Radio Coverage and Device Capacity Dimensioning Methodologies for IoT LoRaWAN and NB-IoT Deployments in Urban Environments
Abstract
:1. Introduction
2. Background—Related State of the Art
3. Integrated Radio Coverage and Device Capacity Analysis Framework
3.1. Theoretical Approach
3.2. Methodology
4. Model Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Semtech Application Note AN1200.22 LoRa Modulation Basics. Available online: www.semtech.com (accessed on 23 April 2021).
- Mikhaylov, K.; Petäjäjärvi, J.; Hänninen, T. Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network Technology. In Proceedings of the European Wireless 2016, Oulu, Finland, 18–20 May 2016. [Google Scholar]
- LoRa Alliance Technical Committee. LoRaWAN 1.0.2 Regional Parameters. Available online: www.lora-alliance.org (accessed on 23 April 2021).
- Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. LoRaWAN Specification V1.0.2. Available online: www.lora-alliance.org (accessed on 23 April 2021).
- Tabbane, S. IoT Standards Part II: 3GPP Standards/Training on Planning Internet of Things (IoTs) Networks. Available online: https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/Pages/Events/2018/IoT-BDG/Presentations.aspx (accessed on 23 April 2021).
- Hwang, Y. Cellular, IoT Explained–NB-IoT vs. LTE-M vs. 5G and More. Available online: https://www.iotforall.com/cellular-iot-explained-nb-iot-vs-lte-m/ (accessed on 23 April 2021).
- Reininger, P. 3GPP Standards for the Internet-of-Things. In Proceedings of the Smart Summit, Singapore, 30 November 2016; Available online: https://www.3gpp.org/images/presentations/2016_11_3gpp_Standards_for_IoT.pdf (accessed on 23 April 2021).
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [Google Scholar] [CrossRef]
- Vos, G. What is LPWA for the Internet of Things? Part 3: A Guide to Decoding the Technologies. Available online: https://www.sierrawireless.com/iot-blog/iot-blog/2016/08/lpwa_for_the_iot_part_3_a_guide_to_decoding_lpwa_technologies/ (accessed on 15 April 2021).
- Multefire Alliance, MulteFire Release 1.0 Technical Paper: A New Way to Wireless. Available online: https://www.multefire.org/wp-content/uploads/MulteFire-Release-1.0-whitepaper_FINAL.pdf (accessed on 15 April 2021).
- Multefire Alliance, MulteFire Release 1.1 Technical Overview White Paper. Available online: https://www.multefire.org/technology/specifications/multefire-release-1-1-technical-overview-white-paper/? (accessed on 15 April 2021).
- Tomtsis, D.; Kokkonis, G.; Kontogiannis, S. Evaluating existing wireless technologies for IoT data transferring. In Proceedings of the 2017 South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Kastoria, Greece, 23–25 September 2017; pp. 1–4. [Google Scholar]
- Kontogiannis, S.; Kokkonis, G.; Ellinidou, S.; Valsamidis, S. Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems. Futur. Internet 2017, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Semtech. LoRa SX1272/3/6/7/8 Modem Designer’s Guide AN1200.13. Available online: www.semtech.com (accessed on 23 April 2021).
- Semtech. LoRa SX 1276/77/78/79 Wireless Sensing and Timing Datasheet, Rev.4. Available online: www.semtech.com (accessed on 23 April 2021).
