Charting Past, Present, and Future Research in the Semantic Web and Interoperability
Abstract
:1. Introduction
- How has semantic web and interoperability research evolved since its inception?
- What countries are at the intersection and forefront of semantic web and interoperability research?
- Which scholars are the most contributive to the field?
- What kinds of collaborative relationships exist between countries and institutions in this field?
- What is the present status of research, and what are the future directions in the semantic web and interoperability field?
2. Methodology
2.1. Research Methods
2.2. Data Collection
2.3. Initial Statistics for the Analysis
2.4. Network Analysis
3. Analysis of Descriptive Results
4. Results from Network Analysis
5. Co-Citation Clustering Analysis
5.1. Internet of Things (IoT)
5.2. Conceptualization of the Semantic Web
5.3. Semantic Web Services
5.4. Ontology Mapping
5.5. Building Information Modeling
5.6. Bioinformatics
5.7. Education and E-Learning
5.8. Semantic Web Languages
6. Discussion, Limitations, and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Beau, S.; Taouil, F.; Hassanaly, P. Collaborate to Co-Elaborate Knowledge: Between Necessity and Opportunity. In Proceedings of the 3rd International Conference of Information Systems and Economic Intelligence (SIIE), Sousse, Tunis, 18–20 February 2010; Citeseer: Sousse, Tunisia, 2010; pp. 317–330. [Google Scholar]
- Lin, J.; Zhao, Y.; Huang, W.; Liu, C.; Pu, H. Domain knowledge graph-based research progress of knowledge representation. Neural Comput. Appl. 2021, 33, 681–690. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Wang, X.; Li, Y.; Wu, Q.; Qian, T. Towards evolutionary knowledge representation under the big data circumstance. Electron. Libr. 2021, 39, 392–410. [Google Scholar] [CrossRef]
- Hitzler, P. A review of the semantic web field. Commun. ACM 2021, 64, 76–83. [Google Scholar] [CrossRef]
- Gurunath, R.; Samanta, D. A Novel Approach for Semantic Web Application in Online Education Based on Steganography. Int. J. Web-Based Learn. Teach. Technol. 2022, 17, 1–13. [Google Scholar] [CrossRef]
- Sobhkhiz, S.; Taghaddos, H.; Rezvani, M.; Ramezanianpour, A.M. Utilization of semantic web technologies to improve BIM-LCA applications. Autom. Constr. 2021, 130, 103842. [Google Scholar] [CrossRef]
- Shadbolt, N.; Berners-Lee, T.; Hall, W. The Semantic Web Revisited. IEEE Intell. Syst. 2006, 21, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.C.; Shipman, F.M. Which Semantic Web? In Proceedings of the 14th ACM Conference on Hypertext and Hypermedia, Association for Computing Machinery, New York, NY, USA, 26 August 2003; pp. 57–66. [Google Scholar]
- Nacer, H.; Aïssani, D. Semantic web services: Standards, applications, challenges and solutions. J. Netw. Comput. Appl. 2014, 44, 134–151. [Google Scholar] [CrossRef]
- Bechhofer, S.; Horrocks, I.; Goble, C.; Stevens, R. OilEd: A Reason-Able Ontology Editor for the Semantic Web. In KI 2001: Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2001; pp. 396–408. [Google Scholar]
- McIlraith, S.A.; Son, T.C.; Zeng, H. Semantic Web services. IEEE Intell. Syst. 2001, 16, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, J.; Torniai, C.; Gašević, D.; Bateman, S.; Hatala, M. Leveraging the Social Semantic Web in Intelligent Tutoring Systems. In Intelligent Tutoring Systems; Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 563–572. [Google Scholar]
- Lytras, M.D.; Sakkopoulos, E.; De Pablos, P.O. Semantic Web and Knowledge Management for the health domain: State of the art and challenges for the Seventh Framework Programme (FP7) of the European Union (2007–2013). Int. J. Technol. Manag. 2009, 47, 239–249. [Google Scholar] [CrossRef]
- Keyvanpour, M.; Hassanzadeh, H.; Khoshroo, B.M. Comparative Classification of Semantic Web Challenges and Data Mining Techniques. In Proceedings of the 2009 International Conference on Web Information Systems and Mining, Shanghai, China, 7–8 November 2009; pp. 200–203. [Google Scholar]
- Markellou, P.; Mousourouli, I.; Spiros, S.; Tsakalidis, A. Using Semantic Web Mining Technologies for Personalized E-Learning Experiences. Proc. Web-Based Educ. 2005, X, 461–826. Available online: https://www.researchgate.net/publication/228625482_Using_semantic_web_mining_technologies_for_personalized_e-learning_experiences (accessed on 10 May 2022).
