Rethinking Blockchain Technologies for the Maritime Industry: An Overview of the Current Landscape
Abstract
:1. Introduction
2. Maritime Digitalization
3. Blockchain Technologies for Maritime Applications/Use Cases
3.1. Blockchain for Smart Shipping: CargoX
3.2. Blockchain for Maritime Sustainability/Decarbonization: BunkerTrace
3.3. Blockchain for Maritime Supply Chain
3.3.1. TradeLens
3.3.2. Walmart’s Blockchain
3.4. Blockchain for Other Applications in Maritime Ecosystem: Maritime Blockchain Labs (MBL)
3.5. Blockchain for Ports: Rotterdam Port
3.6. Blockchain for Maritime Insurwave
4. Challenges, Opportunities, and Future Perspectives of Blockchain for Maritime
4.1. Difficulties in Technology
4.2. Challenges Arising Maritime Sector
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Gharehgozli, A.; Vijay Ahuja, M.; Lee, J.-Y. Blockchain in Maritime Supply Chain: A Synthesis Analysis of Benefits, Challenges and Limitations. J. Supply Chain. Oper. Manag. 2020, 18, 257. [Google Scholar]
- Moavenzadeh, J.; Doherty, S.; Philip, R. Enabling Trade Valuing Growth Opportunities: In Collaboration with Bain & Company and the World Bank 3 Enabling Trade Valuing Growth Opportunities; World Economic Forum: Geneva, Switzerland, 2013. [Google Scholar]
- Farah, M.B.; Ahmed, Y.; Mahmoud, H.; Shah, S.A.; Al-Kadri, M.O.; Taramonli, S.; Bellekens, X.; Abozariba, R.; Idrissi, M.; Aneiba, A. A survey on blockchain technology in the maritime industry: Challenges and future perspectives. Future Gener. Comput. Syst. 2024, 157, 618–637. [Google Scholar] [CrossRef]
- MAERSK. TradeLens Blockchain-Enabled Digital Shipping Platform Continues Expansion with Addition of Major Ocean Carriers Hapag-Lloyd and Ocean Network Express. 2 July 2019. Available online: https://www.maersk.com/news/articles/2019/07/02/hapag-lloyd-and-ocean-network-express-join-tradelens (accessed on 13 August 2024).
- How to Prevent Supply Chain Fraud with Blockchain. Available online: https://www.dock.io/post/supply-chain-fraud-blockchain (accessed on 22 August 2024).
- Fernandez-Carames, T.M.; Fraga-Lamas, P. A Review on the Application of Blockchain to the Next Generation of Cybersecure Industry 4.0 Smart Factories. IEEE Access 2019, 7, 45201–45218. [Google Scholar] [CrossRef]
- Iyer, L.S. AI enabled applications towards intelligent transportation. Transp. Eng. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Nguyen, S.; Leman, A.; Xiao, Z.; Fu, X.; Zhang, X.; Wei, X.; Zhang, W.; Li, N.; Zhang, W.; Qin, Z. Blockchain-Powered Incentive System for JIT Arrival Operations and Decarbonization in Maritime Shipping. Sustainability 2023, 15, 15686. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Arha, H. Understanding the Blockchain technology adoption in supply chains-Indian context. Int. J. Prod. Res. 2019, 57, 2009–2033. [Google Scholar] [CrossRef]
- Ying, W.; Jia, S.; Du, W. Digital enablement of blockchain: Evidence from HNA group. Int. J. Inf. Manag. 2018, 39, 1–4. [Google Scholar] [CrossRef]
- Treleaven, P.; Brown, R.G.; Yang, D. Blockchain Technology in Finance. Computer 2017, 50, 14–17. [Google Scholar] [CrossRef]
- Al-Nbhany, W.A.N.A.; Zahary, A.T.; Al-Shargabi, A.A. Blockchain-IoT Healthcare Applications and Trends: A Review. IEEE Access 2024, 12, 4178–4212. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Liu, Y.; Feng, L.; Zhang, W.; Lertwuthikarn, T.; Goh, R.S.M. EMRShare: A Cross-Organizational Medical Data Sharing and Management Framework Using Permissioned Blockchain. In Proceedings of the International Conference on Parallel and Distributed Systems—ICPADS, Singapore, 11–13 December 2018. [Google Scholar] [CrossRef]
- Kassen, M. Blockchain and public service delivery: A lifetime cross-referenced model for e-government. Enterp. Inf. Syst. 2024, 18, 2317175. [Google Scholar] [CrossRef]
