Trade-offs between Risk and Operational Cost in SDN Failure Recovery Plan
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Paper Contribution
1.4. Paper Organization
2. System Model and Preliminaries
- (1)
- High risk: with β(R) or π(R) ;
- (2)
- Low risk: with β(R) or π(R) ;
Flow Operations and Flow Conservation
3. Design Framework
- The flows that require the lowest flow operations must be given priority in restoration;
- Not every restoration is successful, and, in some cases, a low-risk path can never be found;
- The maximum number of allowed flow operations should not exceed the average path length;
- To restore the majority of the restorable flows, the operational cost should be kept smaller or equal to the average path length.
- Original paths: Paths with the lowest risk when the prior values of {pi,j} are considered;
- Lowest-risk paths: Paths with the lowest risk when the current values of {pi,j} are considered;
- Intermediate-risk paths: Otherwise.
4. Suboptimal Algorithms
4.1. Iterative Risk Reduction (IRR)
- If a discovered path achieves a risk of lower than τ;
- If the number of iterations exceeds N;
- If the risk of the discovered path is larger than that of the path discovered in the previous iteration.
Algorithm 1: Iterative Risk Reduction (IRR), suboptimal solution to P4. |
Input: The original path R Initialize, N, τ, ε n ← 0, β−1 = ∞ m ← 0, β0 ← β(R), ∅0 ← ∅(R) while n ≤ N or βm > τ or βm < βm−1 do for all eik,jk along R do Find the lowest-operational cost path in E\{eik,jk} βk ← path risk ∅k ← path operational cost end for m ← argmink(βk + ε∅k) E = E\{eim,jm} end while |
4.2. Lagrangian Relaxation Method
Algorithm 2: Lagrangian relaxation method, suboptimal solution to P4. |
Input: Path R Initialize τ, ε and Rf = R. Let Rc be the lowest-risk path. loop Find path R with lowest cost with: if |θ(R) − θ(Rf)| < ε then return Rf else if θ(R) ≤ τ then Rf = R else Rc = R end if end loop |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [Google Scholar] [CrossRef]
- Yeganeh, S.H.; Tootoonchian, A.; Ganjali, Y. On scalability of software-defined networking. IEEE Commun. Mag. 2013, 51, 136–141. [Google Scholar] [CrossRef]
- Vaughan-Nichols, S.J. OpenFlow: The Next Generation of the Network? Computer 2011, 44, 13–15. [Google Scholar] [CrossRef]
- Assi, C.; Huo, W.; Shami, A. Centralized Versus Distributed Re-provisioning in Optical Mesh Networks. In Networking—ICN 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 34–43. [Google Scholar]
- Kuperman, G.; Modiano, E.; Narula-Tam, A. Analysis and Algorithms for Partial Protection in Mesh Networks. J. Opt. Commun. Netw. 2014, 6, 730–742. [Google Scholar] [CrossRef]
- Sinha, R.K.; Ergun, F.; Oikonomou, K.N.; Ramakrishnan, K.K. Network design for tolerating multiple link failures using Fast Re-route (FRR). In Proceedings of the 2014 10th International Conference on the Design of Reliable Communication Networks (DRCN), Ghent, Belgium, 1–3 April 2014. [Google Scholar] [CrossRef]
- Tapolcai, J.; Ho, P.-H.; Babarczi, P.; Rónyai, L. Internet Optical Infrastructure; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Habib, M.F.; Tornatore, M.; Dikbiyik, F.; Mukherjee, B. Disaster survivability in optical communication networks. Comput. Commun. 2013, 36, 630–644. [Google Scholar] [CrossRef]
- Rotsos, C.; Sarrar, N.; Uhlig, S.; Sherwood, R.; Moore, A.W. OFLOPS: An Open Framework for OpenFlow Switch Evaluation. In PAM 2012: Passive and Active Measurement; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7192, pp. 85–95. [Google Scholar] [CrossRef]
- Astaneh, S.A.; Heydari, S.S. Optimization of SDN Flow Operations in Multi-Failure Restoration Scenarios. IEEE Trans. Netw. Serv. Manag. 2016, 13, 421–432. [Google Scholar] [CrossRef]
