AI Agents Meet Blockchain: A Survey on Secure and Scalable Collaboration for Multi-Agents
Abstract
:1. Introduction
1.1. Motivation and Contribution
- We explore how AI agents enhance blockchain systems, with a focus on their ability to improve intelligent decision making, optimize consensus mechanisms, and enable zero-shot learning. The result of these capabilities is an increase in adaptability, efficiency, and resilience in decentralized environments.
- We investigate how blockchain enhances the capabilities of AI agents with the provision of a secure and decentralized infrastructure that supports coordination, governance, and data sharing. The integration leads to strengthened autonomy and scalability for AI agents alongside the assurance of privacy and reliability in collaborative environments.
- We categorize various application and use case scenarios in DeFi, supply chain management, DAOs, edge computing, and fault management. These examples demonstrate improvements in operational efficiency, trust, and transparency while enhancing the adaptability and decision-making capabilities of AI agents in decentralized environments.
- We outline the scalability, interoperability, and data privacy challenges to emphasize future directions in cross-chain communication protocols, privacy-preserving mechanisms, and decentralized coordination strategies. Additionally, we address emerging areas such as decentralized quantum computing, self-sovereign AI agents, and ethical and regulatory considerations to guide the development of decentralized systems.
1.2. Organization
2. Related Work
2.1. Trustworthy AI and Blockchain
2.2. AI Agents and Blockchain
2.3. Limitations of Existing Surveys
3. Preliminaries
3.1. AI Agents
- Multi-Agent Systems (MAS) [32,33]: A multi-agent system consists of multiple AI agents working collaboratively or competitively to achieve individual or shared objectives. In MAS, agents can communicate and negotiate with each other, which adds a layer of complexity compared with single-agent AI systems.
3.2. Blockchain
3.3. Generative AI
3.4. Web3
- Distributed Ledger Technology (DLT): The underlying technology of blockchain, DLT refers to a consensus of replicated, shared, and synchronized digital data spread across multiple locations. This ensures data integrity and transparency.
- DAOs: DAOs shift from conventional centralized models to decentralized blockchain-based decision-making systems [54]. They use smart contracts to automate governance protocols and implement decisions based on member involvement by eliminating intermediaries to ensure transparency and efficiency [58]. For example, MakerDAO (https://makerdao.com (accessed on 20 January 2025)) members voted to add new collateral types to support the stability of its DAI stablecoin to demonstrate decentralized governance in action.
- DeFi: DeFi represents a transformation of traditional banking and financial services through dApps to provide lending, borrowing, and trading without intermediaries [55]. It offers benefits such as reduced transaction costs, increased financial accessibility, and the elimination of traditional banking barriers. Examples include Uniswap and Aave.
- Non-Fungible Tokens (NFTs): A mechanism for the ownership and transfer of distinct digital assets on decentralized networks [58]. NFTs play a crucial role in gaming, art, and virtual assets with platforms like OpenSea (https://opensea.io/ (accessed on 20 January 2025)) leading the market.
- Decentralized Storage: A system where data are distributed across multiple nodes rather than being stored in a central server. Decentralized storage solutions such as IPFS (https://ipfs.tech/ (accessed on 20 January 2025)) and Filecoin (https://filecoin.io/ (accessed on 20 January 2025)) help enhance data redundancy and reduce the risk of single points of failure, contributing to the resilience of Web3.
- Oracles: Services that connect blockchain with external data sources, enabling smart contracts to interact with off-chain data. Oracles are critical for Web3 as they expand the utility of blockchain by allowing real-world events to trigger on-chain actions. For example, in a DeFi application, oracles can provide real-time price feeds for assets by allowing automated trading or lending decisions to be made based on current market conditions. Examples include Chainlink (https://chain.link/ (accessed on 20 January 2025)).
3.5. Decentralized AI
- Task Proposing: In this stage, the algorithms are prepared to guarantee that they satisfy the needs of decentralized systems in terms of privacy, scalability, and effective communication. The development of algorithms is essential at this phase to provide the basis for its entire life cycle.
- Pre-Training: Data are gathered, cleaned, and segmented while ensuring privacy and security. Concurrently, computing resources such as GPUs or distributed systems are configured to facilitate efficient training.
- On-Training: In this phase, model training and validation take place. Collaborating nodes concurrently update model parameters while maintaining synchronization. Validation guarantees the model’s precision and generalizability among all participants.
- Post-Training: The trained model is ready for deployment and integration into applications for practical usage. This phase also enables model sharing via decentralized markets.