- Cagigas, D.; Clifton, J.; Diaz-Fuentes, D.; Fernandez-Gutierrez, M. Blockchain for Public Services: A Systematic Literature Review. IEEE Access 2021, 9, 13904–13921. [Google Scholar] [CrossRef]
- Wan, Y.; Gao, Y.; Hu, Y. Blockchain application and collaborative innovation in the manufacturing industry: Based on the perspective of social trust. Technol. Forecast. Soc. Chang. 2022, 177, 121540. [Google Scholar] [CrossRef]
- Nabi, M.; Ilyas, M.; Ahmad, J. Challenges and solutions in the development of blockchain applications: Extraction from SLR and empirical study. J. Softw. Evol. Process 2024, 36, e2651. [Google Scholar] [CrossRef]
- Tijan, E.; Jović, M.; Aksentijević, S.; Pucihar, A. Digital transformation in the maritime transport sector. Technol. Forecast. Soc. Chang. 2021, 170, 120879. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, C.; Zhang, J.; Chen, Z.; Liu, M.; Aziz, F.; Kurniawan, T.A.; Yap, P.-S. Digitalization and innovation in green ports: A review of current issues, contributions and the way forward in promoting sustainable ports and maritime logistics. Sci. Total. Environ. 2024, 912, 169075. [Google Scholar] [CrossRef]
- Jović, M.; Tijan, E.; Brčić, D.; Pucihar, A. Digitalization in Maritime Transport and Seaports: Bibliometric, Content and Thematic Analysis. J. Mar. Sci. Eng. 2022, 10, 486. [Google Scholar] [CrossRef]
- Banafa, A. IoT, AI, and Blockchain: Catalysts for Digital Transformation. In Transformative AI; River Publishers: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Salah, K.; Member, S.; Rehman, M.H.U.R. Blockchain for AI: Review and Open Research Challenges. IEEE Access 2019, 7, 10127–10149. [Google Scholar] [CrossRef]
- Haber, S.; Stornetta, S. How to timestamp a digital document—Original blockchain paper 1991. J. Cryptol. 1991, 3, 99–111. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. October 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 13 August 2024).
- Xiao, Z.; Li, Z.; Yang, Y.; Chen, P.; Liu, R.W.; Jing, W.; Pyrloh, Y.; Sotthiwat, E.; Goh, R.S.M. Blockchain and IoT for Insurance: A Case Study and Cyberinfrastructure Solution on Fine-Grained Transportation Insurance. IEEE Trans. Comput. Soc. Syst. 2020, 7, 1409–1422. [Google Scholar] [CrossRef]
- Singh, S.K.; Jenamani, M. ProcessChain: A blockchain-based framework for privacy preserving cross-organizational business process mining from distributed event logs. Bus. Process Manag. J. 2024, 30, 239–269. [Google Scholar] [CrossRef]
- Krishnapriya, K.S.; Rajeswari, M.; Brindha, D.; Sivamani, C.; Sowmiya, M.; Thilagavathi, C. Comparable Works in Blockchain Technology. In Blockchain Intelligent Systems: Protocols, Application and Approaches for Future Generation Computing; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Xu, J.; Wang, C.; Jia, X. A Survey of Blockchain Consensus Protocols. ACM Comput. Surv. 2023, 55, 278. [Google Scholar] [CrossRef]
- Juodis, M.; Filatovas, E.; Paulavičius, R. Overview and empirical analysis of wealth decentralization in blockchain networks. ICT Express 2024, 10, 380–386. [Google Scholar] [CrossRef]
- Gangwal, A.; Gangavalli, H.R.; Thirupathi, A. A survey of Layer-two blockchain protocols. J. Netw. Comput. Appl. 2023, 209, 103539. [Google Scholar] [CrossRef]
- Harish, V.; Sridevi, R. Performance Analysis of Public and Private Blockchains and Future Research Directions. In Proceedings of the International Conference on Network Security and Blockchain Technology—ICNSBT 2023, Midnapore, India, 24–26 March 2023; Lecture Notes in Networks and Systems. Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Dib, O.; Brousmiche, K.-L.; Durand, A.; Thea, E.; Hamida, B. Consortium Blockchains: Overview, Applications and Challenges. Int. J. Adv. Telecommun. 2018, 11, 51–64. [Google Scholar]