- Izaddoost, A.; Heydari, S.S. Risk-adaptive strategic network protection in disaster scenarios. J. Commun. Networks 2017, 19, 509–520. [Google Scholar] [CrossRef]
- Ashraf, M.W.; Idrus, S.M.; Iqbal, F.; Butt, R.A.; Faheem, M. Disaster-Resilient Optical Network Survivability: A Comprehensive Survey. Photonics 2018, 5, 35. [Google Scholar] [CrossRef]
- Lee, H.; Modiano, E.; Lee, K. Diverse routing in networks with probabilistic failures. IEEE/ACM Trans. Netw. 2010, 18, 1895–1907. [Google Scholar] [CrossRef]
- Cui, W.; Stoica, I.; Katz, R.H. Backup path allocation based on a correlated link failure probability model in overlay networks. In Proceedings of the 10th IEEE International Conference on Network Protocols, Paris, France, 12–15 November 2002; p. 236. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, X.; Pattavina, A. Assessing network vulnerability under probabilistic region failure model. In Proceedings of the 2011 IEEE 12th International Conference on High Performance Switching and Routing, Cartagena, Spain, 4–6 July 2011; pp. 164–170. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, X.; Pattavina, A.; Lu, S. Assessing physical network vulnerability under random line-segment failure model. In Proceedings of the 2012 IEEE 13th International Conference on High Performance Switching and Routing, Belgrade, Serbia, 24–27 June 2012; pp. 121–126. [Google Scholar] [CrossRef]
- Rahnamay-Naeini, M.; Pezoa, J.E.; Azar, G.; Ghani, N.; Hayat, M.M. Modeling Stochastic Correlated Failures and their Effects on Network Reliability. In Proceedings of the 20th International Conference on Computer Communications and Networks (ICCCN), Lahaina, HI, USA, 31 July–4 August 2011; pp. 11–16. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Efrat, A.; Ganjugunte, S.K.; Hay, D.; Sankararaman, S.; Zussman, G. The Resilience of WDM Networks to Probabilistic Geographical Failures. IEEE/ACM Trans. Netw. 2013, 21, 1525–1538. [Google Scholar] [CrossRef]
- Bao, N.-H.; Su, G.-Q.; Wu, Y.-K.; Kuang, M.; Luo, D.-Y. Reliability-sustainable network survivability scheme against disaster failures. In Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), Dalian, China, 21–23 July 2017; pp. 334–337. [Google Scholar] [CrossRef]
- Çetinkaya, E.K.; Broyles, D.; Dandekar, A.; Srinivasan, S.; Sterbenz, J.P.G. Modelling communication network challenges for Future Internet resilience, survivability, and disruption tolerance: A simulation-based approach. Telecommun. Syst. 2013, 52, 751–766. [Google Scholar] [CrossRef]
- Rohrer, J.P.; Jabbar, A.; Sterbenz, J.P.G. Path diversification for future internet end-to-end resilience and survivability. Telecommun. Syst. 2014, 56, 49–67. [Google Scholar] [CrossRef]
- Rohrer, J.P.; Sterbenz, J.P.G. Predicting topology survivability using path diversity. In Proceedings of the 2011 3rd International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Budapest, Hungary, 5–7 October 2011. [Google Scholar]
- Vajanapoom, K.; Tipper, D.; Akavipat, S. Risk based resilient network design. Telecommun. Syst. 2013, 52, 799–811. [Google Scholar] [CrossRef]
- Diaz, O.; Xu, F.; Min-Allah, N.; Khodeir, M.; Peng, M.; Khan, S.; Ghani, N. Network Survivability for Multiple Probabilistic Failures. IEEE Commun. Lett. 2012, 16, 1320–1323. [Google Scholar] [CrossRef]
- Pascoal, M.; Craveirinha, J.; Clímaco, J. An exact lexicographic approach for the maximally risk-disjoint/minimal cost path pair problem in telecommunication networks. TOP 2021, 30, 405–425. [Google Scholar] [CrossRef]
