Blockchain and Smart Contracts for Digital Copyright Protection
Abstract
:1. Introduction and Motivations
2. Related Work
3. Preliminary Considerations
4. Basic Assumptions
5. Proposed Protocol
5.1. Protection Protocol
5.2. Identification and Arbitration Protocol
6. Security Analysis
- When uncorrupted, buyers and content providers do not infringe copyright by distributing pirated copies.
- cannot be corrupted since it is implemented by a TTP.
- can be considered an “honest-but-curious” entity [44]. This means that could obtain information about purchase transactions, but it cannot exploit it to collude with or since it is forced to behave according to the protocol rules. This is a realistic assumption since the protocol forces only to run two smart contracts, and , whose code, once approved, is not allowed to be modified during the life of the blockchain [13,14,15].
- and can be corrupted only “statically”, i.e., deciding which of the two entities is corrupt is made before running the protocol and can no longer be changed [44].
Analysis
- 1.
- cannot reuse tokens employed in previous transactions;
- 2.
- cannot alter or change the watermark generated by by reusing, for example, watermarks employed in previous transactions.
7. Implementation and Performance
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frattolillo, F. Watermarking Protocols: A Short Guide for Beginners. Future Internet 2023, 15, 163. [Google Scholar] [CrossRef]
- Liu, K.J.R.; Trappe, W.; Wang, Z.J.; Wu, M.; Zhao, H. Multimedia Fingerprinting Forensics for Traitor Tracing; Hindawi Publishing Corporation: New York, NY, USA, 2005. [Google Scholar]
- Lei, C.L.; Yu, P.L.; Tsai, P.L.; Chan, M.H. An Efficient and Anonymous Buyer-Seller Watermarking Protocol. IEEE Trans. Image Process. 2004, 13, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.I.; Chen, M.T.; Sun, W.Z. Buyer-Seller Watermarking Protocols with Off-line Trusted Parties. In Proceedings of the IEEE International Conference on Multimedia and Ubiquitous Engineering, Seul, Republic of Korea, 26–28 April 2007; pp. 1035–1040. [Google Scholar]
- Rial, A.; Deng, M.; Bianchi, T.; Piva, A.; Preneel, B. A Provably Secure Anonymous Buyer—Seller Watermarking Protocol. IEEE Trans. Inf. Forensics Secur. 2010, 5, 920–931. [Google Scholar] [CrossRef]
- Rial, A.; Balasch, J.; Preneel, B. A Privacy-Preserving Buyer–Seller Watermarking Protocol Based on Priced Oblivious Transfer. IEEE Trans. Inf. Forensics Secur. 2011, 6, 202–212. [Google Scholar] [CrossRef]
- Bianchi, T.; Piva, A. TTP-free asymmetric fingerprinting based on client side embedding. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1557–1568. [Google Scholar] [CrossRef]
- Bianchi, T.; Piva, A.; Shullani, D. Anticollusion solutions for asymmetric fingerprinting protocols based on client side embedding. Eurasip J. Inf. Secur. 2015, 2015, 6. [Google Scholar] [CrossRef]
- Frattolillo, F. Watermarking protocols: An excursus to motivate a new approach. Int. J. Inf. Secur. 2018, 17, 587–601. [Google Scholar] [CrossRef]
- Agrawal, K.; Aggarwal, M.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. An Extensive Blockchain Based Applications Survey: Tools, Frameworks, Opportunities, Challenges and Solutions. IEEE Access 2022, 10, 116858–116906. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Z.; Zhang, L.; Feng, D.; Peng, M.; Zhang, L.; Han, Z. Blockchain Systems, Technologies, and Applications: A Methodology Perspective. IEEE Commun. Surv. Tutor. 2023, 25, 353–385. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Sun, L.; Zheng, Y.; Wu, C.Q. A Survey of Consortium Blockchain and Its Applications. Cryptography 2024, 8, 12. [Google Scholar] [CrossRef]
- Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and Opportunities. IEEE Trans. Softw. Eng. 2021, 47, 2084–2106. [Google Scholar] [CrossRef]
- Wu, C.; Xiong, J.; Xiong, H.; Zhao, Y.; Yi, W. A Review on Recent Progress of Smart Contract in Blockchain. IEEE Access 2022, 10, 50839–50863. [Google Scholar] [CrossRef]
- Tanwar, S.; Gupta, N.; Tomar, J.S.; Kumar, K.; Treľová, S.; Ivanochko, I. A Review on Blockchain Smart Contract Applications. In Proceedings of the International Conference on Advances in Communication Technology and Computer Engineering, Bolton, UK, 24–25 February 2023; Iwendi, C., Boulouard, Z., Kryvinska, N., Eds.; Springer: Cham, Swizerland, 2023; pp. 175–187. [Google Scholar]
- Frattolillo, F. A Watermarking Protocol Based on Blockchain. Appl. Sci. 2020, 10, 7746. [Google Scholar] [CrossRef]