- Lu, S.; Zhang, X.; Zhao, R.; Chen, L.; Li, J.; Yang, G. P-Raft: An Efficient and Robust Consensus Mechanism for Consortium Blockchains. Electronics 2023, 12, 2271. [Google Scholar] [CrossRef]
- Taherdoost, H. Smart Contracts in Blockchain Technology: A Critical Review. Information 2023, 14, 117. [Google Scholar] [CrossRef]
- Alshahrani, N.M.; Kiah, M.L.M.; Zaidan, B.B.; Alamoodi, A.H.; Saif, A. A Review of Smart Contract Blockchain Based on Multi-Criteria Analysis: Challenges and Motivations. Comput. Mater. Contin. 2023, 75, 2833–2858. [Google Scholar] [CrossRef]
- Huang, R.; Chen, J.; Wang, Y.; Bi, T.; Nie, L.; Zheng, Z. An overview of Web3 technology: Infrastructure, applications, and popularity. Blockchain Res. Appl. 2024, 5, 100173. [Google Scholar] [CrossRef]
- Ray, P.P. Web3: A comprehensive review on background, technologies, applications, zero-trust architectures, challenges and future directions. Internet Things Cyber-Phys. Syst. 2023, 3, 213–248. [Google Scholar] [CrossRef]
- Marr, B. “Artificial Intelligence and Blockchain: 3 Major Benefits of Combining These Two Mega-Trends,” Forbes. [Online]. Available online: https://www.forbes.com/sites/bernardmarr/2018/03/02/artificial-intelligence-and-blockchain-3-major-benefits-of-combining-these-two-mega-trends/#d10a51b4b44b (accessed on 26 November 2024).
- The Great Chain of Being Sure About Things. The Economist. 31 October 2015. [Online]. Available online: https://www.economist.com/briefing/2015/10/31/the-great-chain-of-being-sure-about-things. (accessed on 1 March 2020).
- Sgantzos, K.; Grigg, I. Artificial Intelligence Implementations on the Blockchain. Use Cases and Future Applications. Future Internet 2019, 11, 170. [Google Scholar] [CrossRef]
- Tanwar, S.; Bhatia, Q.; Patel, P.; Kumari, A. Machine Learning Adoption in Blockchain-Based Smart Applications: The Challenges, and a Way Forward. IEEE Access 2020, 8, 474–488. [Google Scholar] [CrossRef]
- Janson, S.; Merkle, D.; Middendorf, M. A decentralization approach for swarm intelligence algorithms in networks applied to multi swarm PSO. Int. J. Intell. Comput. Cybern. 2008, 1, 25–45. [Google Scholar] [CrossRef]
- Magazzeni, D.; Mcburney, P.; Nash, W. Validation and verification of smart contracts: A research agenda. Computer 2017, 50, 50–57. [Google Scholar] [CrossRef]
- Lin, X.; Member, S.; Li, J.; Wu, J.; Liang, H.; Yang, W. Making Knowledge Tradable in Edge-AI Enabled IoT: A Consortium Blockchain-Based Efficient and Incentive Approach. IEEE Trans. Ind. Inform. 2019, 15, 6367–6378. [Google Scholar] [CrossRef]
- Strobel, V.; Dorigo, M. Blockchain Technology for Robot Swarms: A Shared Knowledge and Reputation Management System for Collective Estimation. In Swarm Intelligence, Proceedings of the 11th International Conference, ANTS 2018, Rome, Italy, 29–31 October 2018; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Luo, J.; Ding, B.; Xu, J. Filtering inconsistent failure in robot collective decision with blockchain. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019. [Google Scholar] [CrossRef]
- Thanh, B.N.; Son, H.X.; Vo, D.T.H. Blockchain: The Economic and Financial Institution for Autonomous AI? J. Risk Financ. Manag. 2024, 17, 54. [Google Scholar] [CrossRef]
- Rahouti, M.; Xiong, K.; Ghani, N. Bitcoin Concepts, Threats, and Machine-Learning Security Solutions. IEEE Access 2018, 6, 67189–67205. [Google Scholar] [CrossRef]
- Ressi, D.; Romanello, R.; Piazza, C.; Rossi, S. AI-enhanced blockchain technology: A review of advancements and opportunities. J. Netw. Comput. Appl. 2024, 225, 103858. [Google Scholar] [CrossRef]
- Chen, J.; Duan, K.; Zhang, R.; Zeng, L.; Wang, W. An AI Based Super Nodes Selection Algorithm in BlockChain Networks. arXiv 2018, arXiv:1808.00216. [Google Scholar]