- Abaalkhail, R.; Guthier, B.; Alharthi, R.; El Saddik, A. Survey on ontologies for affective states and their influences. Semant. Web 2018, 9, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data: The Story so Far. In Semantic Services, Interoperability and Web Applications: Emerging Concepts; IGI Global: Hershey, PA, USA, 2011; pp. 205–227. [Google Scholar]
- Kumar, V.K. Semantic Web Approach towards Interoperability and Privacy Issues in Social Networks. Int. J. Web Serv. Comput. 2014, 5, 13–17. [Google Scholar] [CrossRef]
- Dhenakaran, S.S.; Yasodha, S. Semantic Web Mining-a Critical Review. Int. J. Comput. Sci. Inf. Technol. 2011, 2, 2258–2261. [Google Scholar]
- Stumme, G.; Hotho, A.; Berendt, B. Semantic Web Mining: State of the art and future directions. J. Web Semant. 2006, 4, 124–143. [Google Scholar] [CrossRef]
- Sridevi, S.; Karpagam, G.R.; Balasubramanian, V.K.; Uma Maheswari, J. Investigation on Blockchain Technology for Web Service Composition. Int. J. Web Serv. Res. 2021, 18, 70–93. [Google Scholar] [CrossRef]
- Chi, Y.; Dong, Y.; Wang, J.; Yu, F.R.; Leung, V.C.M. Knowledge-Based Fault Diagnosis in Industrial Internet of Things: A Survey. IEEE Internet Things J. 2022, 6, 1–59. [Google Scholar] [CrossRef]
- Kotis, K.; Katasonov, A. Semantic Interoperability on the Internet of Things: The Semantic Smart Gateway Framework. Int. J. Distrib. Syst. Technol. 2013, 4, 47–69. [Google Scholar] [CrossRef]
- Kotis, K.; Katasonov, A. Semantic Interoperability on the Web of Things: The Semantic Smart Gateway Framework. In Proceedings of the 2012 6th International Conference on Complex, Intelligent, and Software Intensive Systems, Palermo, Italy, 4–6 July 2012; pp. 630–635. [Google Scholar]
- Holub, M.; Johnson, J. Bitcoin research across disciplines. Inf. Soc. 2018, 34, 114–126. [Google Scholar] [CrossRef]
- Huang, J.; Dang, J.; Huhns, M.N.; Zheng, W.J. Use artificial neural network to align biological ontologies. BMC Genom. 2008, 9, S16. [Google Scholar] [CrossRef] [Green Version]
- Caliusco, M.L.; Stegmayer, G. Semantic Web Technologies and Artificial Neural Networks for Intelligent Web Knowledge Source Discovery. In Emergent Web Intelligence: Advanced Semantic Technologies; Advanced Information and Knowledge Processing; Badr, Y., Chbeir, R., Abraham, A., Hassanien, A.-E., Eds.; Springer: London, UK, 2010; pp. 17–36. ISBN 978-1-84996-077-9. [Google Scholar]
- Chen, H.; Wu, Z.; Cudre-Mauroux, P. Semantic Web Meets Computational Intelligence: State of the Art and Perspectives Review Article. IEEE Comput. Intell. Mag. 2012, 7, 67–74. [Google Scholar] [CrossRef]
- Yu, W.; Chen, J. The State-of-the-Art in Web-Scale Semantic Information Processing for Cloud Computing. arXiv 2013, arXiv:1305.4228. [Google Scholar]
- Sheth, A.; Ranabahu, A. Semantic Modeling for Cloud Computing, Part 2. IEEE Internet Comput. 2010, 14, 81–84. [Google Scholar] [CrossRef]
- Androcec, D.; Vrcek, N.; Seva, J. Cloud Computing Ontologies: A Systematic Review. In Proceedings of the 3rdInternational Conference on Models and Ontology-Based Design of Protocols, Architectures and Services, Chamonix, France, 21–26 April 2012; pp. 9–14. [Google Scholar]
- Ferreira, M.P.; Pinto, C.F.; Serra, F.R. The transaction costs theory in international business research: A bibliometric study over three decades. Scientometrics 2013, 98, 1899–1922. [Google Scholar] [CrossRef]
- García-Lillo, F.; Claver-Cortés, E.; Marco-Lajara, B.; Úbeda-García, M. Identifying the ‘knowledge base’ or ‘intellectual structure’ of research on international business, 2000–2015: A citation/co-citation analysis of JIBS. Int. Bus. Rev. 2019, 28, 713–726. [Google Scholar] [CrossRef]
- Qi, T.; Wang, T.; Ma, Y.; Zhang, W.; Zhu, Y. A scientometric analysis of e-participation research. Int. J. Crowd Sci. 2018, 2, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Demiroz, F.; Haase, T.W. The concept of resilience: A bibliometric analysis of the emergency and disaster management literature. Local Gov. Stud. 2018, 45, 308–327. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Mugomeri, E.; Bekele, B.S.; Mafaesa, M.; Maibvise, C.; Tarirai, C.; Aiyuk, S.E. A 30-year bibliometric analysis of research coverage on HIV and AIDS in Lesotho. Health Res. Policy Syst. 2017, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Rejeb, M.A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things research in supply chain management and logistics: A bibliometric analysis. Internet Things 2020, 12, 100318. [Google Scholar] [CrossRef]
- Shkundalov, D.; Vilutienė, T. Bibliometric analysis of building information modeling, geographic information systems and web environment integration. Autom. Constr. 2021, 128, 103757. [Google Scholar] [CrossRef]
- Berners-Lee, T. Linked Data-Design Issues. 2006. Available online: https://www.w3.org/DesignIssues/LinkedData.html (accessed on 10 May 2022).
- Wamba, S.F.; Kamdjoug, J.R.K.; Bawack, R.E.; Keogh, J.G. Bitcoin, Blockchain and Fintech: A systematic review and case studies in the supply chain. Prod. Plan. Control 2019, 31, 115–142. [Google Scholar] [CrossRef]
- OriginTrail Case Studies—From Trailblazing to Leaving Traces. Available online: https://origintrail.io/case-studies (accessed on 16 May 2022).
