Testing Stimulus Equivalence in Transformer-Based Agents
Abstract
:1. Introduction
1.1. Stimulus Equivalence
1.2. Related Work
1.3. Transformer-Based Models
2. Materials and Methods
2.1. Computational Agents Architecture
2.2. Experimental Dataset Creation
2.3. Train Baseline Relations
2.4. Reflexivity Symmetry and Transitivity Evaluations
3. Results
4. Discussion
4.1. Select–Reject Relations
4.2. Training Structure
4.3. Computational Agents Architecture
4.4. General Discussion
4.4.1. Lack of Evidence of an Actual Equivalence Response
4.4.2. Contributions
4.4.3. Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TBM | Transformer-Based Model |
SE | Stimulus Equivalence |
MTS | Matching-To-Sample |
ANNs | Artificial Neural Networks |
DL | Deep Learning |
BERT | Bidirectional Encoder Representations from Transformers |
GPT | Generative Pretrained Transformer |
FLM | Foundational Language Models |
CoT | Chain-of-Thought |
TS | Train Structure |
LS | Linear Series |
MTO | Many-To-One |
OTM | One-To-Many |
RLHF | Reinforcement Learning from Human Feedback |
Appendix A. Train Structures
Appendix A.1. Linear Series
Sample | Comparison | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
A | A-A Reflexivity | A-B Baseline | A-C Transitivity | A-D Transitivity | A-E Transitivity | A-F Transitivity | A-G Transitivity |
B | B-A Symmetry | B-B Reflexivity | B-C Baseline | B-D Transitivity | B-E Transitivity | B-F Transitivity | B-G Transitivity |
C | C-A Transitivity | C-B Symmetry | C-C Reflexivity | C-D Baseline | C-E Transitivity | C-F Transitivity | C-G Transitivity |
D | D-A Transitivity | D-B Transitivity | D-C Symmetry | D-D Reflexivity | D-E Baseline | D-F Transitivity | D-G Transitivity |
E | E-A Transitivity | E-B Transitivity | E-C Transitivity | E-D Symmetry | E-E Reflexivity | E-F Baseline | E-G Transitivity |
F | F-A Transitivity | F-B Transitivity | F-C Transitivity | F-D Transitivity | F-E Symmetry | F-F Reflexivity | F-G Baseline |
G | G-A Transitivity | G-B Transitivity | G-C Transitivity | G-D Transitivity | G-E Transitivity | G-F Symmetry | G-G Reflexivity |
Appendix A.2. One-to-Many Train Structure
Sample | Comparison | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
A | A-A Reflexivity | A-B Baseline | A-C Baseline | A-D Baseline | A-E Baseline | A-F Baseline | A-G Baseline |
B | B-A Symmetry | B-B Reflexivity | B-C Transitivity | B-D Transitivity | B-E Transitivity | B-F Transitivity | B-G Transitivity |
C | C-A Symmetry | C-B Transitivity | C-C Reflexivity | C-D Transitivity | C-E Transitivity | C-F Transitivity | C-G Transitivity |
D | D-A Symmetry | D-B Transitivity | D-C Transitivity | D-D Reflexivity | D-E Transitivity | D-F Transitivity | D-G Transitivity |
E | E-A Symmetry | E-B Transitivity | E-C Transitivity | E-D Transitivity | E-E Reflexivity | E-F Transitivity | E-G Transitivity |
F | F-A Symmetry | F-B Transitivity | F-C Transitivity | F-D Transitivity | F-E Transitivity | F-F Reflexivity | F-G Transitivity |
G | G-A Symmetry | G-B Transitivity | G-C Transitivity | G-D Transitivity | G-E Transitivity | G-F Transitivity | G-G Reflexivity |
Appendix A.3. Many-to-One Train Structure
Sample | Comparison | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
A | A-A Reflexivity | A-B Symmetry | A-C Symmetry | A-D Symmetry | A-E Symmetry | A-F Symmetry | A-G Symmetry |