- Dillenberger, D.N.; Novotny, P.; Zhang, Q.; Jayachandran, P.; Gupta, H.; Hans, S.; Verma, D.; Chakraborty, S.; Thomas, J.J.; Walli, M.M.; et al. Blockchain Analytics and Artificial Intelligence. IBM J. Res. Dev. 2019, 63, 5:1–5:14. [Google Scholar] [CrossRef]
- Kuznetsov, O.; Sernani, P.; Romeo, L.; Frontoni, E.; Mancini, A. On the Integration of Artificial Intelligence and Blockchain Technology: A Perspective About Security. IEEE Access 2024, 12, 3881–3897. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, X.; Xiao, Z.; Xu, H.; Qin, Z. Vessel Trajectory Prediction in Maritime Transportation: Current Approaches and Beyond. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19980–19998. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Z.; McNeil, L. Digital empowerment for shipping development: A framework for establishing a smart shipping index system. Marit. Policy Manag. 2022, 49, 850–863. [Google Scholar] [CrossRef]
- Pu, S. Blockchain Adoption in the Maritime Industry. Ph.D. Thesis, Nanyang Technological University, Singapore, 2022. [Google Scholar] [CrossRef]
- Groenfeldt, T. IBM and Maersk Apply Blockchain to Container Shipping. Forbes, 5 March 2017. [Google Scholar]
- International Seaborne Trade Carried by Container ships from 1980 to 2023. Statista Research Department. [Online]. Available online: https://proxy.parisjc.edu:8293/statistics/253987/international-seaborne-trade-carried-by-containers/. (accessed on 26 November 2024).
- Popper, N.L.S. Blockchain: A Better Way to Track Pork Chops, Bonds, Bad Peanut Butter? The New York Times, 4 March 2017. [Google Scholar]
- Park, K. Blockchain Is About to Revolutionize the Shipping Industry. Bloomberg, 19 April 2018. [Google Scholar]
- GBSN, Sia Partner. Impact of Digitalization in Driving Decarbonization in the Shipping Industry; GBSN: Washington, DC, USA, 2024. [Google Scholar]
- CargoX—Building Digital Trust, One Document at a Time. Available online: https://cargox.io/ (accessed on 27 August 2024).
- BunkerTrace|Full Visibility of Your Bunkering Operations. Available online: https://bunkertrace.co/ (accessed on 27 August 2024).
- Tradelens. August 2024. Available online: https://www.tradelens.com/ (accessed on 27 August 2024).
- Jeacocke, S.; Kouwenhoven, N. TradeLens uses blockchain to help Customs authorities facilitate trade and increase compliance. WCO News, 16 October 2018. [Google Scholar]
- Jovanovic, M.; Kostić, N.; Sebastian, I.M.; Sedej, T. Managing a blockchain-based platform ecosystem for industry-wide adoption: The case of TradeLens. Technol. Forecast. Soc. Chang. 2022, 184, 121981. [Google Scholar] [CrossRef]
- Kamath, R. Food Traceability on Blockchain: Walmart’s Pork and Mango Pilots with IBM. J. Br. Blockchain Assoc. 2018, 1, 47–53. [Google Scholar] [CrossRef]
- Tan, B.; Yan, J.; Chen, S.; Liu, X. The Impact of Blockchain on Food Supply Chain: The Case of Walmart. In Smart Blockchain, Proceedings of the First International Conference, SmartBlock 2018, Tokyo, Japan, 10–12 December 2018; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2018; Volume 11373, pp. 167–177. [Google Scholar] [CrossRef]
- Nguyen, S.; Chen, P.S.L.; Du, Y. Blockchain adoption in container shipping: An empirical study on barriers, approaches, and recommendations. Mar. Policy 2023, 155, 105724. [Google Scholar] [CrossRef]
- Decarbonizing the Maritime Shipping Industry Starter Guide to Reducing Greenhouse Gas Emissions from Maritime Shipping. November 2023. Available online: www.transportation.gov/Momentum (accessed on 26 November 2024).
- World Maritime News. Blockchain Consortium to Curb Dangerous Goods Misdeclaration. Offshore Energy, 25 June 2019.
- Bloc—Blockchain for Real. Maritime Blockchain Labs Findings & Conclusions; Bloc: Skibby, Denmark, 2020. [Google Scholar]
- Port of Rotterdam|Rotterdam Port Authority. Available online: https://www.portofrotterdam.com/en (accessed on 27 August 2024).
