | 0.94 | 2.80 | 0.005 | 0.15 |
MW-S | 2.70 | 1.12 | 2.41 | 0.016 | 0.16 |
SSRQ | −0.13 | 0.07 | −1.86 | 0.064 | −0.11 |
AC-D | −1.93 | 1.08 | −1.79 | 0.074 | −0.08 |
Age | −0.14 | 0.08 | −1.79 | 0.074 | −0.06 |
BIS-11 | 0.14 | 0.11 | 1.33 | 0.185 | 0.08 |
SCS | 0.10 | 0.10 | 1.03 | 0.304 | 0.05 |
MAAS-LO | 0.11 | 0.11 | 1.03 | 0.306 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansevere, K.S.; Ward, N. Linking Phubbing Behavior to Self-Reported Attentional Failures and Media Multitasking. Future Internet 2021, 13, 100. https://doi.org/10.3390/fi13040100
Sansevere KS, Ward N. Linking Phubbing Behavior to Self-Reported Attentional Failures and Media Multitasking. Future Internet. 2021; 13(4):100. https://doi.org/10.3390/fi13040100
Chicago/Turabian StyleSansevere, Kayla S., and Nathan Ward. 2021. "Linking Phubbing Behavior to Self-Reported Attentional Failures and Media Multitasking" Future Internet 13, no. 4: 100. https://doi.org/10.3390/fi13040100
APA StyleSansevere, K. S., & Ward, N. (2021). Linking Phubbing Behavior to Self-Reported Attentional Failures and Media Multitasking. Future Internet, 13(4), 100. https://doi.org/10.3390/fi13040100