B | B-A Baseline | B-B Reflexivity | B-C Transitivity | B-D Transitivity | B-E Transitivity | B-F Transitivity | B-G Transitivity |
C | C-A Baseline | C-B Transitivity | C-C Reflexivity | C-D Transitivity | C-E Transitivity | C-F Transitivity | C-G Transitivity |
D | D-A Baseline | D-B Transitivity | D-C Transitivity | D-D Reflexivity | D-E Transitivity | D-F Transitivity | D-G Transitivity |
E | E-A Baseline | E-B Transitivity | E-C Transitivity | E-D Transitivity | E-E Reflexivity | E-F Transitivity | E-G Transitivity |
F | F-A Baseline | F-B Transitivity | F-C Transitivity | F-D Transitivity | F-E Transitivity | F-F Reflexivity | F-G Transitivity |
G | G-A Baseline | G-B Transitivity | G-C Transitivity | G-D Transitivity | G-E Transitivity | G-F Transitivity | G-G Reflexivity |
Appendix B. Simulations Pairs Performance
Appendix C. Hallucination Analysis
Simulation | Transformer | Train Structure | Relation Type | Total Hallucination Rate | Hallucination Fail Rate | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Reflexivity | Symmetry | Transitivity | Baseline | Reflexivity | Symmetry | Transitivity | ||||
1 | GPT | LS | S and R | 0.000 | 0.004 | 0.001 | 0.001 | 0.188 | 0.045 | 0.012 | 0.009 |
2 | BERT | LS | S and R | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.013 | 0.000 | 0.005 |
3 | GPT | OTM | S and R | 0.001 | 0.016 | 0.011 | 0.014 | 0.112 | 0.020 | 0.013 | 0.016 |
4 | BERT | OTM | S and R | 0.000 | 0.275 | 0.424 | 0.321 | 0.240 | 0.518 | 0.512 | 0.527 |
5 | GPT | MTO | S and R | 0.000 | 0.030 | 0.001 | 0.032 | 0.081 | 0.043 | 0.002 | 0.046 |
6 | BERT | MTO | S and R | 0.001 | 0.044 | 0.030 | 0.021 | 0.037 | 0.067 | 0.041 | 0.030 |
7 | GPT | LS | S only | 0.000 | 0.431 | 0.368 | 0.351 | 0.571 | 0.544 | 0.466 | 0.448 |
8 | BERT | LS | S only | 0.001 | 0.103 | 0.082 | 0.071 | 0.488 | 0.148 | 0.118 | 0.102 |
9 | GPT | OTM | S only | 0.001 | 0.794 | 0.539 | 0.832 | 1.000 | 0.852 | 0.547 | 0.900 |
10 | BERT | OTM | S only | 0.001 | 0.183 | 0.235 | 0.140 | 0.436 | 0.249 | 0.261 | 0.203 |
11 | GPT | MTO | S only | 0.000 | 0.125 | 0.002 | 0.147 | 0.417 | 0.175 | 0.002 | 0.188 |
12 | BERT | MTO | S only | 0.000 | 0.000 | 0.001 | 0.000 | 0.276 | 0.001 | 0.001 | 0.000 |
References
- Sidman, M. Equivalence relations and the reinforcement contingency. J. Exp. Anal. Behav. 2000, 74, 127–146. [Google Scholar] [CrossRef] [PubMed]
- Sidman, M.; Tailby, W. Conditional discrimination vs. matching to sample: An expansion of the testing paradigm. J. Exp. Anal. Behav. 1982, 37, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Alvarez, B. The Problem of Class Breakdown in Sidman’s (1994, 2000) Theory about the Origin of Stimulus Equivalence. Perspect. Behav. Sci. 2023, 46, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Sidman, M. What Is Interesting about Equivalence Relations and Behavior? Perspect. Behav. Sci. 2018, 41, 33–43. [Google Scholar] [CrossRef]
- Green, G.; Saunders, R.R. Stimulus Equivalence. In Handbook of Research Methods in Human Operant Behavior; Lattal, K.A., Perone, M., Eds.; Springer: Boston, MA, USA, 1998; pp. 229–262. [Google Scholar] [CrossRef]
- Tovar, Á.E.; Torres-Chávez, Á.; Mofrad, A.A.; Arntzen, E. Computational models of stimulus equivalence: An intersection for the study of symbolic behavior. J. Exp. Anal. Behav. 2023, 119, 407–425. [Google Scholar] [CrossRef] [PubMed]