- Frattolillo, F. Blockchain and Cloud to Overcome the Problems of Buyer and Seller Watermarking Protocols. Appl. Sci. 2021, 11, 12028. [Google Scholar] [CrossRef]
- Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A Survey on Homomorphic Encryption Schemes: Theory and Implementation. ACM Comput. Surv. 2019, 51, 79. [Google Scholar] [CrossRef]
- Zhang, J.; Kou, W.; Fan, K. Secure buyer-seller watermarking protocol. IEE Proc. Inf. Secur. 2006, 153, 15–18. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J. A Secure and Efficient Buyer-Seller Watermarking Protocol. J. Multimed. 2009, 4, 161–168. [Google Scholar] [CrossRef]
- Katzenbeisser, S.; Lemma, A.; Celik, M.U.; van der Veen, M.; Maas, M. A Buyer—Seller Watermarking Protocol Based on Secure Embedding. IEEE Trans. Inf. Forensics Secur. 2008, 3, 783–786. [Google Scholar] [CrossRef]
- Tardos, G. Optimal probabilistic fingerprint codes. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, 9–11 June 2003; pp. 116–125. [Google Scholar]
- Frattolillo, F.; Landolfi, F. Designing a DRM System. In Proceedings of the 4th International Conference on Information Assurance and Security, Naples, Italy, 8–10 September 2008; pp. 221–226. [Google Scholar]
- Zhaofeng, M.; Weihua, H.; Hongmin, G. A new blockchain-based trusted DRM scheme for built-in content protection. Eurasip J. Image Video Process. 2018, 2018, 91. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, M.; Gao, H.; Wang, Z. Blockchain for digital rights management. Future Genereration Comput. Syst. 2018, 89, 746–764. [Google Scholar] [CrossRef]
- Zhao, S.; O’Mahony, D. BMCProtector: A Blockchain and Smart Contract Based Application for Music Copyright Protection. In Proceedings of the International Conference on Blockchain Technology and Application, Xi’an, China, 10–12 December 2018; pp. 1–5. [Google Scholar]
- Peng, W.; Yi, L.; Fang, L.; XinHua, D.; Ping, C. Secure and Traceable Copyright Management System Based on Blockchain. In Proceedings of the IEEE 5th International Conference on Computer and Communications, Chengdu, China, 6–9 December 2019; pp. 1243–1247. [Google Scholar]
- Zhao, B.; Fang, L.; Zhang, H.; Ge, C.; Meng, W.; Liu, L.; Su, C. Y-DWMS: A Digital Watermark Management System Based on Smart Contracts. Sensors 2019, 19, 3091. [Google Scholar] [CrossRef] [PubMed]
- Heo, G.; Yang, D.; Doh, I.; Chae, K. Efficient and Secure Blockchain System for Digital Content Trading. IEEE Access 2021, 9, 77438–77450. [Google Scholar] [CrossRef]
- Qureshi, A.; Megías Jiménez, D. Blockchain-Based Multimedia Content Protection: Review and Open Challenges. Appl. Sci. 2021, 11, 1. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Y.; Zhu, Y.; Hu, P.; Cao, X. FingerChain: Copyrighted Multi-Owner Media Sharing by Introducing Asymmetric Fingerprinting Into Blockchain. IEEE Trans. Netw. Service Manag. 2023, 20, 2869–2885. [Google Scholar] [CrossRef]
- Zhang, Z.; Pei, Q.; Ma, J.; Yang, L. Security and Trust in Digital Rights Management: A Survey. Int. J. Netw. Secur. 2009, 9, 247–263. [Google Scholar]
- Islam, M.M.; In, H.P. Decentralized Global Copyright System Based on Consortium Blockchain with Proof of Authority. IEEE Access 2023, 11, 43101–43115. [Google Scholar] [CrossRef]
- Cox, I.; Miller, M.; Bloom, J.; Fridrich, J.; Kalker, T. Digital Watermarking and Steganography; Morgan Kaufmann: Burlington, MA, USA, 2007. [Google Scholar]
- Zhao, H.V.; Liu, K.J.R. Traitor-Within-Traitor Behavior Forensics: Strategy and Risk Minimization. IEEE Trans. Inf. Forensics Secur. 2006, 1, 440–456. [Google Scholar] [CrossRef]
- Kuribayashi, M. On the Implementation of Spread Spectrum Fingerprinting in Asymmetric Cryptographic Protocol. EURASIP J. Inf. Secur. 2010, 2010, 694797. [Google Scholar] [CrossRef]
- Bianchi, T.; Piva, A. Secure Watermarking for Multimedia Content Protection: A Review of its Benefits and Open Issues. IEEE Signal Process. Mag. 2013, 30, 87–96. [Google Scholar] [CrossRef]
- ElGamal, T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Trans. Inf. Theory 1985, 31, 469–472. [Google Scholar] [CrossRef]
- Goldwasser, S.; Micali, S. Probabilistic encryption & how to play mental poker keeping secret all partial information. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, San Francisco, CA, USA, 5–7 May 1982; pp. 365–377. [Google Scholar]
- Paillier, P. Public-key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the Eurocrypt’99, Prague, Czech Republic, 2–6 May 1999; Volume 1592, Lecture Notes in Computer Science. pp. 223–238. [Google Scholar]
