Time-Efficient Neural-Network-Based Dynamic Area Optimization Algorithm for High-Altitude Platform Station Mobile Communications †
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Contributions
- The integration of the CC and ensemble approach into the simple NN facilitates the learning of various sequences, aiding in capturing intercell relationships. Our result demonstrates the total throughput performance is comparable to that of GA for randomly selected distributions in Japan.
- Compared to GA, the application of NN facilitates immediate adaptation to unknown distributions, thereby reducing the optimization time. Our evaluation indicates an improvement in time efficiency.
- The ability to learn from past optimization results enables the effective utilization of prior solutions obtained by the search method, even in other areas, avoiding unnecessary search calculations.
1.4. Paper Organization
2. Dynamic Area Optimization Using Search Methods
2.1. System Model
2.2. Dynamic Area Optimization Using GA: An Overview and Challenges
3. Dynamic Area Optimization Based on an NN Considering Intercell Relationships
3.1. Dynamic Area Optimization through the Application of NN
3.2. Utilizing CC to Learn Cell Relationships
3.3. Ensemble Approach for Objective Function Maximization
3.4. Quality Control against Estimation Errors
4. Evaluation
4.1. Evaluation Conditions
4.2. Communication Performance
4.3. Cost Evaluation
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HAPSs | High-altitude platform stations |
GA | Genetic algorithm |
NN | Neural network |
CC | Classifier chain |
CDF | Cumulative distribution function |
4G LTE | Fourth-generation long-term evolution |
5G NR | Fifth-generation new radio |
UAVs | Unmanned aerial vehicles |
RTT | Round trip time |
BSs | Base stations |
RL | Reinforcement learning |
OFDMA | Orthogonal frequency-division multiple access |
DRL | Deep reinforcement learning |
MCS | Modulation and coding scheme |
CSI | Channel state information |
SNR | Signal-to-noise ratio |
SINR | Signal-to-interference-plus-noise ratio |
DL | Downlink |
RBs | Resource blocks |
UL | Uplink |
CoMP | Coordinated multi-point |
PF | Proportional fairness |
References
- Karapantazis, S.; Pavlidou, F. Broadband communications via high-altitude platforms: A survey. IEEE Commun. Surv. Tutor. 2005, 7, 2–31. [Google Scholar] [CrossRef]
- Nagate, A.; Ota, Y.; Hoshino, K. HAPS radio repeater system using the same system as terrestrial mobile communications system. IEICE Soc. Conf. 2018, 5, 37. (In Japanese) [Google Scholar]
- Study on Using Satellite Access in 5G; 3GPP Document TR22.822 V16.0.0. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3372 (accessed on 8 September 2024).
- Qian, S.; Zhang, S.; Zhou, W. Traffic-based dynamic beam coverage adjustment in satellite mobile communication. In Proceedings of the Sixth International Conference on Wireless Communications and Signal Processing (WCSP), Hefei, China, 23–25 October 2014; pp. 1–6. [Google Scholar]
- Tang, J.; Bian, D.; Li, G.; Hu, J.; Cheng, J. Optimization method of dynamic beam position for LEO beam-hopping satellite communication systems. IEEE Access 2021, 9, 142–149. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.-B.; de Cola, T.; Wang, J. Joint beamforming and power allocation for satellite-terrestrial integrated networks with nonorthogonal multiple access. IEEE J. Sel. Areas Commun. 2019, 13, 657–670. [Google Scholar]
- Lin, Z.; Lin, M.; De Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.-P.; Al-Dhahir, N. Secure and Energy Efficient Transmission for RSMA-Based Cognitive Satellite-Terrestrial Networks. IEEE Wirel. Commun. Lett. 2021, 10, 251–255. [Google Scholar] [CrossRef]
- Dirani, M.; Altman, Z. A cooperative reinforcement learning approach for intercell interference coordination in OFDMA cellular networks. In Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Avignon, France, 31 May–4 June 2010; pp. 170–176. [Google Scholar]