- Sidman, M. Equivalence relations and behavior: An introductory tutorial. Anal. Verbal Behav. 2009, 25, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Arntzen, E. Training and testing parameters in formation of stimulus equivalence: Methodological issues. Eur. J. Behav. Anal. 2012, 13, 123–135. [Google Scholar] [CrossRef]
- Saunders, R.R.; Green, G. A Discrimination Analysis of Training-Structure Effects on Stimulus Equivalence Outcomes. J. Exp. Anal. Behav. 1999, 72, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Carrigan, P.F., Jr.; Sidman, M. Conditional Discrimination and Equivalence Relations: A Theoretical Analysis of Control by Negative Stimuli. J. Exp. Anal. Behav. 1992, 58, 183–204. [Google Scholar] [CrossRef]
- Johnson, C.; Sidman, M. Conditional Discrimination and Equivalence Relations: Control by Negative Stimuli. J. Exp. Anal. Behav. 1993, 59, 333–347. [Google Scholar] [CrossRef]
- Plazas, E.A. Formation of Stimulus Equivalence Relations by Exclusion: Evidence using the Blank Comparison Stimulus Procedure. Psychol. Rec. 2021, 71, 1–15. [Google Scholar] [CrossRef]
- Hinojo Abujas, Z.; Pérez Fernández, V.; García García, A. The formation of equivalence classes in adults without training in negative relations between members of different classes. Int. J. Psychol. Psychol. Ther. 2017, 17, 107–118. [Google Scholar]
- Plazas, E.A.; Peña, T.E. Effects of Procedural Variations in the Training of Negative Relations for the Emergence of Equivalence Relations. Psychol. Rec. 2016, 66, 109–125. [Google Scholar] [CrossRef]
- Barnes, D.; Hampson, P.J. Stimulus Equivalence and Connectionism: Implications for Behavior Analysis and Cognitive Science. Psychol. Rec. 1993, 43, 617–638. [Google Scholar] [CrossRef]
- Tovar, A.E.; Chávez, A.T. A Connectionist Model of Stimulus Class Formation with a Yes/No Procedure and Compound Stimuli. Psychol. Rec. 2012, 62, 747–762. [Google Scholar] [CrossRef]
- Vernucio, R.R.; Debert, P. Computational Simulation of Equivalence Class Formation Using the go/no-go Procedure with Compound Stimuli. Psychol. Rec. 2016, 66, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Ninness, C.; Ninness, S.K.; Rumph, M.; Lawson, D. The Emergence of Stimulus Relations: Human and Computer Learning. Perspect. Behav. Sci. 2018, 41, 121–154. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, A.; Betancort, M. Differences of Training Structures on Stimulus Class Formation in Computational Agents. Multimodal Technol. Interact. 2023, 7, 39. [Google Scholar] [CrossRef]
- Mofrad, A.A.; Yazidi, A.; Hammer, H.L.; Arntzen, E. Equivalence Projective Simulation as a Framework for Modeling Formation of Stimulus Equivalence Classes. Neural Comput. 2020, 32, 912–968. [Google Scholar] [CrossRef]
- Mofrad, A.A.; Yazidi, A.; Mofrad, S.A.; Hammer, H.L.; Arntzen, E. Enhanced Equivalence Projective Simulation: A Framework for Modeling Formation of Stimulus Equivalence Classes. Neural Comput. 2021, 33, 483–527. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; p. 800. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning, 4th ed.; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar] [CrossRef]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 15 January 2024).