4. Research Methodology
4.1. Keywords
(“AI Agent” OR “Agent AI” AND Blockchain OR Web3), (“AI Agent” OR “Agent AI” AND “Generative AI” AND Consensus), (“AI Agent” OR “Agent AI” OR Web3 AND Privacy), (“AI Agent” OR “Agent AI” AND “Blockchain” AND “Generative AI” OR Web3), (“AI agent” OR “agent AI” OR “LLM agent” OR “autonomous agent” OR multi-agent OR “intelligent agent” AND blockchain OR “decentralized AI” OR web3 OR “generative AI”)
4.2. Inclusion and Exclusion Criteria
4.3. Research Databases and Selection Process
5. AI Agents for Blockchain
5.1. Intelligent Decision Making
5.2. Intelligent Consensus Mechanism
5.3. Zero-Shot Learning
5.4. Vulnerability Detection
6. Blockchain for AI Agents
6.1. Blockchain as Infrastructure
6.2. Collaboration and Task Integration
6.3. Governance for AI Agents
6.4. Key Enablers for Improved Functionality
7. Application and Use Case Scenarios
7.1. Asset Management
7.2. Decentralized Finance
7.3. Decentralized Autonomous Organization
7.4. Supply Chain Management
7.5. Autonomous Edge Computing
7.6. Autonomous Fault Management
7.7. Empirical Case Studies
8. Research Challenges and Future Directions
8.1. Data Privacy and Security
8.2. Scalability and Interoperability
8.3. Decentralization and Efficiency
8.4. Interpretability and Explainability
8.5. Self-Sovereignty of AI Agents
8.6. Decentralized Quantum Computing
8.7. Ethical and Regulatory Concerns
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grand View Research. Web 3.0 Market Growth and Trends. Available online: https://www.grandviewresearch.com/press-release/global-web-3-0-market (accessed on 2 December 2024).
- Calzada, I. Decentralized web3 reshaping internet governance: Towards the emergence of new forms of nation-statehood? Future Internet 2024, 16, 361. [Google Scholar] [CrossRef]
- Muzammal, M.; Qu, Q.; Nasrulin, B. Renovating blockchain with distributed databases: An open source system. Future Gener. Comput. Syst. 2019, 90, 105–117. [Google Scholar] [CrossRef]
- Qu, Q.; Nurgaliev, I.; Muzammal, M.; Jensen, C.S.; Fan, J. On spatio-temporal blockchain query processing. Future Gener. Comput. Syst. 2019, 98, 208–218. [Google Scholar] [CrossRef]
- Alamsyah, A.; Kusuma, G.N.W.; Ramadhani, D.P. A Review on Decentralized Finance Ecosystems. Future Internet 2024, 16, 76. [Google Scholar] [CrossRef]
- Werner, S.; Perez, D.; Gudgeon, L.; Klages-Mundt, A.; Harz, D.; Knottenbelt, W. Sok: Decentralized finance (defi). In Proceedings of the 4th ACM Conference on Advances in Financial Technologies, Cambridge, MA, USA, 19–21 September 2022; pp. 30–46. [Google Scholar]
- Kramer Levin. The Rise and Recognition of the DAO. Available online: https://www.kramerlevin.com/en/perspectives-search/the-rise-and-recognition-of-the-dao.html (accessed on 2 December 2024).
- Ressi, D.; Romanello, R.; Piazza, C.; Rossi, S. AI-enhanced blockchain technology: A review of advancements and opportunities. J. Netw. Comput. Appl. 2024, 225, 103858. [Google Scholar] [CrossRef]
- Zhu, J.; Li, F.; Chen, J. A survey of blockchain, artificial intelligence, and edge computing for Web 3.0. Comput. Sci. Rev. 2024, 54, 100667. [Google Scholar] [CrossRef]
- Qu, Q.; Lin, Y. Blockchain+ AI: Unveiling the Future Economy; Posts & Telecommunications Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Shen, M.; Tan, Z.; Niyato, D.; Liu, Y.; Kang, J.; Xiong, Z.; Zhu, L.; Wang, W.; Shen, X. Artificial Intelligence for Web 3.0: A Comprehensive Survey. ACM Comput. Surv. 2024, 56, 1–39. [Google Scholar] [CrossRef]
- Basly, S. Artificial Intelligence and the Future of Decentralized Finance. In Decentralized Finance: The Impact of Blockchain-Based Financial Innovations on Entrepreneurship; Springer: Berlin/Heidelberg, Germany, 2024; pp. 175–183. [Google Scholar]
- Saurabh, K.; Upadhyay, P.; Rani, N. Towards Blockchain Decentralized Autonomous Organizations (DAO) Design. Inf. Syst. Front. 2024, 1–23. [Google Scholar] [CrossRef]
- Li, J.; Qin, R.; Guan, S.; Hou, J.; Wang, F.Y. Blockchain intelligence: Intelligent blockchains for web 3.0 and beyond. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 6633–6642. [Google Scholar] [CrossRef]
- Durante, Z.; Huang, Q.; Wake, N.; Gong, R.; Park, J.S.; Sarkar, B.; Taori, R.; Noda, Y.; Terzopoulos, D.; Choi, Y.; et al. Agent ai: Surveying the horizons of multimodal interaction. arXiv 2024, arXiv:2401.03568. [Google Scholar]