- Bennis, M.; Niyato, D. A Q-learning based approach to interference avoidance in self-organized femtocell networks. In Proceedings of the 2010 IEEE Globecom Workshops, Miami, FL, USA, 6–10 December 2010; pp. 706–710. [Google Scholar]
- Shafin, R.; Chen, H.; Nam, Y.H.; Hur, S.; Park, J.; Zhang, J.; Liu, L. Self-tuning sectorization: Deep reinforcement learning meets broadcast beam optimization. IEEE Trans. Wirel. Commun. 2020, 19, 4038–4053. [Google Scholar] [CrossRef]
- Balevi, E.; Andrews, J.G. A novel deep reinforcement learning algorithm for online antenna tuning. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Khoshkbari, H.; Pourahmadi, V.; Sheikhzadeh, H. Bayesian reinforcement learning for link-level throughput maximization. IEEE Commun. Lett. 2020, 24, 1738–1741. [Google Scholar] [CrossRef]
- Jamshidiha, S.; Pourahmadi, V.; Mohammadi, A.; Bennis, M. Link-level throughput maximization using deep reinforcement learning. IEEE Netw. Lett. 2020, 2, 101–105. [Google Scholar] [CrossRef]
- Sharifi, S.; Khoshkbari, H.; Kaddoum, G.; Akhrif, O. Deep reinforcement learning approach for haps user scheduling in massive mimo communications. IEEE Open J. Commun. Soc. 2024, 5, 1–14. [Google Scholar] [CrossRef]
- Jo, S.; Yang, W.; Choi, H.K.; Noh, E.; Jo, H.-S.; Park, J. Deep Q-learning-based transmission power control of a high altitude platform station with spectrum sharing. Sensors 2022, 22, 1630. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, H.; Klein, S.; Gruber, M. Vertical antenna tilt optimization for LTE base stations. In Proceedings of the 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, 15–18 May 2011; pp. 1–5. [Google Scholar]
- Peyvandi, H.; Imran, A.; Imran, M.A.; Tafazolli, R. On pareto-koopmans efficiency for performance-driven optimisation in self-organising networks. In Proceedings of the IET Intelligent Signal Processing Conference 2013 (ISP 2013), London, UK, 2–3 December 2013; pp. 1–6. [Google Scholar]
- Aliu, O.G.; Mehta, M.; Imran, M.A.; Karandikar, A.; Evans, B. A new cellular-automata-based fractional frequency reuse scheme. IEEE Trans. Veh. Technol. 2015, 64, 1535–1547. [Google Scholar] [CrossRef]
- Ho, L.T.W.; Ashraf, I.; Claussen, H. Evolving femtocell coverage optimization algorithms using genetic programming. In Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 13–16 September 2009; pp. 2132–2136. [Google Scholar]
- Mohjazi, L.S.; Al-Qutayri, M.A.; Barada, H.R.; Poon, K.F.; Shubair, R.M. Self-optimization of pilot power in enterprise femtocells using multi objective heuristic. J. Comput. Netw. Commun. 2012, 2012, 1535–1547. [Google Scholar] [CrossRef]
- Klaine, P.V.; Imran, M.A.; Onireti, O.; Souza, R.D. A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Commun. Surv. Tutor. 2017, 19, 2392–2431. [Google Scholar] [CrossRef]
- Shibata, Y.; Kanazawa, N.; Konishi, M.; Hoshino, K.; Ohta, Y.; Nagate, A. System design of gigabit HAPS mobile communications. IEEE Access 2020, 8, 157995–158007. [Google Scholar] [CrossRef]
- Shibata, Y.; Takabatake, W.; Hoshino, K.; Nagate, A.; Ohtsuki, T. Two-step dynamic cell optimization algorithm for HAPS mobile communications. IEEE Access 2022, 10, 68085–68098. [Google Scholar] [CrossRef]
- Takabatake, W.; Shibata, Y.; Hoshino, K. Neural-Network-based Dynamic Area Optimization Algorithm for High-Altitude Platform Station. In Proceedings of the 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 10–13 October 2023; pp. 1–6. [Google Scholar]
- Hoshino, K.; Sudo, S.; Ohta, Y. A Study on Antenna Beamforming Method Considering Movement of Solar Plane in HAPS System. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Minimum Performance Characteristics and Operational Conditions for High Altitude Platform Stations Providing IMT-2000 in the Bands 1885–1980 MHz, 2010–2025 MHz and 2110–2170 MHz in Regions 1 and 3 and 1885–1980 MHz and 2110–2160 MHz in Region 2 Document ITU-R M.1456; International Telecommunications Union: Geneva, Switzerland, 2000.