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Bowen, C.; Sætre, R.; Miyao, Y. A Comprehensive Evaluation of Inductive Reasoning Capabilities and Problem Solving in Large Language Models. In Findings of the Association for Computational Linguistics: Proceedings of the EACL 2024, St. Julian’s, Malta, 18–22 March 2024; Graham, Y., Purver, M., Eds.; Association for Computational Linguistics: Kerrville, TX, USA, 2024; pp. 323–339. [Google Scholar]
- Huang, J.; Chang, K.C.C. Towards Reasoning in Large Language Models: A Survey. In Findings of the Association for Computational Linguistics: Proceedings of the ACL 2023, Toronto, ON, Canada, 9–14 July 2023; Rogers, A., Boyd-Graber, J., Okazaki, N., Eds.; Association for Computational Linguistics: Kerrville, TX, USA, 2023; pp. 1049–1065. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.; Xia, F.; Chi, E.; Le, Q.; Zhou, D. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv 2023, arXiv:2201.11903. [Google Scholar]
- Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent Abilities of Large Language Models. arXiv 2022, arXiv:2206.07682. [Google Scholar]
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT’21), New York, NY, USA, 3–10 March 2021; pp. 610–623. [Google Scholar] [CrossRef]
- Schaeffer, R.; Miranda, B.; Koyejo, S. Are Emergent Abilities of Large Language Models a Mirage? In Advances in Neural Information Processing Systems; Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Curran Associates, Inc.: New York, NY, USA, 2023; Volume 36, pp. 55565–55581. [Google Scholar]
- Mahowald, K.; Ivanova, A.A.; Blank, I.A.; Kanwisher, N.; Tenenbaum, J.B.; Fedorenko, E. Dissociating language and thought in large language models. Trends Cogn. Sci. 2024, 28, 517–540. [Google Scholar] [CrossRef] [PubMed]
- Berglund, L.; Tong, M.; Kaufmann, M.; Balesni, M.; Stickland, A.C.; Korbak, T.; Evans, O. The Reversal Curse: LLMs trained on “A is B” fail to learn “B is A”. arXiv 2024, arXiv:2309.12288. [Google Scholar]
- Zhang, Y.; Li, Y.; Cui, L.; Cai, D.; Liu, L.; Fu, T.; Huang, X.; Zhao, E.; Zhang, Y.; Chen, Y.; et al. Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models. arXiv 2023, arXiv:2309.01219. [Google Scholar]
- Karpathy, A. ng-video-lecture. 2023. Available online: https://github.com/karpathy/ng-video-lecture (accessed on 14 May 2024).
- Urcuioli, P.J. Stimulus Control and Stimulus Class Formation. In APA Handbooks in Psychology®; American Psychological Association: Washington, DC, USA, 2013; pp. 361–386. [Google Scholar] [CrossRef]
- Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Omer, R.; Patel, P.; Qian, B.; Wen, Z.; Shah, T.; Morgan, G.; et al. Explainable AI (XAI): Core Ideas, Techniques, and Solutions. ACM Comput. Surv. 2023, 55, 194. [Google Scholar] [CrossRef]
- Beeching, E.; Fourrier, C.; Habib, N.; Han, S.; Lambert, N.; Rajani, N.; Sanseviero, O.; Tunstall, L.; Wolf, T. Open LLM Leaderboard. 2023. Available online: https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard (accessed on 25 June 2024).
- Gao, L.; Tow, J.; Biderman, S.; Black, S.; DiPofi, A.; Foster, C.; Golding, L.; Hsu, J.; McDonell, K.; Muennighoff, N.; et al. A Framework for Few-Shot Language Model Evaluation. 2021. Available online: https://zenodo.org/records/12608602 (accessed on 24 May 2024).