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Leong, G.K.; Treiblmaier, H. Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. Int. J. Prod. Res. 2021, 59, 3747–3776. [Google Scholar] [CrossRef]
- Rejeb, A.; Suhaiza, Z.; Rejeb, K.; Seuring, S.; Treiblmaier, H. The Internet of Things and the circular economy: A systematic literature review and research agenda. J. Clean. Prod. 2022, 350, 131439. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Treiblmaier, H. Drones for supply chain management and logistics: A review and research agenda. Int. J. Logist. Res. Appl. 2021, 1–24. [Google Scholar] [CrossRef]
- Raghuram, S.; Tuertscher, P.; Garud, R. Research Note—Mapping the Field of Virtual Work: A Cocitation Analysis. Inf. Syst. Res. 2010, 21, 983–999. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Zailani, S.; Treiblmaier, H.; Rejeb, K. Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions. Logistics 2020, 4, 27. [Google Scholar] [CrossRef]
- Rejeb, A.; Treiblmaier, H.; Rejeb, K.; Zailani, S. Blockchain research in healthcare: A bibliometric review and current research trends. J. Data Inf. Manag. 2021, 3, 109–124. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review. Logistics 2021, 5, 72. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Zailani, S. Are Halal Food Supply Chains Sustainable: A Review and Bibliometric Analysis. J. Foodserv. Bus. Res. 2021, 24, 554–595. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Keogh, J.G. Blockchain technology in the smart city: A bibliometric review. Qual. Quant. 2021, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, A.; Rejeb, K.; Rejeb, A.; Mostafa, M.M.; Zailani, S. Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis. Sustainability 2021, 13, 12011. [Google Scholar] [CrossRef]
- Ismail, S.; Nason, E.; Marjanovic, S.; Grant, J. Bibliometrics as a Tool for Supporting Prospective R&D Decision-Making in the Health Sciences: Strengths, Weaknesses and Options for Future Development. Rand Health Q. 2012, 1, 11. [Google Scholar]
- Maflahi, N.; Thelwall, M. When are readership counts as useful as citation counts? Scopus versus Mendeley for LIS journals. J. Assoc. Inf. Sci. Technol. 2016, 67, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Ke, I.; Bronicki, J. Using Scopus to Study Researchers’ Citing Behavior for Local Collection Decisions: A Focus on Psychology. J. Libr. Adm. 2015, 55, 165–178. [Google Scholar] [CrossRef]
- Eyre-Walker, A.; Stoletzki, N. The Assessment of Science: The Relative Merits of Post-Publication Review, the Impact Factor, and the Number of Citations. PLoS Biol. 2013, 11, e1001675. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Publisher: Reading, MA, USA, 1977; Volume 2. [Google Scholar]
- Leydesdorff, L.; Barnett, G.A.; ASCoR (FMG) Bibliometrics/Citation Networks. In Sage reference. arXiv 2011, arXiv:1502.06378. [Google Scholar]
- Hjørland, B. Theories of knowledge organization—Theories of knowledge. Knowl. Organ. 2013, 40, 169–198. [Google Scholar] [CrossRef]
- Ding, Y.; Cronin, B. Popular and/or prestigious? Measures of scholarly esteem. Inf. Process. Manag. 2011, 47, 80–96. [Google Scholar] [CrossRef] [Green Version]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Yoon, J.; Park, H.W. Pattern and trend of scientific knowledge production in North Korea by a semantic network analysis of papers in journal titled technological innovation. Scientometrics 2020, 124, 1421–1438. [Google Scholar] [CrossRef]
- Lee, P.-C.; Su, H.-N. Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation 2010, 12, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Decker, S.; Melnik, S.; Van Harmelen, F.; Fensel, D.; Klein, M.; Broekstra, J.; Erdmann, M.; Horrocks, I. The Semantic Web: The roles of XML and RDF. IEEE Internet Comput. 2000, 4, 63–73. [Google Scholar] [CrossRef]
- Jenkins, C.; Inman, D. Server-Side Automatic Metadata Generation Using Qualified Dublin Core and RDF. In Proceedings of the 2000 Kyoto International Conference on Digital Libraries: Research and Practice, Kyoto, Japan, 13–16 November 2000; pp. 262–269. [Google Scholar]
- Fekete, E.; Haffner, M. Twitter and Academic Geography through the Lens of #AAG2018. Prof. Geogr. 2019, 71, 751–761. [Google Scholar] [CrossRef]
- Trier, M.; Molka-Danielsen, J. Sympathy or strategy: Social capital drivers for collaborative contributions to the IS community. Eur. J. Inf. Syst. 2013, 22, 317–335. [Google Scholar] [CrossRef]
- Vidgen, R.; Henneberg, S.; Naudé, P. What sort of community is the European Conference on Information Systems? A social network analysis 1993–2005. Eur. J. Inf. Syst. 2017, 16, 5–19. [Google Scholar] [CrossRef]
- Aberer, K.; Cudré-Mauroux, P.; Hauswirth, M. The Chatty Web: Emergent Semantics through Gossiping. In Proceedings of the 12th International Conference on World Wide Web, Association for Computing Machinery, New York, NY, USA, 20 May 2003; pp. 197–206. [Google Scholar]
- Jabbar, S.; Ullah, F.; Khalid, S.; Khan, M.; Han, K. Semantic Interoperability in Heterogeneous IoT Infrastructure for Healthcare. Wirel. Commun. Mob. Comput. 2017, 2017, e9731806. [Google Scholar] [CrossRef]
- Roman, D.; Keller, U.; Lausen, H.; de Bruijn, J.; Lara, R.; Stollberg, M.; Polleres, A.; Feier, C.; Bussler, C.; Fensel, D. Web Service Modeling Ontology. Appl. Ontol. 2005, 1, 77–106. [Google Scholar]
- Verma, K.; Sivashanmugam, K.; Sheth, A.; Patil, A.; Oundhakar, S.; Miller, J. METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of Web Services. Inf. Technol. Manag. 2005, 6, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Grosof, B.N.; Horrocks, I.; Volz, R.; Decker, S. Description Logic Programs: Combining Logic Programs with Description Logic. In Proceedings of the 12th International Conference on World Wide Web, WWW 2003, Budapest, Hungary, 20–24 May 2003; pp. 48–57. [Google Scholar]