- Izaddoost, A.; Heydari, S.S. Analyzing network failures in disaster scenarios using a travelling wave probabilistic model. In Proceedings of the 2012 26th Biennial Symposium on Communications (QBSC), Kingston, ON, Canada, 28–29 May 2012; pp. 138–141. [Google Scholar] [CrossRef]
- Nencioni, G.; Helvik, B.E.; Heegaard, P.E. Including Failure Correlation in Availability Modeling of a Software-Defined Backbone Network. IEEE Trans. Netw. Serv. Manag. 2017, 14, 1032–1045. [Google Scholar] [CrossRef]
- Hirayama, T.; Jibiki, M.; Harai, H. Designing Distributed SDN C-Plane Considering Large-Scale Disruption and Restoration. IEICE Trans. Commun. 2019, 102, 452–463. [Google Scholar] [CrossRef]
- Staessens, D.; Sharma, S.; Colle, D.; Pickavet, M.; Demeester, P. Software defined networking: Meeting carrier grade requirements. In Proceedings of the 2011 18th IEEE Workshop on Local & Metropolitan Area Networks (LANMAN), Chapel Hill, NC, USA, 13–14 October 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.; Zhu, M.; et al. B4: Experience with a globally-deployed software defined WAN. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 3–14. [Google Scholar] [CrossRef]
- Wang, Z.; Crowcroft, J. Quality-of-service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. 1996, 14, 1228–1234. [Google Scholar] [CrossRef]
- Tapolcai, J.; Pin-Han, H.; Haque, A. TROP: A Novel Approximate Link-State Dissemination Framework For Dynamic Survivable Routing in MPLS Networks. Parallel Distrib. Syst. IEEE Trans. 2008, 19, 311–322. [Google Scholar] [CrossRef]
- Juttner, A.; Szviatovski, B.; Mecs, I.; Rajko, Z. Lagrange relaxation based method for the QoS routing problem. In Proceedings of the IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society, Anchorage, AK, USA, 22–26 April 2001; Volume 2, pp. 859–868. [Google Scholar] [CrossRef]
Symbol/Term | Description |
---|---|
vi, (i) | Node i |
N | Number of nodes |
ei,j | Links traversing vi and vj |
E | {ei,j} |
ci,j | Link cost of ei,j |
pi,j | Failure probability of ei,j |
{ri,j} | At-Risk/Original path |
{xi,j} | New path |
R1, R2, … | Paths |
s and t | Source and destination pair, respectively |
Flow Operation | Addition or removal of flow-entries to/from flow tables |
Operational cost | Number of required flow operations for restoration |
Path cost | for path R = {xi,j} |
Path length | for path R = {xi,j} |
Number of flow operations required to reroute the original flow to path R = {xi,j} | |
(1 − pi,j) for path R = {xi,j} | |
for path R = {xi,j} | |
Risk threshold | |
η | Total operational cost threshold |
Average operational cost threshold | |
Individual operational cost threshold |
Path (R) | β | π | ||
---|---|---|---|---|
0 | 0.6784 | 0.5074 | ||
3 | 0.2874 | 0.7502 | ||
4 | 0.1526 | 0.8585 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astaneh, S.A.; Shah Heydari, S.; Taghavi Motlagh, S.; Izaddoost, A. Trade-offs between Risk and Operational Cost in SDN Failure Recovery Plan. Future Internet 2022, 14, 263. https://doi.org/10.3390/fi14090263
Astaneh SA, Shah Heydari S, Taghavi Motlagh S, Izaddoost A. Trade-offs between Risk and Operational Cost in SDN Failure Recovery Plan. Future Internet. 2022; 14(9):263. https://doi.org/10.3390/fi14090263
Chicago/Turabian StyleAstaneh, Saeed A., Shahram Shah Heydari, Sara Taghavi Motlagh, and Alireza Izaddoost. 2022. "Trade-offs between Risk and Operational Cost in SDN Failure Recovery Plan" Future Internet 14, no. 9: 263. https://doi.org/10.3390/fi14090263
APA StyleAstaneh, S. A., Shah Heydari, S., Taghavi Motlagh, S., & Izaddoost, A. (2022). Trade-offs between Risk and Operational Cost in SDN Failure Recovery Plan. Future Internet, 14(9), 263. https://doi.org/10.3390/fi14090263