- Clark, P.; Cowhey, I.; Etzioni, O.; Khot, T.; Sabharwal, A.; Schoenick, C.; Tafjord, O. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge. arXiv 2018, arXiv:1803.05457. [Google Scholar]
- Zellers, R.; Holtzman, A.; Bisk, Y.; Farhadi, A.; Choi, Y. HellaSwag: Can a Machine Really Finish Your Sentence? arXiv 2019, arXiv:1905.07830. [Google Scholar]
- Sakaguchi, K.; Bras, R.L.; Bhagavatula, C.; Choi, Y. WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale. arXiv 2019, arXiv:1907.10641. [Google Scholar] [CrossRef]
- Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.; Song, D.; Steinhardt, J. Measuring Massive Multitask Language Understanding. arXiv 2021, arXiv:2009.03300. [Google Scholar]
- Lin, S.; Hilton, J.; Evans, O. TruthfulQA: Measuring How Models Mimic Human Falsehoods. arXiv 2022, arXiv:2109.07958. [Google Scholar]
- Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.; Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.; et al. Training Verifiers to Solve Math Word Problems. arXiv 2021, arXiv:2110.14168. [Google Scholar]
- Chollet, F. On the Measure of Intelligence. arXiv 2019, arXiv:1911.01547. [Google Scholar]
- Santoro, A.; Hill, F.; Barrett, D.G.T.; Morcos, A.S.; Lillicrap, T.P. Measuring abstract reasoning in neural networks. arXiv 2018, arXiv:1807.04225. [Google Scholar]
- Dixon, M.R.; Belisle, J.; Stanley, C.R. Derived Relational Responding and Intelligence: Assessing the Relationship Between the PEAK-E Pre-assessment and IQ with Individuals with Autism and Related Disabilities. Psychol. Rec. 2018, 68, 419–430. [Google Scholar] [CrossRef]
- Casper, S.; Davies, X.; Shi, C.; Gilbert, T.K.; Scheurer, J.; Rando, J.; Freedman, R.; Korbak, T.; Lindner, D.; Freire, P.; et al. Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback. arXiv 2023, arXiv:2307.15217. [Google Scholar]
Simulation | Transformer | Train Structure | Relation Type | Baseline | Reflexivity | Symmetry | Transitivity |
---|---|---|---|---|---|---|---|
1 | GPT | LS | S and R | 0.999 | 0.919 | 0.941 | 0.902 |
2 | BERT | LS | S and R | 0.997 | 0.992 | 0.992 | 0.989 |
3 | GPT | OTM | S and R | 0.994 | 0.183 | 0.146 | 0.177 |
4 | BERT | OTM | S and R | 0.999 | 0.469 | 0.172 | 0.392 |
5 | GPT | MTO | S and R | 0.998 | 0.315 | 0.278 | 0.296 |
6 | BERT | MTO | S and R | 0.985 | 0.347 | 0.257 | 0.294 |
7 | GPT | LS | S only | 1.000 | 0.208 | 0.210 | 0.215 |
8 | BERT | LS | S only | 0.999 | 0.299 | 0.302 | 0.306 |
9 | GPT | OTM | S only | 0.999 | 0.068 | 0.016 | 0.075 |
10 | BERT | OTM | S only | 0.999 | 0.266 | 0.102 | 0.310 |
11 | GPT | MTO | S only | 1.000 | 0.288 | 0.269 | 0.217 |
12 | BERT | MTO | S only | 0.999 | 0.329 | 0.249 | 0.246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo, A.; Betancort, M. Testing Stimulus Equivalence in Transformer-Based Agents. Future Internet 2024, 16, 289. https://doi.org/10.3390/fi16080289
Carrillo A, Betancort M. Testing Stimulus Equivalence in Transformer-Based Agents. Future Internet. 2024; 16(8):289. https://doi.org/10.3390/fi16080289
Chicago/Turabian StyleCarrillo, Alexis, and Moisés Betancort. 2024. "Testing Stimulus Equivalence in Transformer-Based Agents" Future Internet 16, no. 8: 289. https://doi.org/10.3390/fi16080289
APA StyleCarrillo, A., & Betancort, M. (2024). Testing Stimulus Equivalence in Transformer-Based Agents. Future Internet, 16(8), 289. https://doi.org/10.3390/fi16080289