- Choi, N.; Song, I.-Y.; Han, H. A survey on ontology mapping. ACM Sigmod Rec. 2006, 35, 34–41. [Google Scholar] [CrossRef]
- Martin, D.; Burstein, M.; McDermott, D.; McIlraith, S.; Paolucci, M.; Sycara, K.; McGuinness, D.L.; Sirin, E.; Srinivasan, N. Bringing Semantics to Web Services with OWL-S. World Wide Web 2007, 10, 243–277. [Google Scholar] [CrossRef] [Green Version]
- Kopecký, J.; Vitvar, T.; Bournez, C.; Farrell, J. SAWSDL: Semantic Annotations for WSDL and XML Schema. IEEE Internet Comput. 2007, 11, 60–67. [Google Scholar] [CrossRef]
- Patil, A.; Oundhakar, S.; Sheth, A.; Verma, K. METEOR-S Web Service Annotation Framework. In Proceedings of the 13th International World Wide Web Conference Proceedings, WWW 2004, New York, NY, USA, 19–24 May 2004; pp. 553–562. [Google Scholar]
- Barnaghi, P.; Wang, W.; Henson, C.; Taylor, K. Semantics for the Internet of Things: Early Progress and Back to the Future. Int. J. Semantic Web Inf. Syst. 2012, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kiritsis, D. Closed-loop PLM for intelligent products in the era of the Internet of things. CAD Comput. Aided Des. 2011, 43, 479–501. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Text Mining and Visualization Using VOSviewer. arXiv 2011, arXiv:1109.2058. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Aroyo, L.; Dolog, P.; Houben, G.-J.; Kravcik, M.; Naeve, A.; Nilsson, M.; Wild, F. Interoperability in Personalized Adaptive Learning. Educ. Technol. Soc. 2006, 9, 4–18. [Google Scholar]
- Ding, Y. A Review of Ontologies with the Semantic Web in View. J. Inf. Sci. 2001, 27, 377–384. [Google Scholar] [CrossRef]
- Kiljander, J.; D'Elia, A.; Morandi, F.; Hyttinen, P.; Takalo-Mattila, J.; Ylisaukko-Oja, A.; Soininen, J.-P.; Cinotti, T.S. Semantic Interoperability Architecture for Pervasive Computing and Internet of Things. IEEE Access 2014, 2, 856–873. [Google Scholar] [CrossRef]
- Shariatzadeh, N.; Lundholm, T.; Lindberg, L.; Sivard, G. Integration of Digital Factory with Smart Factory Based on Internet of Things; Procedia CIRP; Wang, L.K.T., Ed.; Elsevier B.V.: Amsterdam, The Netherland, 2016; Volume 50, pp. 512–517. [Google Scholar]
- Ehrig, M.; Staab, S. QOM—Quick Ontology Mapping. In The Semantic Web—ISWC 2004; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3298, pp. 683–697. [Google Scholar] [CrossRef] [Green Version]
- Mao, M.; Peng, Y.; Spring, M. An adaptive ontology mapping approach with neural network based constraint satisfaction. J. Web Semant. 2010, 8, 14–25. [Google Scholar] [CrossRef]
- Tang, J.; Li, J.; Liang, B.; Huang, X.; Li, Y.; Wang, K. Using Bayesian decision for ontology mapping. J. Web Semant. 2006, 4, 243–262. [Google Scholar] [CrossRef] [Green Version]
- Bojars, U.; Breslin, J.G.; Peristeras, V.; Tummarello, G.; Decker, S. Interlinking the Social Web with Semantics. IEEE Intell. Syst. 2008, 23, 29–40. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef] [Green Version]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [Green Version]
- Hjørland, B. Citation analysis: A social and dynamic approach to knowledge organization. Inf. Process. Manag. 2013, 49, 1313–1325. [Google Scholar] [CrossRef]
- Soldatos, J.; Kefalakis, N.; Hauswirth, M.; Serrano, M.; Calbimonte, J.-P.; Riahi, M.; Aberer, K.; Jayaraman, P.P.; Zaslavsky, A.; Žarko, I.P.; et al. OpenIoT: Open Source Internet-of-Things in the Cloud. In Interoperability and Open-Source Solutions for the Internet of Things; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9001, pp. 13–25. [Google Scholar] [CrossRef]
- Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A Lightweight Semantic Model for the Internet of Things. In Proceedings of the 13th IEEE International Conference on Ubiquitous Intelligence and Computing, 13th IEEE International Conference on Advanced and Trusted Computing, 16th IEEE International Conference on Scalable Computing and Communications, IEEE International Conference on Cloud and Big Data Computing, IEEE International Conference on Internet of People and IEEE Smart World Congress and Workshops, UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld, Toulouse, France, 18–21 July 2016; El Baz, D.B.J., Ed.; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 90–97. [Google Scholar]
- Liu, W.; Lu, B. Semantic Association and Decision-Making for the Internet of Things Based on Partial Differential Fuzzy Unsupervised Models. Math. Probl. Eng. 2022, 2022, 9884629. [Google Scholar] [CrossRef]
- Yahya, M.; Breslin, J.; Ali, M. Semantic Web and Knowledge Graphs for Industry 4.0. Appl. Sci. 2021, 11, 5110. [Google Scholar] [CrossRef]
- Agarwal, R.; Fernandez, D.G.; Elsaleh, T.; Gyrard, A.; Lanza, J.; Sanchez, L.; Georgantas, N.; Issarny, V. Unified IoT ontology to enable interoperability and federation of testbeds. In Proceedings of the IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 70–75. [Google Scholar] [CrossRef]
- Verma, K.; Sheth, A. Semantically Annotating a Web Service. IEEE Internet Comput. 2007, 11, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, C.; Hurtado, C.; Mendelzon, A.O. Foundations of Semantic Web Databases. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Association for Computing Machinery, Paris, France, 15–17 January 2004; Volume 23, pp. 95–106. [Google Scholar]
- McIlraith, S.A.; Martin, D.L. Bringing semantics to Web services. IEEE Intell. Syst. 2003, 18, 90–93. [Google Scholar] [CrossRef]
