A Methodological Framework for AI-Driven Textual Data Analysis in Digital Media
Abstract
:1. Introduction
2. Background
3. The Proposed Approach: Data Analysis Framework for Information and Media
3.1. Data Extraction
3.2. Data Preprocessing and Enrichment
3.3. Knowledge Discovery
4. Analyzing News Aggregation on the Israel–Lebanon Conflict: A Comparative Study of Google News
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bateman, J.A. What are digital media? Discourse Context Media 2021, 41, 100502. [Google Scholar] [CrossRef]
- Acerbi, A. A cultural evolution approach to digital media. Front. Hum. Neurosci. 2016, 10, 636. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; D’Angelo, J.D. Digital Media Theory: From One-Way to Multidirectional Communication. In Handbook of Visual Communication: Theory, Methods, and Media, 2nd ed.; Josephson, S., Kelly, J., Smith, K., Eds.; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Abkenar, S.B.; Kashani, M.H.; Mahdipour, E.; Jameii, S.M. Big data analytics meets social media: A systematic review of techniques, open issues, and future directions. Telemat. Inform. 2021, 57, 101517. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, Y.; Malik, M.N.; Khan, H.H.; Batool, A.; Islam, S.; Alsufyani, A.; Alghamdi, S. Suggestion mining from opinionated text of big social media data. Comput. Mater. Contin. 2021, 68, 3323–3338. [Google Scholar] [CrossRef]
- Labrecque, L.I.; vor dem Esche, J.; Mathwick, C.; Novak, T.P.; Hofacker, C.F. Consumer Power: Evolution in the Digital Age. J. Interact. Mark. 2013, 27, 257–269. [Google Scholar] [CrossRef]
- Mellado, C.; Humanes, M.L.; Scherman, A.; Ovando, A. Do digital platforms really make a difference in content? Mapping journalistic role performance in Chilean print and online news. Journalism 2018, 22, 358–377. [Google Scholar] [CrossRef]
- Mellado, C.; Alfaro, A. Platforms, Journalists and Their Digital Selves. Digit. J. 2020, 8, 1258–1279. [Google Scholar] [CrossRef]
- Subudhi, R.N. Digital Consumption Pattern and Impacts of Social Media: Descriptive Statistical Analysis. In Trends of Data Science and Applications; Studies in Computational Intelligence; Rautaray, S., Pemmaraju, P., Mohanty, H., Eds.; Springer: Singapore, 2021; Volume 954, pp. 45–60. [Google Scholar] [CrossRef]
- Arrigo, E.; Liberati, C.; Mariani, P. Social Media Data and Users’ Preferences: A Statistical Analysis to Support Marketing Communication. Big Data Res. 2021, 24, 100189. [Google Scholar] [CrossRef]
- Vállez, M.; Boté-Vericad, J.J.; Guallar, J.; Bastos, M.T. Indifferent about online traffic: The posting strategies of five news outlets during Musk’s acquisition of Twitter. J. Stud. 2024, 25, 1249–1271. [Google Scholar] [CrossRef]
- Men, L.R.; Tsai, W.H.S. Perceptual, attitudinal, and behavioral outcomes of organization–public engagement on corporate social networking sites. J. Public Relations Res. 2014, 26, 417–435. [Google Scholar] [CrossRef]
- Cordeiro, D.F.; Lopezosa, C.; Guallar, J.; Vállez, M. Analysis of Google News coverage: A comparative study of Brazil, Colombia, Mexico, Portugal, and Spain. Contratexto 2024, 42, 177–208. [Google Scholar] [CrossRef]
- Cordeiro, D.F.; Lopezosa, C.; Guallar, J.; Sousa, J.P. News exchange between Brazil and Portugal based on a quantitative analysis of Google News. Braz. J. Res. 2025, in press. [Google Scholar]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From data mining to knowledge discovery in databases. AI Mag. 1996, 17, 37–54. [Google Scholar] [CrossRef]
- Shearer, C. The CRISP-DM model: The new blueprint for data mining. J. Data Warehous. 2000, 5, 13–22. [Google Scholar]
- Karlim, Y.P.S.; Hermawan, A.; Maranto, A.R.K. Clustering Mental Health on Instagram Users Using K-Means Algorithm. Bit-Tech 2023, 6, 32–39. [Google Scholar] [CrossRef]