- Wang, L.; Ma, C.; Feng, X.; Zhang, Z.; Yang, H.; Zhang, J.; Chen, Z.; Tang, J.; Chen, X.; Lin, Y.; et al. A survey on large language model based autonomous agents. Front. Comput. Sci. 2024, 18, 186345. [Google Scholar] [CrossRef]
- Yu, E.; Yue, W.; Jianzheng, S.; Xun, W. Blockchain-based AI Agent and Autonomous World Infrastructure. In Proceedings of the 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, 25–27 June 2024; pp. 278–283. [Google Scholar]
- Hang, C.N.; Yu, P.D.; Morabito, R.; Tan, C.W. Large Language Models Meet Next-Generation Networking Technologies: A Review. Future Internet 2024, 16, 365. [Google Scholar] [CrossRef]
- Guo, T.; Chen, X.; Wang, Y.; Chang, R.; Pei, S.; Chawla, N.V.; Wiest, O.; Zhang, X. Large language model based multi-agents: A survey of progress and challenges. arXiv 2024, arXiv:2402.01680. [Google Scholar]
- Xi, Z.; Chen, W.; Guo, X.; He, W.; Ding, Y.; Hong, B.; Zhang, M.; Wang, J.; Jin, S.; Zhou, E.; et al. The rise and potential of large language model based agents: A survey. arXiv 2023, arXiv:2309.07864. [Google Scholar] [CrossRef]
- Jiang, B.; Xie, Y.; Wang, X.; Su, W.J.; Taylor, C.J.; Mallick, T. Multi-modal and multi-agent systems meet rationality: A survey. In Proceedings of the ICML 2024 Workshop on LLMs and Cognition, Vienna, Austria, 21–27 July 2024. [Google Scholar]
- Wang, Z.; Sun, R.; Lui, E.; Shah, V.; Xiong, X.; Sun, J.; Crapis, D.; Knottenbelt, W. SoK: Decentralized AI (DeAI). arXiv 2024, arXiv:2411.17461. [Google Scholar]
- Nguyen Thanh, B.; Son, H.X.; Vo, D.T.H. Blockchain: The economic and financial institution for autonomous AI? J. Risk Financ. Manag. 2024, 17, 54. [Google Scholar] [CrossRef]
- Tara, A.; Turesson, H.K.; Natea, N. Dynamic Storage Optimization for Communication between AI Agents. Future Internet 2024, 16, 274. [Google Scholar] [CrossRef]
- Thompson, D. Autonomous AI Agents and Blockchain Interactions: Enabling Decentralized Autonomous Organizations (DAOs). J. AI-Assist. Sci. Discov. 2024, 4, 73–79. [Google Scholar]
- Bhumichai, D.; Smiliotopoulos, C.; Benton, R.; Kambourakis, G.; Damopoulos, D. The convergence of artificial intelligence and blockchain: The state of play and the road ahead. Information 2024, 15, 268. [Google Scholar] [CrossRef]
- Abdelhamid, M.; Sliman, L.; Ben Djemaa, R.; Perboli, G. A Review on Blockchain Technology, Current Challenges, and AI-Driven Solutions. ACM Comput. Surv. 2024, 57, 1–39. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, S.; Zhao, Q. Exploiting blockchain to make AI trustworthy: A software development lifecycle view. ACM Comput. Surv. 2024, 56, 1–31. [Google Scholar] [CrossRef]
- Monjurul Karim, M.; Sharif, K.; Biswas, S.; Latif, Z.; Qu, Q.; Li, F. CIC-SIoT: Clean-Slate Information-Centric Software-Defined Content Discovery and Distribution for Internet of Things. IEEE Internet Things J. 2024, 11, 37140–37153. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, C.; Zhang, Z.; Meng, X.; Hong, S.; Li, W.; Wang, Z.; Wang, Z.; Yin, F.; Zhao, J.; et al. Exploring large language model based intelligent agents: Definitions, methods, and prospects. arXiv 2024, arXiv:2401.03428. [Google Scholar]
- Wang, Y.; Pan, Y.; Zhao, Q.; Deng, Y.; Su, Z.; Du, L.; Luan, T.H. Large Model Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends. arXiv 2024, arXiv:2409.14457. [Google Scholar]
- Maldonado, D.; Cruz, E.; Torres, J.A.; Cruz, P.J.; Gamboa, S. Multi-agent Systems: A survey about its components, framework and workflow. IEEE Access 2024, 12, 80950–80975. [Google Scholar] [CrossRef]
- Shah, M.I.A.; Wahid, A.; Barrett, E.; Mason, K. Multi-agent systems in Peer-to-Peer energy trading: A comprehensive survey. Eng. Appl. Artif. Intell. 2024, 132, 107847. [Google Scholar] [CrossRef]
- Yang, K.; Liu, J.; Wu, J.; Yang, C.; Fung, Y.R.; Li, S.; Huang, Z.; Cao, X.; Wang, X.; Wang, Y.; et al. If llm is the wizard, then code is the wand: A survey on how code empowers large language models to serve as intelligent agents. arXiv 2024, arXiv:2401.00812. [Google Scholar]
- Tang, X.; Yu, H.; Li, X.; Kraus, S. Intelligent Agents for Auction-based Federated Learning: A Survey. arXiv 2024, arXiv:2404.13244. [Google Scholar]
- Mei, K.; Li, Z.; Xu, S.; Ye, R.; Ge, Y.; Zhang, Y. AIOS: LLM agent operating system. arXiv 2024, arXiv:2403.16971. [Google Scholar]