- Pauwels, P.; Zhang, S.; Lee, Y.-C. Semantic web technologies in AEC industry: A literature overview. Autom. Constr. 2017, 73, 145–165. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Senger, M.; Kawas, E.; Bruskiewich, R.; Gouzy, J.; Noirot, C.; Bardou, P.; Ng, A.; Haase, D.; Saiz, E. de A.; et al. The BioMoby Consortium Interoperability with Moby 1.0-It’s better than sharing your toothbrush! Briefings Bioinform. 2008, 9, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Dinis, F.M.; Martins, J.P.; Guimarães, A.S.; Rangel, B. BIM and Semantic Enrichment Methods and Applications: A Review of Recent Developments. Arch. Comput. Methods Eng. 2021, 29, 879–895. [Google Scholar] [CrossRef]
- Louge, T.; Karray, M.H.; Archimède, B.; Maamar, Z.; Mrissa, M. Semantic Web Services Composition in the astrophysics domain: Issues and solutions. Futur. Gener. Comput. Syst. 2018, 90, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Maedche, A.; Motik, B.; Silva, N.; Volz, R. MAFRA—A MApping FRAmework for Distributed Ontologies. In Proceedings of the Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, Siguenza, Spain, 1–4 October 2002; Gómez-Pérez, A., Benjamins, V.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 235–250. [Google Scholar]
- Gal, A.; Anaby-Tavor, A.; Trombetta, A.; Montesi, D. A framework for modeling and evaluating automatic semantic reconciliation. VLDB J. 2005, 14, 50–67. [Google Scholar] [CrossRef]
- Karimi, H.; Kamandi, A. A learning-based ontology alignment approach using inductive logic programming. Expert Syst. Appl. 2019, 125, 412–424. [Google Scholar] [CrossRef]
- Wang, T. Aligning the large-scale ontologies on schema-level for weaving Chinese linked open data. Clust. Comput. 2018, 22, 5099–5114. [Google Scholar] [CrossRef]
- Harrow, I.; Balakrishnan, R.; Jimenez-Ruiz, E.; Jupp, S.; Lomax, J.; Reed, J.; Romacker, M.; Senger, C.; Splendiani, A.; Wilson, J.; et al. Ontology mapping for semantically enabled applications. Drug Discov. Today 2019, 24, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, P.; Terkaj, W. EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology. Autom. Constr. 2016, 63, 100–133. [Google Scholar] [CrossRef]
- Pauwels, P.; Van Deursen, D.; Verstraeten, R.; De Roo, J.; De Meyer, R.; Van de Walle, R.; Van Campenhout, J. A semantic rule checking environment for building performance checking. Autom. Constr. 2011, 20, 506–518. [Google Scholar] [CrossRef]
- Karan, E.P.; Irizarry, J. Extending BIM interoperability to preconstruction operations using geospatial analyses and semantic web services. Autom. Constr. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Karan, E.P.; Irizarry, J.; Haymaker, J. BIM and GIS Integration and Interoperability Based on Semantic Web Technology. J. Comput. Civ. Eng. 2016, 30, 04015043. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Djuedja, J.F.T.; Abanda, F.H.; Kamsu-Foguem, B.; Pauwels, P.; Magniont, C.; Karray, M.H. An integrated Linked Building Data system: AEC industry case. Adv. Eng. Softw. 2020, 152, 102930. [Google Scholar] [CrossRef]
- Wang, X.; Gorlitsky, R.; Almeida, J.S. From XML to RDF: How semantic web technologies will change the design of 'omic' standards. Nat. Biotechnol. 2005, 23, 1099–1103. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Vandervalk, B.; McCarthy, L. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation. J. Biomed. Semant. 2011, 2, 8. [Google Scholar] [CrossRef]
- Williams, A.J.; Harland, L.; Groth, P.; Pettifer, S.; Chichester, C.; Willighagen, E.L.; Evelo, C.T.; Blomberg, N.; Ecker, G.; Goble, C.; et al. Open PHACTS: Semantic interoperability for drug discovery. Drug Discov. Today 2012, 17, 1188–1198. [Google Scholar] [CrossRef]
- Lord, P.; Alper, P.; Wroe, C.; Goble, C. Feta: A Light-Weight Architecture for User Oriented Semantic Service Discovery. In The Semantic Web: Research and Applications; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3532, pp. 17–31. [Google Scholar]
- Lord, P.; Bechhofer, S.; Wilkinson, M.D.; Schiltz, G.; Gessler, D.; Hull, D.; Goble, C.; Stein, L. Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt. In The Semantic Web—ISWC 2004; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3298, pp. 350–364. [Google Scholar] [CrossRef] [Green Version]
- Bernabé-Díaz, J.A.; Legaz-García, M.D.C.; García, J.M.; Fernández-Breis, J.T. Efficient, semantics-rich transformation and integration of large datasets. Expert Syst. Appl. 2019, 133, 198–214. [Google Scholar] [CrossRef]
- Sernadela, P.; González-Castro, L.; Oliveira, J.L. SCALEUS: Semantic Web Services Integration for Biomedical Applications. J. Med Syst. 2017, 41, 54. [Google Scholar] [CrossRef] [PubMed]
- Dietze, S.; Sanchez-Alonso, S.; Ebner, H.; Yu, H.Q.; Giordano, D.; Marenzi, I.; Nunes, B.P. Interlinking educational resources and the web of data: A Survey of Challenges and Approaches. Program 2013, 47, 60–91. [Google Scholar] [CrossRef]
- Dietze, S.; Yu, H.Q.; Giordano, D.; Kaldoudi, E.; Dovrolis, N.; Taibi, D. Linked Education: Interlinking Educational Resources and the Web of Data. In Proceedings of the ACM Symposium on Applied Computing, Trento, Italy, 26–30 March 2012; pp. 366–371. [Google Scholar]
- Aroyo, L.; Dicheva, D. The New Challenges for E-Learning: The Educational Semantic Web. Educ. Technol. Soc. 2004, 7, 59–69. [Google Scholar]
- Huang, W.; Webster, D.; Wood, D.; Ishaya, T. An intelligent semantic e-learning framework using context-aware Semantic Web technologies. Br. J. Educ. Technol. 2006, 37, 351–373. [Google Scholar] [CrossRef]
- Poulakakis, Y.; Vassilakis, K.; Kalogiannakis, M.; Panagiotakis, S. Ontological modeling of educational resources: A proposed implementation for Greek schools. Educ. Inf. Technol. 2017, 22, 1737–1755. [Google Scholar] [CrossRef]
- Iatrellis, O.; Kameas, A.; Fitsilis, P. EDUC8 ontology: Semantic modeling of multi-facet learning pathways. Educ. Inf. Technol. 2019, 24, 2371–2390. [Google Scholar] [CrossRef]
- Cerón-Figueroa, S.; Yáñez, I.L.; Alhalabi, W.; Camacho-Nieto, O.; Villuendas-Rey, Y.; Aldape-Pérez, M.; Yáñez-Márquez, C. Instance-based ontology matching for e-learning material using an associative pattern classifier. Comput. Hum. Behav. 2017, 69, 218–225. [Google Scholar] [CrossRef]