- Rannenberg, K.; Royer, D.; Deuker, A. The Future of Identity in the Information Society—Challenges and Opportunities; Springer: Berlin, Germany, 2009. [Google Scholar]
- Chen, B.; Wornell, G. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 2001, 47, 1423–1443. [Google Scholar] [CrossRef]
- Piva, A.; Bianchi, T.; De Rosa, A. Secure Client-Side ST-DM Watermark Embedding. IEEE Trans. Inf. Forensics Secur. 2010, 5, 13–26. [Google Scholar] [CrossRef]
- Canetti, R. Security and Composition of Cryptographic Protocols: A Tutorial. ACM SIGACT News 2006, 37, 67–92. [Google Scholar] [CrossRef]
- Kuribayashy, M.; Tanaka, H. Fingerprinting Protocol for Images Based on Additive Homomorphic Property. IEEE Trans. Image Process. 2005, 14, 2129–2139. [Google Scholar] [CrossRef]
- Kuribayashi, M. Recent Fingerprinting Techniques with Cryptographic Protocol. In Signal Processing; Miron, S., Ed.; IntechOpen: Rijeka, Croatia, 2010; Chapter 10. [Google Scholar]
- Prins, J.P.; Erkin, Z.; Lagendijk, R.L. Anonymous fingerprinting with robust QIM watermarking techniques. EURASIP J. Inf. Secur. 2007, 2007, 031340. [Google Scholar] [CrossRef]
- Deng, M.; Bianchi, T.; Piva, A.; Preneel, B. An efficient buyer-seller watermarking protocol based on composite signal representation. In Proceedings of the 11th ACM Workshop on Multimedia and Security, Princeton, NJ, USA, 7–8 September 2009; pp. 9–18. [Google Scholar]
- Ethereum. 2024. Available online: https://ethereum.org (accessed on 11 May 2024).
- Solidity. 2024. Available online: https://soliditylang.org/ (accessed on 11 May 2024).
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Aggarwal, S.; Chaudhary, R.; Aujla, G.S.; Kumar, N.; Choo, K.K.R.; Zomaya, A.Y. Blockchain for smart communities: Applications, challenges and opportunities. J. Netw. Comput. Appl. 2019, 144, 13–48. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352–375. [Google Scholar] [CrossRef]
- Bamakan, S.M.H.; Motavali, A.; Bondarti, A.B. A survey of blockchain consensus algorithms performance evaluation criteria. Expert Syst. Appl. 2020, 154, 113385. [Google Scholar] [CrossRef]
Symbols | Meaning |
---|---|
buyer | |
content provider or seller | |
blockchain | |
judge | |
X | digital content purchased by |
information used by to unambiguously identify X | |
timestamp referred to the transaction by which buys X | |
information used to identify | |
N | nonce used to mark the watermarking transaction |
W | watermark |
part of the watermark W generated by the entity | |
watermarked X | |
public key of the entity | |
secret key of the entity | |
one-time public key used to watermark X | |
one-time secret key used to watermark X | |
token encrypted with the key | |
activation of the smart contract upon receipt of messages | |
creation of a block from the smart contract | |
end of the smart contract | |
secret block generated by the blockchain | |
public block generated by the blockchain | |
token encrypted with the key and using a privacy homomorphic cryptosystem with respect to the watermark insertion | |
decryption function inverse of the function |
Entities and Interactions | Actions and Data | |
---|---|---|
: | browses the web site of and picks the content X | |
: | request for | |
: | ||
: | ||
: | ||
: | ||
: | ||
: | ||
: | ||
: | generates | |
: | generates | |
: | generates | |
: | ||
: | ||
: | ||
: | ||
: | makes the payment and notifies | |
: | ||
: | publishes in the blockchain | |
: | ||
: | ||
: | inserts a new entry in its databases, including , , , , and whose search key is | |
: |
Entities and Interactions | Actions and Data | |
---|---|---|
: | finds in the market and extracts | |
: | searches its databases for a possible match on | |
: | ||
: | ||
: | ||
: | retrieves | |
: | decrypts and obtains | |
: | ||
: | ||
: | compares with N and adjudicates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frattolillo, F. Blockchain and Smart Contracts for Digital Copyright Protection. Future Internet 2024, 16, 169. https://doi.org/10.3390/fi16050169
Frattolillo F. Blockchain and Smart Contracts for Digital Copyright Protection. Future Internet. 2024; 16(5):169. https://doi.org/10.3390/fi16050169
Chicago/Turabian StyleFrattolillo, Franco. 2024. "Blockchain and Smart Contracts for Digital Copyright Protection" Future Internet 16, no. 5: 169. https://doi.org/10.3390/fi16050169
APA StyleFrattolillo, F. (2024). Blockchain and Smart Contracts for Digital Copyright Protection. Future Internet, 16(5), 169. https://doi.org/10.3390/fi16050169