- Bellaj, B.; Ouaddah, A.; Bertin, E.; Crespi, N.; Mezrioui, A. Drawing the boundaries between blockchain and blockchain-like systems: A comprehensive survey on distributed ledger technologies. Proc. IEEE 2024, 112, 247–299. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Z.; Leung, C.; Leung, V.C. Towards Collaborative Edge Intelligence: Blockchain-Based Data Valuation and Scheduling for Improved Quality of Service. Future Internet 2024, 16, 267. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, K.; Amin, A.H.; Almutairi, L.; Alsenani, T.R.; Ahmadian, A. A comparative study on consensus mechanism with security threats and future scopes: Blockchain. Comput. Commun. 2023, 201, 102–115. [Google Scholar] [CrossRef]
- Wu, H.; Yao, Q.; Liu, Z.; Huang, B.; Zhuang, Y.; Tang, H.; Liu, E. Blockchain for finance: A survey. IET Blockchain 2024, 4, 101–123. [Google Scholar] [CrossRef]
- Arbabi, M.S.; Lal, C.; Veeraragavan, N.R.; Marijan, D.; Nygård, J.F.; Vitenberg, R. A survey on blockchain for healthcare: Challenges, benefits, and future directions. IEEE Commun. Surv. Tutor. 2022, 25, 386–424. [Google Scholar] [CrossRef]
- Bandi, A.; Adapa, P.V.S.R.; Kuchi, Y.E.V.P.K. The power of generative ai: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet 2023, 15, 260. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Golda, A.; Mekonen, K.; Pandey, A.; Singh, A.; Hassija, V.; Chamola, V.; Sikdar, B. Privacy and Security Concerns in Generative AI: A Comprehensive Survey. IEEE Access 2024, 12, 48126–48144. [Google Scholar] [CrossRef]
- Schneider, J. Explainable generative ai (genxai): A survey, conceptualization, and research agenda. Artif. Intell. Rev. 2024, 57, 289. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K.; Chen, H.; Yi, X.; Wang, C.; Wang, Y.; et al. A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol. 2024, 15, 1–45. [Google Scholar] [CrossRef]
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A survey of large language models. arXiv 2023, arXiv:2303.18223. [Google Scholar]
- Yang, J.; Jin, H.; Tang, R.; Han, X.; Feng, Q.; Jiang, H.; Zhong, S.; Yin, B.; Hu, X. Harnessing the power of llms in practice: A survey on chatgpt and beyond. ACM Trans. Knowl. Discov. Data 2024, 18, 1–32. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Q.; Yao, Y.; Jin, W.; Xu, Z.; He, C. LLM multi-agent systems: Challenges and open problems. arXiv 2024, arXiv:2402.03578. [Google Scholar]
- Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; Pmlr: Birmingham, UK, 2021; pp. 8821–8831. [Google Scholar]
- Huang, D.; Yan, C.; Li, Q.; Peng, X. From Large Language Models to Large Multimodal Models: A Literature Review. Appl. Sci. 2024, 14, 5068. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Chronis, C.; Varlamis, I.; Himeur, Y. A survey on the use of large language models (llms) in fake news. Future Internet 2024, 16, 298. [Google Scholar] [CrossRef]
- Huang, R.; Chen, J.; Wang, Y.; Bi, T.; Nie, L.; Zheng, Z. An overview of Web3 technology: Infrastructure, applications, and popularity. Blockchain Res. Appl. 2024, 5, 100173. [Google Scholar] [CrossRef]
- Sheridan, D.; Harris, J.; Wear, F.; Cowell, J., Jr.; Wong, E.; Yazdinejad, A. Web3 challenges and opportunities for the market. arXiv 2022, arXiv:2209.02446. [Google Scholar]
- Li, W.; Bu, J.; Li, X.; Peng, H.; Niu, Y.; Zhang, Y. A survey of DeFi security: Challenges and opportunities. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 10378–10404. [Google Scholar] [CrossRef]
- Pillai, B.; Biswas, K.; Hóu, Z.; Muthukkumarasamy, V. Level of conceptual interoperability model for blockchain based systems. In Proceedings of the 2022 IEEE Crosschain Workshop (ICBC-CROSS), Shanghai, China, 6 May 2022; pp. 1–7. [Google Scholar]
- Zhang, M.; Qu, Q.; Ning, L.; Fan, J. On Time-Aware Cross-Blockchain Data Migration. Tsinghua Sci. Technol. 2024, 29, 1810–1820. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar]
- Greg Osuri, A.B. AKT: Akash Network Token & Mining Economics. Available online: https://akash.network/docs/ (accessed on 3 December 2024).
- McConaghy, T. Ocean Protocol: Tools for the Web3 Data Economy. Available online: https://oceanprotocol.com/tech-whitepaper.pdf/ (accessed on 3 December 2024).
- Network, R. Render Network Knowledge Base. Available online: https://know.rendernetwork.com/ (accessed on 3 December 2024).