- Han, L.; Finin, T.; Parr, C.; Sachs, J.; Joshi, A. RDF123: From Spreadsheets to RDF. In The Semantic Web—ISWC 2008; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 451–466. [Google Scholar] [CrossRef] [Green Version]
- Tijerino, Y.A.; Embley, D.W.; Lonsdale, D.W.; Ding, Y.; Nagy, G. Towards Ontology Generation from Tables. World Wide Web 2005, 8, 261–285. [Google Scholar] [CrossRef]
- Mulwad, V.; Finin, T.; Joshi, A. Semantic Message Passing for Generating Linked Data from Tables. In The Semantic Web—ISWC 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8218, pp. 363–378. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, C. Semantic connection set-based massive RDF data query processing in Spark environment. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 256. [Google Scholar] [CrossRef]
- Arndt, N.; Naumann, P.; Radtke, N.; Martin, M.; Marx, E. Decentralized Collaborative Knowledge Management Using Git. J. Web Semant. 2019, 54, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Theocharidis, K.; Liagouris, J.; Mamoulis, N.; Bouros, P.; Terrovitis, M. SRX: Efficient management of spatial RDF data. VLDB J. 2019, 28, 703–733. [Google Scholar] [CrossRef]
- Ganzha, M.; Paprzycki, M.; Pawłowski, W.; Szmeja, P.; Wasielewska, K. Semantic interoperability in the Internet of Things: An overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 2017, 81, 111–124. [Google Scholar] [CrossRef]
- Hachem, S.; Teixeira, T.; Issarny, V. Ontologies for the Internet of Things. In Proceedings of the 8th Middleware Doctoral Symposium, MDS’11 of the 12th ACM/IFIP/USENIX International Middleware Conference, Lisbon, Portugal, 12 December 2011. [Google Scholar]
- Gyrard, A.; Serrano, M.; Atemezing, G.A. Semantic Web Methodologies, Best Practices and Ontology Engineering Applied to Internet of Things. In Proceedings of the 2015 IEEE World Forum on Internet of Things, WF-IoT, Milan, Italy, 14–16 December 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 412–417. [Google Scholar]
- Desai, P.; Sheth, A.; Anantharam, P. Semantic Gateway as a Service Architecture for IoT Interoperability. In Proceedings of the 2015 IEEE 3rd International Conference on Mobile Services, San Francisco, CA, USA, 30 March–3 April 2015; Zhang, J.A.O., Ed.; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 313–319. [Google Scholar]
- Daniele, L.; den Hartog, F.; Roes, J. Created in Close Interaction with the Industry: The Smart Appliances REFerence (SAREF) Ontology. Lect. Notes Bus. Inf. Process. 2015, 225, 100–112. [Google Scholar] [CrossRef]
- Halevy, A.Y.; Ives, Z.G.; Mork, P.; Tatarinov, I. Piazza: Data Management Infrastructure for Semantic Web Applications. In Proceedings of the 12th International Conference on World Wide Web, WWW 2003, Budapest, Hungary, 20–24 May 2003; pp. 556–567. [Google Scholar]
- Wong, W.; Liu, W.; Bennamoun, M. Ontology learning from Text: A Look Back and into the Future text. ACM Comput. Surv. 2012, 44, 1–36. [Google Scholar] [CrossRef]
- Van Assem, M.; Gangemi, A.; Schreiber, G. Conversion of WordNet to a Standard RDF/OWL Representation. In Proceedings of the 5th International Conference on Language Resources and Evaluation, LREC, Genoa, Italy, 22–28 May 2006; European Language Resources Association (ELRA): Paris, France, 2006; pp. 237–242. [Google Scholar]
- Ding, Y.; Foo, S. Ontology research and development. Part 1—A review of ontology generation. J. Inf. Sci. 2002, 28, 123–136. [Google Scholar] [CrossRef]
- Van Assem, M.; Malaisé, V.; Miles, A.; Schreiber, G. A Method to Convert Thesauri to SKOS. In The Semantic Web: Research and Applications; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4011, pp. 95–109. [Google Scholar] [CrossRef]
- Bilgin, A.S.; Singh, M.P. A DAML-Based Repository for QoS-Aware Semantic Web Service Selection. In Proceedings of the IEEE International Conference on Web Services, San Diego, CA, USA, 27 June 27–2 July 2004; pp. 368–375. [Google Scholar]
- Haller, A.; Cimpian, E.; Mocan, A.; Oren, E.; Bussler, C. WSMX—A Semantic Service-Oriented Architecture. In Proceedings of the 2005 IEEE International Conference on Web Services, ICWS 2005, Orlando, FL, USA, 11–15 July 2005; Volume 2005, pp. 321–328. [Google Scholar]
- Cardoso, J.; Sheth, A. Semantic E-Workflow Composition. J. Intell. Inf. Syst. 2003, 21, 191–225. [Google Scholar] [CrossRef]
- Fensel, D.; Lausen, H.; De Bruijn, J.; Stollberg, M.; Roman, D.; Polleres, A.; Domingue, J. Enabling Semantic Web Services: The Web Service Modeling Ontology; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 3-540-34519-1. [Google Scholar]
- Serafini, L.; Tamilin, A. DRAGO: Distributed Reasoning Architecture for the Semantic Web. In The Semantic Web: Research and Applications; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3532, pp. 361–376. [Google Scholar]
- Cruz, I.F.; Sunna, W. Structural Alignment Methods with Applications to Geospatial Ontologies. Trans. GIS 2008, 12, 683–711. [Google Scholar] [CrossRef]
- Seidenberg, J.; Rector, A. Web Ontology Segmentation: Analysis, Classification and Use. In Proceedings of the 15th International Conference on World Wide Web, Edinburgh, Scotland, 23–26 May 2006; pp. 13–22. [Google Scholar]
- Costa, G.; Madrazo, L. Connecting building component catalogues with BIM models using semantic technologies: An application for precast concrete components. Autom. Constr. 2015, 57, 239–248. [Google Scholar] [CrossRef]
- Matsokis, A.; Kiritsis, D. An ontology-based approach for Product Lifecycle Management. Comput. Ind. 2010, 61, 787–797. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, W.Y.; Zhang, K. ManuHub: A Semantic Web System for Ontology-Based Service Management in Distributed Manufacturing Environments. IEEE Trans. Syst. Man, Cybern. Part A: Syst. Humans 2011, 41, 574–582. [Google Scholar] [CrossRef]