- Deep, K.; Singh, K.P.; Kansal, M.L.; Mohan, C. A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 2009, 212, 505–518. [Google Scholar] [CrossRef]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Dai, Y.-H.; Luo, Z.-Q. Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms. IEEE Trans. Signal Process. 2010, 59, 1142–1157. [Google Scholar] [CrossRef]
- Yamamoto, K. Application of game theory to wireless communications. J. IEICE 2012, 95, 1089–1093. (In Japanese) [Google Scholar]
- Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach. Learn. 2011, 85, 333–359. [Google Scholar] [CrossRef]
- Dynamic Population Data. Agoop Corporation. Available online: https://www.agoop.co.jp/service/dynamic-population-data/ (accessed on 29 May 2023).
- Johansson, J.; Hapsari, W.A.; Kelley, S.; Bodog, G. Minimization of drive tests in 3GPP release 11. IEEE Commun. Mag. 2012, 50, 36–43. [Google Scholar] [CrossRef]
- Grace, D.; Mihael, M. Broadband Communications via High-Altitude Platforms; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
Downlink | Uplink | |
---|---|---|
Frequency | 900 MHz | |
Bandwidth | 18 MHz | 360 kHz |
Propagation | Free-space loss | |
Transmitter power | 43 dBm/ant. | 23 dBm/ant. |
Transmitter Antenna gain | Design param. | dBi |
Receiver Antenna gain | dBi | Design param. |
Noise figure | 5 dB | 3 dB |
Required SNR | 8 dB | 11 dB |
Item | Value |
---|---|
Sector division unit [deg.] | 20 |
No. of inputs | 18 |
No. of hidden layers in NN | 4 |
No. of nodes in each hidden layer | 64 |
Activation function | ReLU |
Learning rate | |
No. of epochs | 100 |
Mini-Batch size | 512 |
L2 regularization coefficient | |
Optimizer | Adam |
Method | Training Time | Prediction Time |
---|---|---|
GA | - | 657.2 s |
NN | 149 s | 0.06 s |
NN+CC | 146 s | 0.06 s |
NN+CC+Ensemble | ||
(720 models) | 30 h | 46.8 s |
NN+CC+Ensemble | ||
(100 models) | 4 h | 6.6 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takabatake, W.; Shibata, Y.; Hoshino, K.; Ohtsuki, T. Time-Efficient Neural-Network-Based Dynamic Area Optimization Algorithm for High-Altitude Platform Station Mobile Communications. Future Internet 2024, 16, 332. https://doi.org/10.3390/fi16090332
Takabatake W, Shibata Y, Hoshino K, Ohtsuki T. Time-Efficient Neural-Network-Based Dynamic Area Optimization Algorithm for High-Altitude Platform Station Mobile Communications. Future Internet. 2024; 16(9):332. https://doi.org/10.3390/fi16090332
Chicago/Turabian StyleTakabatake, Wataru, Yohei Shibata, Kenji Hoshino, and Tomoaki Ohtsuki. 2024. "Time-Efficient Neural-Network-Based Dynamic Area Optimization Algorithm for High-Altitude Platform Station Mobile Communications" Future Internet 16, no. 9: 332. https://doi.org/10.3390/fi16090332
APA StyleTakabatake, W., Shibata, Y., Hoshino, K., & Ohtsuki, T. (2024). Time-Efficient Neural-Network-Based Dynamic Area Optimization Algorithm for High-Altitude Platform Station Mobile Communications. Future Internet, 16(9), 332. https://doi.org/10.3390/fi16090332