- Clifton, C.; Blythman, R.; Tulusan, K. Is decentralized ai safer? arXiv 2022, arXiv:2211.05828. [Google Scholar]
- Ly, R.; Shojaei, A. Autonomous Building Cyber-Physical Systems Using Decentralized Autonomous Organizations, Digital Twins, and Large Language Model. arXiv 2024, arXiv:2410.19262. [Google Scholar]
- Chen, B.; Li, G.; Lin, X.; Wang, Z.; Li, J. BlockAgents: Towards Byzantine-Robust LLM-Based Multi-Agent Coordination via Blockchain. In Proceedings of the ACM Turing Award Celebration Conference—China 2024, Changsha, China, 5–7 July 2024; pp. 187–192. [Google Scholar]
- Moid, S. Eternal AI: A Decentralized AI Network. Available online: https://cdn.eternalai.org/docs/whitepaper.pdf (accessed on 20 January 2025).
- Axelsen, H.; Axelsen, S.; Licht, V.; Potts, J. Scaling culture in blockchain gaming: Generative ai and pseudonymous engagement. arXiv 2023, arXiv:2312.07693. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, W.; Andersson, K.; Hossain, M.S.; Xu, D. FELLMVP: An Ensemble LLM Framework for Classifying Smart Contract Vulnerabilities. In Proceedings of the 2024 IEEE International Conference on Blockchain (Blockchain), Copenhagen, Denmark, 19–22 August 2024; pp. 89–96. [Google Scholar]
- Zhao, H.; Wu, L.; Shan, Y.; Jin, Z.; Sui, Y.; Liu, Z.; Feng, N.; Li, M.; Zhang, W. A Comprehensive Survey of Large Language Models in Management: Applications, Challenges, and Opportunities. J. Latex Cl. Files 2024, 14. [Google Scholar] [CrossRef]
- Abbasi, F.; Muzammal, M.; Qu, Q.; Riaz, F.; Ashraf, J. SNCA: Semi-Supervised Node Classification for Evolving Large Attributed Graphs. Big Data Min. Anal. 2024, 7, 794–808. [Google Scholar] [CrossRef]
- Kim, T. Ethereum AI Agent Coordinator (EAAC): A Framework for AI Agent Activity Coordination. In Proceedings of the Agentic Markets Workshop at ICML, Vienna, Austria, 27 July 2024. [Google Scholar]
- Bhat, S.; Chen, C.; Cheng, Z.; Fang, Z.; Hebbar, A.; Kannan, S.; Rana, R.; Sheng, P.; Tyagi, H.; Viswanath, P.; et al. Sakshi: Decentralized ai platforms. arXiv 2023, arXiv:2307.16562. [Google Scholar]
- Zhang, W.; Guo, H.; Yang, J.; Zhang, Y.; Yan, C.; Tian, Z.; Ji, H.; Li, Z.; Li, T.; Zheng, T.; et al. mABC: Multi-Agent Blockchain-Inspired Collaboration for root cause analysis in micro-services architecture. arXiv 2024, arXiv:2404.12135. [Google Scholar]
- Li, Y.; Luo, B.; Wang, Q.; Chen, N.; Liu, X.; He, B. CryptoTrade: A Reflective LLM-based Agent to Guide Zero-shot Cryptocurrency Trading. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Miami, FL, USA, 12–16 November 2024; pp. 1094–1106. [Google Scholar]
- Ethereum Whitepaper. Available online: https://ethereum.org/en/whitepaper/ (accessed on 3 December 2024).
- Daniel, E.; Tschorsch, F. IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Commun. Surv. Tutor. 2022, 24, 31–52. [Google Scholar] [CrossRef]
- Tara, A.; Turesson, H.K.; Natea, N.; Kim, H.M. An Evaluation of Storage Alternatives for Service Interfaces Supporting a Decentralized AI Marketplace. IEEE Access 2023, 11, 116919–116931. [Google Scholar] [CrossRef]
- Hu, B.A.; Fangting, F. Speculating on Blockchain as an Unstoppable ‘Nature’ Towards the Emergence of Artificial Life. In Proceedings of the 2024 Artificial Life Conference, Copenhagen, Denmark, 22–24 July 2024; MIT Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Lin, Z.; Wang, T.; Shi, L.; Zhang, S.; Cao, B. Decentralized Physical Infrastructure Network (DePIN): Challenges and Opportunities. arXiv 2024, arXiv:2406.02239. [Google Scholar] [CrossRef]
- Fan, X.; Xu, L. Towards a Rollup-Centric Scalable Architecture for Decentralized Physical Infrastructure Networks: A Position Paper. In Proceedings of the Fifth ACM International Workshop on Blockchain-Enabled Networked Sensor Systems, Istanbul, Turkey, 12 November 2023; pp. 9–12. [Google Scholar]
- Heiss, J.; Castillo, F.; Fan, X. Towards Credential-Based Device Registration in DApps for DePINs with ZKPs. In Proceedings of the 2024 IEEE International Conference on Blockchain (Blockchain), Copenhagen, Denmark, 19–22 August 2024; pp. 583–590. [Google Scholar]