- Ruttenberg, A.; Clark, T.; Bug, W.; Samwald, M.; Bodenreider, O.; Chen, H.; Doherty, D.; Forsberg, K.; Gao, Y.; Kashyap, V.; et al. Advancing translational research with the Semantic Web. BMC Bioinform. 2007, 8, S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lezcano, L.; Sicilia, M.-A.; Rodríguez-Solano, C. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules. J. Biomed. Inform. 2011, 44, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, A.; Cruz-Toledo, J.; Ansell, P.; Dumontier, M. Bio2RDF Release 2: Improved Coverage, Interoperability and Provenance of Life Science Linked Data. In The Semantic Web: Semantics and Big Data; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7882, pp. 200–212. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Costa, C.; Menárguez-Tortosa, M.; Fernández-Breis, J.T. An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J. Biomed. Inform. 2010, 43, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Brusilovsky, P.; Henze, N. Open Corpus Adaptive Educational Hypermedia. In The Adaptive Web; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4321, pp. 671–696. [Google Scholar] [CrossRef]
- Tolk, A. What Comes after the Semantic Web—PADS Implications for the Dynamic Web. In Proceedings of the Workshop on Principles of Advanced and Distributed Simulation, PADS, Singapore, 24–26 May 2006; Volume 2006, pp. 55–62. [Google Scholar]
- Corno, F.; De Russis, L.; Roffarello, A.M. A Semantic Web Approach to Simplifying Trigger-Action Programming in the IoT. Computer 2017, 50, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, N.; Kubler, S.; Robert, J.; Le Traon, Y.; Zaslavsky, A. Linked Vocabulary Recommendation Tools for Internet of Things. ACM Comput. Surv. 2019, 51, 1–31. [Google Scholar] [CrossRef]
- Lelli, F. Interoperability of the Time of Industry 4.0 and the Internet of Things. Futur. Internet 2019, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Dadkhah, M.; Araban, S.; Paydar, S. A systematic literature review on semantic web enabled software testing. J. Syst. Softw. 2019, 162, 110485. [Google Scholar] [CrossRef]
- Nishanbaev, I.; Champion, E.; McMeekin, D.A. A Comparative Evaluation of Geospatial Semantic Web Frameworks for Cultural Heritage. Heritage 2020, 3, 48. [Google Scholar] [CrossRef]
- Thakker, D.; Patel, P.; Ali, M.I.; Shah, T. Semantic Web of Things for Industry 4.0. Semant. Web 2020, 11, 885–886. [Google Scholar] [CrossRef]
- Swetha, N.G.; Karpagam, G.R. Reinforcement learning infused intelligent framework for semantic web service composition. Appl. Intell. 2021, 52, 1979–2000. [Google Scholar] [CrossRef]
- Huitzil, I.; Molina-Solana, M.; Gómez-Romero, J.; Bobillo, F. Minimalistic fuzzy ontology reasoning: An application to Building Information Modeling. Appl. Soft Comput. 2021, 103, 107158. [Google Scholar] [CrossRef]
- Khudhair, A.; Li, H.; Ren, G.; Liu, S. Towards Future BIM Technology Innovations: A Bibliometric Analysis of the Literature. Appl. Sci. 2021, 11, 1232. [Google Scholar] [CrossRef]
- Chen, J.; Hu, P.; Jimenez-Ruiz, E.; Holter, O.M.; Antonyrajah, D.; Horrocks, I. OWL2Vec*: Embedding of OWL ontologies. Mach. Learn. 2021, 110, 1813–1845. [Google Scholar] [CrossRef]
- Katayama, T.; Kawashima, S.; Okamoto, S.; Moriya, Y.; Chiba, H.; Naito, Y.; Fujisawa, T.; Mori, H.; Takagi, T. TogoGenome/TogoStanza: Modularized Semantic Web genome database. Database 2019, 2019, 132. [Google Scholar] [CrossRef] [PubMed]
- Bashir, F.; Warraich, N.F. Systematic literature review of Semantic Web for distance learning. Interact. Learn. Environ. 2020, 1–17. [Google Scholar] [CrossRef]
- Bouihi, B.; Bahaj, M. Ontology and Rule-Based Recommender System for E-learning Applications. Int. J. Emerg. Technol. Learn. 2019, 14, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Khdour, T. A semantic assessment framework for e-learning systems. Int. J. Knowl. Learn. 2020, 13, 110. [Google Scholar] [CrossRef]
- Tzoumpa, D.; Mitropoulos, S. Semantic Web Technologies for Ontologies Description: Case Study in Geometry Education. In Proceedings of the 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Corfu, Greece, 25–17 September 2020; pp. 1–5. [Google Scholar]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
Document Type | Number |
---|---|
Conference Paper | 2273 |
Article | 920 |
Book Chapter | 113 |
Conference Review | 108 |
Review | 77 |
Book | 12 |
Editorial | 3 |
Short Survey | 2 |
Letter | 1 |
Note | 1 |
Undefined | 1 |
Journal | Number of Publications |
---|---|
International Journal on Semantic Web and Information Systems | 18 |
Semantic Web | 18 |
International Journal of Metadata Semantics and Ontologies | 16 |
Journal of Biomedical Informatics | 16 |
IEEE Intelligent Systems | 15 |
Journal of Biomedical Semantics | 15 |
Sensors (Switzerland) | 13 |
Automation in Construction | 12 |
Expert Systems with Applications | 12 |
Journal of Universal Computer Science | 12 |
Cataloging and Classification Quarterly | 9 |
IEEE Internet Computing | 9 |
Journal of Information Science | 9 |
Journal of Web Semantics | 9 |
IEEE Access | 8 |
Journal of Theoretical and Applied Information Technology | 8 |
Knowledge Based Systems | 8 |
Country | Number of Publications |
---|---|
United States | 545 |
Germany | 331 |
United Kingdom | 322 |
Italy | 303 |
Spain | 295 |
France | 259 |
China | 250 |
Netherlands | 162 |
Greece | 142 |
Austria | 130 |
Ireland | 121 |
Canada | 115 |
India | 109 |
Australia | 107 |
Brazil | 91 |
Finland | 90 |
Belgium | 84 |
South Korea | 79 |
Portugal | 77 |
Switzerland | 63 |
Institution | Number of Publications |
---|---|
