A Novel Hybrid Edge Detection and LBP Code-Based Robust Image Steganography Method
Abstract
:1. Introduction
- Our proposed scheme increases the number of edge pixels by hybridizing edge images with an OR operator and conducting further need-based dilatation of edge areas in the hybridized image, which in turn improves the embedding capacity.
- The scheme improves the data embedding capabilities and robustness of the technique by implanting data in generated LBP codes from edge pixels.
- The strategy also preserves the stego image’s visual quality, which is higher than the competitors. The technique demonstrates considerable resistance to statistical assaults as well.
2. Related Works
2.1. A Brief on Edge Detectors and LBP Code
2.2. LBP-Based Image Steganography Method
2.3. Hybrid Edge Detection Based Image Steganography Method
2.4. LBP-Based Reversible Image Steganography Method
2.5. LBP in Prediction Error Based Image Steganography Method
3. Proposed Work
3.1. Embedding Steps
- if then
- if is odd then
- else
- if is even then
- end if
- end if
- else
- if then
- if is even then
- else
- if is odd then
- end if
- end if
- end if
- end if
3.2. Data Extraction Cover Image Restoration
- if then
- else
- end if
3.3. Illustration of the Proposed Work
- ;
- ;
- ;
- ;
- ;
- ;
- = ;
- = H;
- =
- = ;
4. Results and Discussion
4.1. Experimental Setup
4.2. Mathematical Representation of Feature Values
4.3. Experimental Results and Discussion
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadhim, I.J.; Premaratne, P.; Vial, P.J.; Halloran, B. Comprehensive survey of image steganography: Techniques, Evaluations, and trends in future research. Neurocomputing 2019, 335, 299–326. [Google Scholar] [CrossRef]
- Girdhar, A.; Kumar, V. Comprehensive survey of 3D image steganography techniques. IET Image Process. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Kusuma, E.J.; Indriani, O.R.; Sari, C.A.; Rachmawanto, E.H. An imperceptible LSB image hiding on edge region using DES encryption. In Proceedings of the 2017 International Conference on Innovative and Creative Information Technology (ICITech), Salatiga, Indonesia, 2–4 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Piras, L.; Giacinto, G. Information fusion in content based image retrieval: A comprehensive overview. Inf. Fusion 2017, 37, 50–60. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Pei, Q. Independent embedding domain based two-stage robust reversible watermarking. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 2406–2417. [Google Scholar] [CrossRef]
- Ernawan, F.; Kabir, M.N. An improved watermarking technique for copyright protection based on tchebichef moments. IEEE Access 2019, 7, 151985–152003. [Google Scholar] [CrossRef]
- Chen, W.J.; Chang, C.C.; Le, T.H.N. High payload steganography mechanism using hybrid edge detector. Expert Syst. Appl. 2010, 37, 3292–3301. [Google Scholar] [CrossRef]
- Tseng, H.W.; Leng, H.S. High-payload block-based data hiding scheme using hybrid edge detector with minimal distortion. IET Image Process. 2014, 8, 647–654. [Google Scholar] [CrossRef]
- Adi, P.W.; Rahmanti, F.Z.; Abu, N.A. High quality image steganography on integer Haar Wavelet Transform using modulus function. In Proceedings of the 2015 International Conference on Science in Information Technology (ICSITech), Yogyakarta, Indonesia, 27–28 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 79–84. [Google Scholar] [CrossRef]
- Sun, S. A novel edge based image steganography with 2k correction and Huffman encoding. Inf. Process. Lett. 2016, 116, 93–99. [Google Scholar] [CrossRef]
- Swain, G. Adaptive pixel value differencing steganography using both vertical and horizontal edges. Multimed. Tools Appl. 2016, 75, 13541–13556. [Google Scholar] [CrossRef]
- Khan, S.; Ahmad, N.; Ismail, M.; Minallah, N.; Khan, T. A secure true edge based 4 least significant bits steganography. In Proceedings of the 2015 International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 19–20 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Hussain, M.; Wahab, A.W.A.; Javed, N.; Jung, K.H. Recursive information hiding scheme through LSB, PVD shift, and MPE. IETE Tech. Rev. 2018, 35, 53–63. [Google Scholar] [CrossRef]
- Al-Dmour, H.; Al-Ani, A. A steganography embedding method based on edge identification and XOR coding. Expert Syst. Appl. 2016, 46, 293–306. [Google Scholar] [CrossRef]