- Jin, A.; Ye, Y.; Lee, B.; Qiao, Y. DeCoAgent: Large Language Model Empowered Decentralized Autonomous Collaboration Agents Based on Smart Contracts. IEEE Access 2024, 12, 155234–155245. [Google Scholar] [CrossRef]
- Papi, F.G.; Hübner, J.F.; de Brito, M. A Blockchain integration to support transactions of assets in multi-agent systems. Eng. Appl. Artif. Intell. 2022, 107, 104534. [Google Scholar] [CrossRef]
- Swindall, M.I.; Upadhyay, K.; Brusuelas, J.H.; West, G.; Wallin, J.F. Smart Digital Edition Management: A Blockchain Framework for Papyrology. In Proceedings of the 2024 Computers and People Research Conference, Murfreesboro, TN, USA, 29 May–1 June 2024; pp. 1–10. [Google Scholar]
- Nikbakht, R.; Javed, F.; Rezazadeh, F.; Bartzoudis, N.; Mangues-Bafalluy, J. Decentralized Energy Marketplace via NFTs and AI-based Agents. In Proceedings of the 2024 IEEE 8th Energy Conference (ENERGYCON), Doha, Qatar, 4–7 March 2024; pp. 1–6. [Google Scholar]
- Nag, A.; Gupta, S.; Sinha, S.; Datta, A. Multi Agent Influence Diagrams for DeFi Governance. arXiv 2024, arXiv:2402.15037. [Google Scholar]
- Xu, J.; Feng, Y. Reap the harvest on blockchain: A survey of yield farming protocols. IEEE Trans. Netw. Serv. Manag. 2022, 20, 858–869. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Sernani, P.; Romeo, L.; Frontoni, E.; Mancini, A. On the integration of artificial intelligence and blockchain technology: A perspective about security. IEEE Access 2024, 12, 3881–3897. [Google Scholar] [CrossRef]
- Li, Y.; Tao, Z. Research on Complex Control of Internet of Things Based on AI Agent Technology. In Proceedings of the 2024 4th International Conference on Computer Science and Blockchain (CCSB), Shenzhen, China, 6–8 September 2024; pp. 104–108. [Google Scholar]
- Ante, L. Autonomous AI Agents in Decentralized Finance: Market Dynamics, Application Areas, and Theoretical Implications. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5055677 (accessed on 20 January 2025).
- Gioacchini, L.; Mellia, M.; Drago, I.; Delsanto, A.; Siracusano, G.; Bifulco, R. AutoPenBench: Benchmarking Generative Agents for Penetration Testing. arXiv 2024, arXiv:2410.03225. [Google Scholar]
- Motwani, S.R.; Baranchuk, M.; Strohmeier, M.; Bolina, V.; Torr, P.; Hammond, L.; de Witt, C.S. Secret Collusion among AI Agents: Multi-Agent Deception via Steganography. In Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 9–15 December 2024. [Google Scholar]
- Jannelli, V.; Schoepf, S.; Bickel, M.; Netland, T.; Brintrup, A. Agentic LLMs in the Supply Chain: Towards Autonomous Multi-Agent Consensus-Seeking. arXiv 2024, arXiv:2411.10184. [Google Scholar]
- Lavaur, T.; Nedelmann, D.C.; Chauffaut, C.; Lacan, J.; Chanel, C.P. Verifiable Multi-Agent Multi-Task Assignment. In Proceedings of the 2024 IEEE Secure Development Conference (SecDev), Pittsburgh, PA, USA, 7–10 October 2024; pp. 1–12. [Google Scholar]
- Karanjai, R.; Shi, W. Trusted LLM Inference on the Edge with Smart Contracts. In Proceedings of the 2024 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Dublin, Ireland, 27–31 May 2024; pp. 1–7. [Google Scholar]
- Talus Labs. Talus: The Smart Agent Hub for the Web3 AI Era. Available online: https://talus.network/litepaper.pdf (accessed on 7 January 2025).
- AI-agents Need Love Too. Available online: https://delysium.gitbook.io/whitepaper (accessed on 7 January 2025).
- Bonneau, J.; Meckler, I.; Rao, V.; Shapiro, E. Mina: Decentralized Cryptocurrency at Scale. 2020. Available online: https://docs.minaprotocol.com/assets/technicalWhitepaper.pdf (accessed on 20 January 2025).
- Larin, V.; Nikitin, I.; Firsov, A. Self-Supervised Inference of Agents in Trustless Environments. arXiv 2024, arXiv:2409.08386. [Google Scholar]
- Raeini, M. Privacy-Preserving Large Language Models (PPLLMs). 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4512071 (accessed on 20 January 2025).
- Bitte: The Decentralized Agent Discovery Protocol. Available online: https://docsend.com/view/ngd388tyqh7jhe4y (accessed on 7 January 2025).