- How Blockchain Is Reducing Fluidity of Risk in Marine Insurance|EY Singapore. Available online: https://www.ey.com/en_sg/insights/blockchain/how-blockchain-is-reducing-fluidity-of-risk-in-marine-insurance (accessed on 28 August 2024).
- Brophy, R. Blockchain and insurance: A review for operations and regulation. J. Financ. Regul. Compliance 2019, 28, 215–234. [Google Scholar] [CrossRef]
- Amponsah; Adekoya, A.F.; Weyori, B.A. Blockchain in Insurance: Exploratory Analysis of Prospects and Threats. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 445–466. [Google Scholar] [CrossRef]
- Li, L.; Zhou, H. A survey of blockchain with applications in maritime and shipping industry. Inf. Syst. e-Bus. Manag. 2021, 19, 789–807. [Google Scholar] [CrossRef]
- Reed, C. ‘Blockchain’ and the World of Marine Insurance. Available online: https://www.marinelink.com/news/blockchain-insurance429260%20unpublished (accessed on 28 August 2024).
- Insurwave|The Best Way to Manage Your Risk Data. Available online: https://insurwave.com/ (accessed on 28 August 2024).
- Toufaily, E.; Zalan, T.; Dhaou, S.B. A framework of blockchain technology adoption: An investigation of challenges and expected value. Inf. Manag. 2021, 58, 103444. [Google Scholar] [CrossRef]
- Biswas, B.; Gupta, R. Analysis of barriers to implement blockchain in industry and service sectors. Comput. Ind. Eng. 2019, 136, 225–241. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Zhen, L. Blockchain technology in maritime supply chains: Applications, architecture and challenges. Int. J. Prod. Res. 2021, 61, 3547–3563. [Google Scholar] [CrossRef]
- Angelis, J.; da Silva, E.R. Blockchain adoption: A value driver perspective. Bus. Horiz. 2019, 62, 307–314. [Google Scholar] [CrossRef]
- Papathanasiou, A.; Cole, R.; Murray, P. The (non-)application of blockchain technology in the Greek shipping industry. Eur. Manag. J. 2020, 38, 927–938. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. Int. J. Prod. Econ. 2021, 231, 107831. [Google Scholar] [CrossRef]
- Tsiulin, S.; Reinau, K.H.; Hilmola, O.P. The key challenges of blockchain implementation in maritime sector: Summary from literature and previous research findings. Procedia Comput. Sci. 2023, 217, 348–357. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, L.S.; Shah, S.A.; Hameed, S.; Draheim, D. PenChain: A Blockchain-Based Platform for Penalty-Aware Service Provisioning. IEEE Access 2024, 12, 1005–1030. [Google Scholar] [CrossRef]
- Freire, W.P.; Melo, W.S.; Nascimento, V.D.D.; Nascimento, P.R.M.; de Sá, A.O. Towards a Secure and Scalable Maritime Monitoring System Using Blockchain and Low-Cost IoT Technology. Sensors 2022, 22, 4895. [Google Scholar] [CrossRef]
- Munim, Z.H.; Duru, O.; Hirata, E. Rise, Fall, and Recovery of Blockchains in the Maritime Technology Space. J. Mar. Sci. Eng. 2021, 9, 266. [Google Scholar] [CrossRef]
- Carlan, V.; Coppens, F.; Sys, C.; Vanelslander, T.; Van Gastel, G. Blockchain technology as key contributor to the integration of maritime supply chain? In Maritime Supply Chains; Elsevier: Amsterdam, The Netherlands, 2020; pp. 229–259. [Google Scholar] [CrossRef]
- Balci, G.; Surucu-Balci, E. Blockchain adoption in the maritime supply chain: Examining barriers and salient stakeholders in containerized international trade. Transp. Res. Part E Logist. Transp. Rev. 2021, 156, 102539. [Google Scholar] [CrossRef]
- Chen, D. Legal Challenges of Blockchain Technology|Unstoppable Domains|Medium. Available online: https://medium.com/unstoppabledomains/legal-challenges-of-blockchain-technology-e4ab66e84dec (accessed on 28 August 2024).