National University of Ireland Galway | 69 |
Universidad Politécnica de Madrid | 63 |
Digital Enterprise Research Institute | 46 |
CNRS Centre National de la Recherche Scientifique | 41 |
Consiglio Nazionale delle Ricerche | 38 |
Alma Mater Studiorum Università di Bologna | 36 |
The Open University | 35 |
Vrije Universiteit Amsterdam | 34 |
University of Southampton | 34 |
Universiteit Gent | 33 |
Insight Centre for Data Analytics | 31 |
The University of Manchester | 30 |
Stanford University | 28 |
Wuhan University | 27 |
Karlsruhe Institute of Technology | 27 |
Technische Universitat Wien | 26 |
Technische Universiteit Eindhoven | 26 |
University of Innsbruck | 25 |
Aalto University | 24 |
Universidad de Murcia | 23 |
Universidad Carlos III de Madrid | 23 |
Aristotle University of Thessaloniki | 23 |
Author | Number of Publications |
---|---|
Domingue, J. | 19 |
Gyrard, A. | 19 |
Dumontier, M. | 17 |
Sheth, A. | 17 |
Dietze, S. | 16 |
Bassiliades, N. | 15 |
Decker, S. | 15 |
Serrano, M. | 15 |
Fernández-Breis, J.T. | 14 |
Mannens, E. | 14 |
Verborgh, R. | 14 |
Christodoulakis, S. | 13 |
Gómez-Pérez, A. | 13 |
Piedra, N. | 13 |
Thuraisingham, B. | 13 |
Breslin, J.G. | 12 |
Loia, V. | 12 |
Terziyan, V. | 12 |
Wilkinson, M.D. | 12 |
Finin, T. | 11 |
García-Castro, R. | 11 |
O’Sullivan, D. | 11 |
Keyword | Frequency |
---|---|
SW (semantic web) | 1004 |
Ontology | 784 |
Interoperability | 443 |
SI (semantics interoperability) | 239 |
RDF (resource description framework) | 200 |
Linked data | 195 |
IoT (Internet of Things) | 184 |
WS (web services) | 144 |
OWL (ontology web language) | 142 |
SWS (semantic web services) | 136 |
Semantics | 100 |
Metadata | 98 |
SOA (service-oriented architecture) | 73 |
LOD (linked open data) | 66 |
Data integration | 64 |
SPARQL (simple protocol and RDF query language) | 60 |
Semantic web technology | 59 |
XML (extensive markup language) | 57 |
MAS (multi-agent systems) | 54 |
KM (knowledge management) | 53 |
Publication | Local Citations | Global Citations |
---|---|---|
[73] | 670 | 1493 |
[75] | 603 | 1344 |
[76] | 414 | 772 |
[66] | 385 | 1189 |
[77] | 376 | 695 |
[78] | 367 | 690 |
[79] | 350 | 722 |
[80] | 334 | 615 |
[81] | 321 | 513 |
[74] | 302 | 703 |
Language | Sensors and Computing (Hardware) | Graphs and Models | Linking/Integration Methods | (Web) Services | Social Web |
---|---|---|---|---|---|
SW | IoT | Linked Data | SI | WS | RS |
Ontology | Semantics | Metadata | Data Integration | SWS | Privacy |
Interoperability | Semantic Web Technology | LOD | Ontology Mapping | SOA | Social Web |
RDF | Semantic Technology | Cultural Heritage | Knowledge Representation | MAS | FOAF |
OWL | WoT | Digital Library | Ontology Alignment | Semantic Annotation | Social Network |
SPARQL | Cloud Computing | Big Data | EHR | E-Government | Social Networking |
XML | SWOT | Knowledge Graph | Ontology Matching | OWL-S | SIOC |
KM | Smart City | Vocabulary | IR | Integration | WEB APPS |
E-Learning | Context Awareness | Thesauri | Data Modeling | Agents | Social Media |
Reasoning | Knowledge Engineering | REST API | DL | Intelligent Agent | Trust |
SWRL | SSN | SKOS | P2P | ||
Web of Data | Web Service Composition | ||||
Workflow |
Cluster | Number of Publications | Research Focus |
---|---|---|
1 | 31 | Internet of Things |
2 | 26 | Conceptualization of semantic web |
3 | 24 | Semantic web services |
4 | 18 | Ontology mapping |
5 | 17 | Building information modeling |
6 | 16 | Bioinformatics |
7 | 6 | Education and e-learning |
8 | 4 | Semantic web languages |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 |
---|---|---|---|---|---|---|---|
[98] [97] [140] [86] [141] [98] [142] [101] [143] [144] | [75] [145] [71] [146] [66] [147] [148] [102] [149] [150] | [73] [79] [77] [78] [74] [151] [152] [153] [104] [103] | [88] [76] [106] [90] [109] [89] [154] [110] [155] [156] | [114] [105] [115] [116] [81] [157] [117] [158] [159] [118] | [106] [160] [121] [122] [123] [120] [161] [162] [124] [163] | [127] [128] [129] [84] [130] [164] | [134] [136] [135] [165] |
Themes | Future Research Directions | Related Literature |
---|---|---|
Internet of Things |
| [166,167,168] |
Conceptualization of the semantic web |
| [169,170,171] |
Semantic web services |
| [21,172] |
Ontology mapping |
| [71,112,113] |
Building information modeling |
| [114,115,116,118,173,174] |
Bioinformatics |
| [106,121,160,175,176] |
Education and e-learning |
| [127,129,177,178,179] |
Semantic web languages |
| [180] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejeb, A.; Keogh, J.G.; Martindale, W.; Dooley, D.; Smart, E.; Simske, S.; Wamba, S.F.; Breslin, J.G.; Bandara, K.Y.; Thakur, S.; et al. Charting Past, Present, and Future Research in the Semantic Web and Interoperability. Future Internet 2022, 14, 161. https://doi.org/10.3390/fi14060161
Rejeb A, Keogh JG, Martindale W, Dooley D, Smart E, Simske S, Wamba SF, Breslin JG, Bandara KY, Thakur S, et al. Charting Past, Present, and Future Research in the Semantic Web and Interoperability. Future Internet. 2022; 14(6):161. https://doi.org/10.3390/fi14060161
Chicago/Turabian StyleRejeb, Abderahman, John G. Keogh, Wayne Martindale, Damion Dooley, Edward Smart, Steven Simske, Samuel Fosso Wamba, John G. Breslin, Kosala Yapa Bandara, Subhasis Thakur, and et al. 2022. "Charting Past, Present, and Future Research in the Semantic Web and Interoperability" Future Internet 14, no. 6: 161. https://doi.org/10.3390/fi14060161
APA StyleRejeb, A., Keogh, J. G., Martindale, W., Dooley, D., Smart, E., Simske, S., Wamba, S. F., Breslin, J. G., Bandara, K. Y., Thakur, S., Liu, K., Crowley, B., Desaraju, S., Ospina, A., & Bradau, H. (2022). Charting Past, Present, and Future Research in the Semantic Web and Interoperability. Future Internet, 14(6), 161. https://doi.org/10.3390/fi14060161