- Sachan, S.; Liu, X. Blockchain-based auditing of legal decisions supported by explainable AI and generative AI tools. Eng. Appl. Artif. Intell. 2024, 129, 107666. [Google Scholar] [CrossRef]
- Nascita, A.; Aceto, G.; Ciuonzo, D.; Montieri, A.; Persico, V.; Pescape, A. A Survey on Explainable Artificial Intelligence for Internet Traffic Classification and Prediction, and Intrusion Detection. IEEE Commun. Surv. Tutor. 2024; early access. [Google Scholar] [CrossRef]
- Sado, F.; Loo, C.K.; Liew, W.S.; Kerzel, M.; Wermter, S. Explainable goal-driven agents and robots-a comprehensive review. ACM Comput. Surv. 2023, 55, 1–41. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Y.; Lu, J.; Zhang, L. S-Agents: Self-organizing agents in open-ended environment. arXiv 2024, arXiv:2402.04578. [Google Scholar]
- Liu, Y.; Lu, Q.; Zhu, L.; Paik, H.Y. Decentralised Governance-Driven Architecture for Designing Foundation Model based Systems: Exploring the Role of Blockchain in Responsible AI. arXiv 2023, arXiv:2308.05962. [Google Scholar]
- Borge, M.; Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Ford, B. Proof-of-personhood: Redemocratizing permissionless cryptocurrencies. In Proceedings of the 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Paris, France, 26–28 April 2017; pp. 23–26. [Google Scholar]
- Gent, E. A Cryptocurrency for the Masses or a Universal ID?: Worldcoin Aims to Scan all the World’s Eyeballs. IEEE Spectr. 2023, 60, 42–57. [Google Scholar] [CrossRef]
- Taherdoost, H. Smart contracts in blockchain technology: A critical review. Information 2023, 14, 117. [Google Scholar] [CrossRef]
- McIntosh, T.R.; Susnjak, T.; Liu, T.; Watters, P.; Ng, A.; Halgamuge, M.N. A game-theoretic approach to containing artificial general intelligence: Insights from highly autonomous aggressive malware. IEEE Trans. Artif. Intell. 2024, 5, 6290–6303. [Google Scholar] [CrossRef]
- Gill, S.S. Quantum and blockchain based Serverless edge computing: A vision, model, new trends and future directions. Internet Technol. Lett. 2024, 7, e275. [Google Scholar] [CrossRef]
- Bhat, J.R.; AlQahtani, S.A.; Nekovee, M. FinTech enablers, use cases, and role of future internet of things. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 87–101. [Google Scholar] [CrossRef]
- Zhou, D.; Xue, X.; Lu, X.; Guo, Y.; Ji, P.; Lv, H.; He, W.; Xu, Y.; Li, Q.; Cui, L. A Hierarchical Model for Complex Adaptive System: From Adaptive Agent to AI Society. ACM Trans. Auton. Adapt. Syst. 2024. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Niyato, D.; Kang, J.; Xiong, Z.; Miao, C.; Shen, X.S.; Jamalipour, A. Blockchain-empowered lifecycle management for AI-generated content products in edge networks. IEEE Wirel. Commun. 2024, 31, 286–294. [Google Scholar] [CrossRef]
- Chaffer, T.J.; von Goins, C., II; Okusanya, B.; Cotlage, D.; Goldston, J. On the ETHOS of AI Agents: An Ethical Technology and Holistic Oversight System. arXiv 2024, arXiv:2412.17114. [Google Scholar]
- Artificial Intelligence Act. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)698792 (accessed on 7 January 2025).
- Lu, Q.; Zhu, L.; Xu, X.; Whittle, J.; Zowghi, D.; Jacquet, A. Responsible AI pattern catalogue: A collection of best practices for AI governance and engineering. ACM Comput. Surv. 2024, 56, 1–35. [Google Scholar] [CrossRef]
Features | [8] | [23] | [24] | [26] | [27] | [28] | Ours |
---|---|---|---|---|---|---|---|
Blockchain enhances AI’s trust | ✓ | ✓ | ✓ | ✓ | |||
Blockchain elevates AI’s performance | ✓ | ✓ | ✓ | ✓ | |||
AI increases blockchain’s efficiency | ✓ | ✓ | ✓ | ✓ | |||
AI enhances blockchain’s security | ✓ | ✓ | ✓ | ✓ | |||
Empirical application scenarios | ✓ | ✓ | ✓ |
Feature | Ref. | Contribution | Quality | Scalability | Security | Efficiency |
---|---|---|---|---|---|---|
Intelligent Decision Making | [63] | Leveraging blockchain, DAOs, and LLMs to create financially self-sustaining and self-managed digital building. | ✓ | |||
Intelligent Consensus Mechanism | [64] | Apply stake-based miner designation, multi-round debate-style voting, and a specific reward mechanism to protect and ensure legitimate and valuable records on blockchain. | ✓ | ✓ | ||
[65] | Provide a self-sustainable compute service via a network of independent AI agents that does not rely on a single entity. | ✓ | ✓ | |||
Zero-shot Learning for Operation | [66] | Solve the problem of scaling culture production in a blockchain-based business model while reducing agency cost. | ✓ | ✓ | ||
Vulnerability Detection | [67] | Integrate ensemble learning with large language models to classify vulnerabilities in smart contracts. | ✓ |
Feature | Ref. | Contribution | Privacy | Transparency | Accountability | Scalability | Efficiency |
---|---|---|---|---|---|---|---|
Infrastructure | [70] | Leverage Ethereum and the IPFS to create a decentralized framework that facilitates secure logging and dissemination of agent activities. | ✓ | ✓ | ✓ | ||