- Barriquello, C.H.; e Silva, F.E.S.; Bernardon, D.P.; Canha, L.N.; Ramos, M.J.D.S.; Porto, D.S. Fundamentals of Wireless Communication Link Design for Networked Robotics. Serv. Robot. 2018, 127–142. [Google Scholar] [CrossRef] [Green Version]
- El Chall, R.; Lahoud, S.; El Helou, M. LoRaWAN Network: Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon. IEEE Internet Things J. 2019, 6, 2366–2378. [Google Scholar] [CrossRef]
- Caso, G.; Alay, Ö.; de Nardis, L.; Brunstrom, A.; Neri, M.; di Benedetto, M.-G. Empirical Models for NB-IoT Path Loss in an Urban Scenario. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Matz, A.P.; Fernandez-Prieto, J.-A.; Cañada-Bago, J.; Birkel, U. A Systematic Analysis of Narrowband IoT Quality of Service. Sensors 2020, 20, 1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanj, M.; Savaux, V.; Le Guen, M. A Tutorial on NB-IoT Physical Layer Design. IEEE Commun. Surv. Tutor. 2020, 22, 2408–2446. [Google Scholar] [CrossRef]
- Wang, Y.-P.E.; Lin, X.; Adhikary, A.; Grövlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A Primer on 3GPP Nar-rowband Internet of Things. IEEE Commun. Mag. 2017, 55, 117–123. [Google Scholar] [CrossRef]
- Petajajarvi, J.; Mikhaylov, K.; Pettissalo, M.; Janhunen, J.; Linatti, J. Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. Int. J. Distrib. Sens. Netw. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Feltrin, L.; Marri, A.; Paffetti, M.; Verdone, R. Preliminary evaluation of NB-IOT technology and its capacity. In Dependable Wireless Communications and Localization for the IoT Workshop; COST Action IRACON: Graz, Austria, 2017. [Google Scholar]
- Feltrin, L.; Tsoukaneri, G.; Condoluci, M.; Buratti, C.; Mahmoodi, T.; Dohler, M.; Verdone, R. Narrowband IoT: A Survey on Downlink and Uplink Perspectives. IEEE Wirel. Commun. 2019, 26, 78–86. [Google Scholar] [CrossRef]
- Malik, H.; Pervaiz, H.; Alam, M.M.; Le Moullec, Y.; Kuusik, A.; Imran, M.A. Radio Resource Management Scheme in NB-IoT Systems. IEEE Access 2018, 6, 15051–15064. [Google Scholar] [CrossRef]
- Sharma, S.K.; Wang, X. Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions. IEEE Commun. Surv. Tutor. 2020, 22, 426–471. [Google Scholar] [CrossRef] [Green Version]
Spreading Factor (SF) | Maximum Path Loss (dB) | Distance from LoRaWAN Gateway (km) |
---|---|---|
7 | 138.5 | 7.420 |
8 | 141 | 8.515 |
9 | 143.5 | 9.773 |
10 | 146 | 11.217 |
11 | 148.5 | 12.874 |
12 | 151 | 14.775 |
Number of SC-FDMA Subcarriers | Number of Slots | Number of SC-FDMA Symbols | Duration of RU (ms) | Number of REs |
---|---|---|---|---|
1 | 16 | 112 | 8 | 112 |
3 | 8 | 56 | 4 | 168 |
6 | 4 | 28 | 3 | 168 |
12 | 2 | 14 | 1 | 168 |
Maximum Range (km) | |
---|---|
6.097 | 1 |
10.459 | 2 |
14.989 | 4 |
Service Parameter | Scenario 1 PL = 1 B @ 30 s | Scenario 2 PL = 20 B @ 10 min | Scenario 3 PL = 50 B @ 5min |
---|---|---|---|
Application data size (bytes) | 1 | 20 | 50 |
Packet transmission period | 30 s | 10 min | 5 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldabbagh, G.; Dimitriou, N.; Alkhuraiji, S.; Bamasag, O. Radio Coverage and Device Capacity Dimensioning Methodologies for IoT LoRaWAN and NB-IoT Deployments in Urban Environments. Future Internet 2021, 13, 144. https://doi.org/10.3390/fi13060144
Aldabbagh G, Dimitriou N, Alkhuraiji S, Bamasag O. Radio Coverage and Device Capacity Dimensioning Methodologies for IoT LoRaWAN and NB-IoT Deployments in Urban Environments. Future Internet. 2021; 13(6):144. https://doi.org/10.3390/fi13060144
Chicago/Turabian StyleAldabbagh, Ghadah, Nikos Dimitriou, Samar Alkhuraiji, and Omaimah Bamasag. 2021. "Radio Coverage and Device Capacity Dimensioning Methodologies for IoT LoRaWAN and NB-IoT Deployments in Urban Environments" Future Internet 13, no. 6: 144. https://doi.org/10.3390/fi13060144
APA StyleAldabbagh, G., Dimitriou, N., Alkhuraiji, S., & Bamasag, O. (2021). Radio Coverage and Device Capacity Dimensioning Methodologies for IoT LoRaWAN and NB-IoT Deployments in Urban Environments. Future Internet, 13(6), 144. https://doi.org/10.3390/fi13060144