- Bai, J.; Chang, C.C.; Nguyen, T.S.; Zhu, C.; Liu, Y. A high payload steganographic algorithm based on edge detection. Displays 2017, 46, 42–51. [Google Scholar] [CrossRef]
- Vanmathi, C.; Prabu, S. Image steganography using fuzzy logic and chaotic for large payload and high imperceptibility. Int. J. Fuzzy Syst. 2018, 20, 460–473. [Google Scholar] [CrossRef]
- Lee, C.F.; Chang, C.C.; Xie, X.; Mao, K.; Shi, R.H. An adaptive high-fidelity steganographic scheme using edge detection and hybrid hamming codes. Displays 2018, 53, 30–39. [Google Scholar] [CrossRef]
- Gaurav, K.; Ghanekar, U. Image steganography based on Canny edge detection, dilation operator and hybrid coding. J. Inf. Secur. Appl. 2018, 41, 41–51. [Google Scholar] [CrossRef]
- Setiadi, D.; Jumanto, J. An enhanced LSB-image steganography using the hybrid Canny-Sobel edge detection. Cybern. Inf. Technol. 2018, 18, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, A.; Kumar, M. Information hiding with adaptive steganography based on novel fuzzy edge identification. Def. Technol. 2019, 15, 162–169. [Google Scholar] [CrossRef]
- Setiadi, D.R.I.M. Improved payload capacity in LSB image steganography uses dilated hybrid edge detection. J. King Saud Univ. Comput. Inf. Sci. 2019, 34, 104–114. [Google Scholar] [CrossRef]
- Vishnu, B.; Namboothiri, L.V.; Sajeesh, S.R. Enhanced image steganography with PVD and edge detection. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 827–832. [Google Scholar] [CrossRef]
- Jan, A.; Parah, S.A.; Malik, B.A. A novel Laplacian of Gaussian (LoG) and chaotic encryption based image steganography technique. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Chakraborty, S.; Jalal, A.S. A novel local binary pattern based blind feature image steganography. Multimed. Tools Appl. 2020, 79, 19561–19574. [Google Scholar] [CrossRef]
- Sultana, H.; Kamal, A. Image Steganography System based on Hybrid Edge Detector. In Proceedings of the 2021 24th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ghosal, S.K.; Chatterjee, A.; Sarkar, R. Image steganography based on Kirsch edge detection. Multimed. Syst. 2021, 27, 73–87. [Google Scholar] [CrossRef]
- Kamal, A.; Islam, M.M. Uses of Local Binary Pattern Codes for Enriching the Embedding Performance. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Luo, T.; Jiang, G.; Yu, M.; Gao, W. Novel prediction error based reversible data hiding method using histogram shifting. Int. J. Comput. Theory Eng. 2015, 7, 332. [Google Scholar] [CrossRef] [Green Version]
- Sultana, H.; Kamal, A.; Islam, M.M. Enhancing the Robustness of Visual Degradation Based HAM Reversible Data Hiding. J. Comput. Sci. 2016, 12, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.C.; Tseng, C.Y.; Huang, S.W.; Nhan Vo, T. Pixel-value-ordering based reversible information hiding scheme with self-adaptive threshold strategy. Symmetry 2018, 10, 764. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Ke, Y.; Zhang, M.; Lei, Y.; Ding, Y. High-fidelity reversible data hiding using dynamic prediction and expansion. J. Electron. Imaging 2019, 28, 013013. [Google Scholar] [CrossRef]
- Kamal, A.; Islam, M.M. Boosting up the data hiding rate through multi cycle embedment process. J. Vis. Commun. Image Represent. 2016, 40, 574–588. [Google Scholar] [CrossRef]
- Yang, C.Y.; Wu, J.L. Two-Bit Embedding Histogram-Prediction-Error Based Reversible Data Hiding for Medical Images with Smooth Area. Computers 2021, 10, 152. [Google Scholar] [CrossRef]
- Lee, C.F.; Chen, H.L. Adjustable prediction-based reversible data hiding. Digit. Signal Process. 2012, 22, 941–953. [Google Scholar] [CrossRef]
- Tamilselvi, P.; Manikandan, M. Prediction error and histogram shifting based reversible data hiding. In Proceedings of the 2015 3rd International Conference on Signal Processing, Communication and Networking (ICSCN), Chennai, India, 26–28 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Tsai, P.; Hu, Y.C.; Yeh, H.L. Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process. 2009, 89, 1129–1143. [Google Scholar] [CrossRef]
- Sahu, A.K.; Swain, G. Reversible image steganography using dual-layer LSB matching. Sens. Imaging 2020, 21, 1–21. [Google Scholar] [CrossRef]
- Hong, W. Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt. Commun. 2012, 285, 101–108. [Google Scholar] [CrossRef]