[71] | Leverage blockchain, DeAI, and LLMs to facilitate a decentralized infrastructure that supports AI agents through transparent coordination and secure resource sharing. | ✓ | ✓ | ✓ | |||
Governance | [72] | Provide a practical demonstration of blockchain-inspired governance on root cause analysis in micro-services architectures. | ✓ | ||||
[63] | Serve as a blueprint for a self-governing, autonomous building infrastructure by leveraging blockchain technology, DAOs, and LLM-powered building automation systems. | ✓ | ✓ | ✓ | |||
Key Enablers | [73] | Integrate on-chain data and off-chain information to execute daily trading strategies in cryptocurrency market. | ✓ |
Ref. | Contribution | Strength | Weakness |
---|---|---|---|
[24] | Employs a multi-layered ontology approach to improve communication between AI agents in decentralized context | (1) Reduces data access overhead (2) minimizes unnecessary storage; (3) flexible, mobile, and efficient data processing | (1) Experiment on small-scale simulations only, (2) lack of interoperability |
[82] | Connects the intangible concepts related to transactions of assets to the concrete elements composing the system | (1) Ensures system regulation, (2) provides reliable recording of transactions, (3) can represent asset-related notions | (1) Slow, (2) cost expensive, (3) requires further considerations about asset notions |
[83] | Automates the storage and retrieval of multiple related editions while ensuring that contributions by multiple authors are recorded | (1) Feasible, (2) decentralized, and flexible, (3) customizable | (1) Unsuitability of Ethereum Testnet, (2) potential issue with IPFS, (3) need for alternate storage options |
[73] | Broadens the applicability of LLMs in cryptocurrency trading and establishes a benchmark for trading strategies | (1) Performs well under different market conditions, (2) successful trend predictions | (1) Limited dataset, (2) inappropriate trading frequency, (3) lack of fine-tuning |
[84] | Addresses incentive alignment and transparency challenges in traditional energy trading mechanisms | (1) Enhances energy management, (2) ensures trades are secure and transparent | (1) High computational overhead, (2) experiment on a small scale only |
[63] | Leveraging blockchain, DAOs, and LLMs to create financially self-sustained and self-managed digital building | (1) Transparent decision making, (2) real-time visualization, (3) autonomously adjusting smart appliances | (1) Potential financial instability, (2) limited implementation due to the reliance on smart appliances |
[85] | Provides a powerful tool for modeling and studying the strategic interactions within DeFi governance | (1) Gives an explicit representation of agents’ interactions, (2) enables analysis and predictions of outcomes | (1) The analysis is only limited to two agents, (2) lack of real-world applicability validation |
[81] | Enables decentralized autonomous collaboration between LLM agents | (1) Allows agents to register themselves, discover the capabilities of others, and assign tasks, (2) practically feasible, (3) allows humans and agents to interact in natural language | Poor performance on zero-shot prompting |
[72] | Improves alert incident resolution in complex micro-services through a blend of multi-agent, LLMs, and blockchain voting | (1) Effectively detects root causes, (2) increases system reliability and operational efficiency | Increases computation overhead |
Examples | Criteria | Advantages | Limitations |
---|---|---|---|
ai16z (Solana) | DeFi (Hedge Funds) |
|
|
Terminal of Truths (ToT) | DeFi (Tokenomics) |
|
|
Luna (Virtuals Protocol) | Social Engagement |
|
|
ArbDoge AI (Arbitrum) | Collaborative DAOs |
|
|
Fetch.ai | Privacy and IoT |
|
|
Delysium (Web3 Gaming) | Gaming and NFTs |
|
|
SingularityNET + Cardano | DeAI |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, M.M.; Van, D.H.; Khan, S.; Qu, Q.; Kholodov, Y. AI Agents Meet Blockchain: A Survey on Secure and Scalable Collaboration for Multi-Agents. Future Internet 2025, 17, 57. https://doi.org/10.3390/fi17020057
Karim MM, Van DH, Khan S, Qu Q, Kholodov Y. AI Agents Meet Blockchain: A Survey on Secure and Scalable Collaboration for Multi-Agents. Future Internet. 2025; 17(2):57. https://doi.org/10.3390/fi17020057
Chicago/Turabian StyleKarim, Md Monjurul, Dong Hoang Van, Sangeen Khan, Qiang Qu, and Yaroslav Kholodov. 2025. "AI Agents Meet Blockchain: A Survey on Secure and Scalable Collaboration for Multi-Agents" Future Internet 17, no. 2: 57. https://doi.org/10.3390/fi17020057
APA StyleKarim, M. M., Van, D. H., Khan, S., Qu, Q., & Kholodov, Y. (2025). AI Agents Meet Blockchain: A Survey on Secure and Scalable Collaboration for Multi-Agents. Future Internet, 17(2), 57. https://doi.org/10.3390/fi17020057