- Surucu-Balci, E.; Iris, Ç.; Balci, G. Digital information in maritime supply chains with blockchain and cloud platforms: Supply chain capabilities, barriers, and research opportunities. Technol. Forecast. Soc. Chang. 2024, 198, 122978. [Google Scholar] [CrossRef]
Blockchain for AI | Provides ideal storage for deep learning data and supports the maintenance of data integrity, provenance, reliability and security, leading to more trustworthy and credible AI decisions [38,39,40]. |
Supports trustworthy data-sharing, reduces trust friction, and orchestrates AI solutions and decentralized intelligence across multiple parties [41,42,43]. | |
Enables secure and efficient knowledge management [44]. | |
Coordinates untrustworthy devices and edge-AI-enabled IoT [44]. | |
Improves trust in AI-powered robotic decisions and collective decision-making [45,46]. | |
Enables autonomous AI agents to engage and execute economic and financial transactions [47]. | |
AI for blockchain | Makes blockchain applications more resilient against attacks [41,48,49]. |
Supports blockchain network design and performance optimization, such as assisting in mining node pool decisions [50]. | |
Allows for better blockchain services with AI [51,52]. |
Application Areas | Specific Use Cases | Companies | Platform Used |
---|---|---|---|
Smart Shipping | Electronic bill of landing | TradeLens PIL | Hyperledger Fabric |
CargoX | Ethereum | ||
Blue Water Shipping Louis Dreyfus | Ethereum Quorum | ||
Bolero American President Lines (APL) | Corda | ||
Decarbonization | Fuel quality | Bunker-Trace | Ethereum |
BLOC (Blockchain for Low Carbon) | Hyperledger Fabric | ||
Carbon credits | ClimateTrade | Ethereum | |
Supply Chain | Supply Chain | Blockshipping | Ethereum |
DexFreight | RSK | ||
Marine Transport International (MTI) | Hyperledger Fabric | ||
ShipChain | Ethereum | ||
VeChain | VeChainThor | ||
e-Marine | Hyperledger Fabric | ||
TradeLens Amazon | Hyperledger Fabric | ||
Alibaba | Hyperledger Fabric | ||
Maritime ecosystem | Ecosystem | Maritime Blockchain Lab (MBL) | * Not mentioned |
Ship Builder | Samsung Heavy Industries | Hyperledger Fabric & Ethereum | |
BP (British Petroleum) Shell | Hyperledger Fabric | ||
Smart Port | Port of Rotterdam Port of Los Angeles Port of Valencia | Hyperledger Fabric | |
Port of Singapore | Ethereum | ||
Port of Antwerp | Hyperledger Fabric, Ethereum | ||
Maritime finance | Underwriting | Insurwave | Corda |
Eurapco Unity | Hyperledger | ||
Claims | B3i Services AG | Corda | |
Fraud Reduction | RiskStream Collaborative (from RiskBlock) | Corda | |
Cross-Border Payment | Ripple Labs, Inc | Ripple | |
Ship Financing | Shipowenrs.io | Ethereum | |
Escrow Account | 300cubits | Ethereum |
Main Reason | Challenges | Sources |
---|---|---|
Technology | Adoption Cost | [3,73,84] |
Data and Privacy Protection Concerns | [76,84] | |
Scalability | [80,81,84,85,86,87] | |
Interoperability | [76,84,88] | |
Immutability | [80,84,89] | |
Maritime | Conservatism | [83,85,90] |
Lack of Human Resources and Knowledge | [81,82,84,85] | |
Regulations uncertainties | [73,80,84,90] | |
Lack of Support from Stakeholders | [84,92] | |
Revenue Reduction in Various Industries | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Xiao, Z.; Zhang, X.; Fu, X.; Qin, Z. Rethinking Blockchain Technologies for the Maritime Industry: An Overview of the Current Landscape. Future Internet 2024, 16, 454. https://doi.org/10.3390/fi16120454
Kim H, Xiao Z, Zhang X, Fu X, Qin Z. Rethinking Blockchain Technologies for the Maritime Industry: An Overview of the Current Landscape. Future Internet. 2024; 16(12):454. https://doi.org/10.3390/fi16120454
Chicago/Turabian StyleKim, Heejoo, Zhe Xiao, Xiaocai Zhang, Xiuju Fu, and Zheng Qin. 2024. "Rethinking Blockchain Technologies for the Maritime Industry: An Overview of the Current Landscape" Future Internet 16, no. 12: 454. https://doi.org/10.3390/fi16120454
APA StyleKim, H., Xiao, Z., Zhang, X., Fu, X., & Qin, Z. (2024). Rethinking Blockchain Technologies for the Maritime Industry: An Overview of the Current Landscape. Future Internet, 16(12), 454. https://doi.org/10.3390/fi16120454