- Lee, C.F.; Weng, C.Y.; Chen, K.C. An efficient reversible data hiding with reduplicated exploiting modification direction using image interpolation and edge detection. Multimed. Tools Appl. 2017, 76, 9993–10016. [Google Scholar] [CrossRef]
- Yao, H.; Qin, C.; Tang, Z.; Tian, Y. Improved dual-image reversible data hiding method using the selection strategy of shiftable pixels’ coordinates with minimum distortion. Signal Process. 2017, 135, 26–35. [Google Scholar] [CrossRef]
- Yi, S.; Zhou, Y. Binary-block embedding for reversible data hiding in encrypted images. Signal Process. 2017, 133, 40–51. [Google Scholar] [CrossRef]
- Hassan, F.S.; Gutub, A. Novel embedding secrecy within images utilizing an improved interpolation-based reversible data hiding scheme. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Sahu, A.K.; Swain, G. High fidelity based reversible data hiding using modified LSB matching and pixel difference. J. King Saud-Univ. Comput. Inf. Sci. 2019, 34, 1395–1409. [Google Scholar] [CrossRef]
- Sahu, M.; Padhy, N.; Gantayat, S.S.; Sahu, A.K. Local binary pattern-based reversible data hiding. CAAI Trans. Intell. Technol. 2022, 7, 695–709. [Google Scholar] [CrossRef]
- Sultana, H.; Kamal, A. An Edge Detection Based Reversible Data Hiding Scheme. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
Image Name | Correlation Coefficient Values | ||||
---|---|---|---|---|---|
Proposed | Chakroborty [24] | Sahu [44] | Sultana [25] | Kamal [27] | |
F16.jpg | 0.9999 | 0.9998 | 0.9993 | 0.9973 | 0.9998 |
babon.jpg | 0.9999 | 0.9997 | 0.9990 | 0.9960 | 0.9997 |
basket.jpg | 0.9999 | 0.9999 | 0.9998 | 0.9991 | 0.9997 |
boat.jpg | 0.9999 | 0.9998 | 0.9993 | 0.9967 | 0.9999 |
brbra.jpg | 0.9999 | 0.9999 | 0.9997 | 0.9988 | 0.9990 |
lena.jpg | 0.9999 | 0.9998 | 0.9994 | 0.9971 | 0.9999 |
livingroom.jpg | 0.9999 | 0.9998 | 0.9993 | 0.9970 | 0.9998 |
pepper.jpg | 0.9999 | 0.9998 | 0.9995 | 0.9976 | 0.9998 |
walkbridge.jpg | 0.9999 | 0.9999 | 0.9995 | 0.9980 | 0.9984 |
wheel.jpg | 0.9999 | 0.9998 | 0.9996 | 0.9982 | 0.9996 |
Image Name | Cosine Similarity Values | ||||
---|---|---|---|---|---|
Proposed | Chakroborty [24] | Sahu [44] | Sultana [25] | Kamal [27] | |
F16.jpg | 0.99999 | 0.99999 | 0.99996 | 0.99984 | 0.99999 |
babon.jpg | 0.99985 | 0.99985 | 0.99980 | 0.99960 | 0.99986 |
basket.jpg | 0.99999 | 0.99991 | 0.99995 | 0.99981 | 0.99997 |
boat.jpg | 0.99999 | 0.99998 | 0.99993 | 0.99966 | 0.99999 |
brbra.jpg | 0.99999 | 0.99998 | 0.99994 | 0.99977 | 0.99990 |
lena.jpg | 0.99937 | 0.99939 | 0.99934 | 0.99939 | 0.99939 |
livingroom.jpg | 0.99999 | 0.99998 | 0.99992 | 0.99963 | 0.99998 |
pepper.jpg | 0.99999 | 0.99998 | 0.99992 | 0.9996 | 0.99999 |
walkbridge.jpg | 0.99999 | 0.99998 | 0.99992 | 0.99963 | 0.99984 |
wheel.jpg | 0.99999 | 0.99998 | 0.99992 | 0.99966 | 0.99996 |
Feature | Values | ||||
---|---|---|---|---|---|
Proposed | Chakroborty [24] | Sahu [44] | Sultana [25] | Kamal [27] | |
Entropy | 0.0032 | 0.0077 | 0.9973 | 1.4735 | 0.4783 |
Standard Deviation | 3.4406 | 4.9651 | 5.9980 | 4.9960 | 3.9998 |
Correlation coefficient | 0.9999 | 0.9969 | 0.9973 | 0.9981 | 0.9979 |
Cosine Similarity | 0.9989 | 0.9893 | 0.9979 | 0.9966 | 0.9977 |
Image Name | t-Test Values |
---|---|
F16.jpg | 6.3822 |
baboon.jpg | 3.0015 |
basket.jpg | 0.3493 |
boat.jpg | 0.0039 |
brbra.jpg | 0.0391 |
lena.jpg | 7.5305 |
livingroom.jpg | 0.2402 |
pepper.jpg | 0.0039 |
walkbridge.jpg | 0.0088 |
wheel.jpg | 2.1080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, H.; Kamal, A.H.M.; Hossain, G.; Kabir, M.A. A Novel Hybrid Edge Detection and LBP Code-Based Robust Image Steganography Method. Future Internet 2023, 15, 108. https://doi.org/10.3390/fi15030108
Sultana H, Kamal AHM, Hossain G, Kabir MA. A Novel Hybrid Edge Detection and LBP Code-Based Robust Image Steganography Method. Future Internet. 2023; 15(3):108. https://doi.org/10.3390/fi15030108
Chicago/Turabian StyleSultana, Habiba, A. H. M. Kamal, Gahangir Hossain, and Muhammad Ashad Kabir. 2023. "A Novel Hybrid Edge Detection and LBP Code-Based Robust Image Steganography Method" Future Internet 15, no. 3: 108. https://doi.org/10.3390/fi15030108
APA StyleSultana, H., Kamal, A. H. M., Hossain, G., & Kabir, M. A. (2023). A Novel Hybrid Edge Detection and LBP Code-Based Robust Image Steganography Method. Future Internet, 15(3), 108. https://doi.org/10.3390/fi15030108