- Viera, L.M.; Cordeiro, D.F. The dark side of anti-vaccination: Analysis of a Brazilian anti-vaccine Facebook group. Famecos 2023, 30, 1–18. [Google Scholar] [CrossRef]
- Garcia-Arteaga, J.; Zambrano-Zambrano, J.; Parraga-Alava, J.; Rodas-Silva, J. An effective approach for identifying keywords as high-quality filters to get emergency-implicated Twitter Spanish data. Comput. Speech Lang. 2024, 84, 101579. [Google Scholar] [CrossRef]
- Ozbay, F.A.; Alatas, B. Fake news detection within online social media using supervised artificial intelligence algorithms. Phys. A Stat. Mech. Its Appl. 2020, 540, 123174. [Google Scholar] [CrossRef]
- Madani, Y.; Erritali, M.; Bouikhalene, B. Using artificial intelligence techniques for detecting Covid-19 epidemic fake news in Moroccan tweets. Results Phys. 2021, 25, 104266. [Google Scholar] [CrossRef]
- Chiang, T.H.C.; Liao, C.S.; Wang, W.C. Investigating the Difference of Fake News Source Credibility Recognition between ANN and BERT Algorithms in Artificial Intelligence. Appl. Sci. 2022, 12, 7725. [Google Scholar] [CrossRef]
- Setiawan, R.; Ponnam, V.S.; Sengan, S.; Anam, M.; Subbiah, C.; Phasinam, K.; Ponnusamy, S. Certain investigation of fake news detection from Facebook and Twitter using artificial intelligence approach. Wirel. Pers. Commun. 2022, 127, 1737–1762. [Google Scholar] [CrossRef]
- Pan, X.; Su, Q.; Wei, L.; Guo, L. Research on Ethical Issues and Coping Strategies of Artificial Intelligence Algorithms Recommending News with the Support of Wireless Sensing Technology. J. Sens. 2023, 2023, 8629849. [Google Scholar] [CrossRef]
- Ma, Y.W.; Chen, J.L.; Chen, L.D.; Huang, Y.M. Intelligent Clickbait News Detection System Based on Artificial Intelligence and Feature Engineering. IEEE Trans. Eng. Manag. 2024, 71, 12509–12518. [Google Scholar] [CrossRef]
- Tu, M. Named entity recognition and emotional viewpoint monitoring in online news using artificial intelligence. PeerJ Comput. Sci. 2024, 10, e1715. [Google Scholar] [CrossRef] [PubMed]
- Guangce, R.; Lei, X. Knowledge discovery of news text based on artificial intelligence. ACM Trans. Asian-Low-Resour. Lang. Inf. Process. (TALLIP) 2020, 20, 1–18. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, J. An artificial intelligence based news feature mining system based on the Internet of Things and multi-sensor fusion. PeerJ Comput. Sci. 2023, 9, e1428. [Google Scholar] [CrossRef] [PubMed]
- Garvey, C.; Maskal, C. Sentiment analysis of the news media on artificial intelligence does not support claims of negative bias against artificial intelligence. Omics J. Integr. Biol. 2020, 24, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, C. Emotion Classification Method of Financial News Based on Artificial Intelligence. Wirel. Commun. Mob. Comput. 2022, 2022, 8047582. [Google Scholar] [CrossRef]
- Jünger, J. Scraping social media data as platform research: A data hermeneutical perspective. In Challenges and Perspectives of Hate Speech Research; Strippel, C., Paasch-Colberg, S., Emmer, M., Trebbe, J., Eds.; DEU: Berlin, Germany, 2023; pp. 427–441. [Google Scholar] [CrossRef]
- Chani, T.; Olugbara, O.; Mutanga, B. The Problem of Data Extraction in Social Media: A Theoretical Framework. J. Inf. Syst. Inform. 2023, 5, 1363–1384. [Google Scholar] [CrossRef]
- Davidson, B.I.; Wischerath, D.; Racek, D.; Parry, D.A.; Godwin, E.; Hinds, J.; Linden, D.; Roscoe, J.F.; Ayravainen, L.; Cork, A.G. Platform-controlled social media APIs threaten open science. Nat. Hum. Behav. 2023, 7, 2054–2057. [Google Scholar] [CrossRef] [PubMed]
- Trans, M.; Beraldo, D.; Draisci, L.; Afsahi, L.; Brennan, M.; Goldschmidt, V.; Grendarova, T.; Hamilton, H.; Keskin, M.; Papasokratous, M.; et al. APIcalypse Now: Redefining Data Access Regimes in the Face of the Digital Services Act. Digital Methods Initiative Winter School. 2024. Available online: https://www.digitalmethods.net/Dmi/WinterSchool2024APIcalypse (accessed on 30 November 2024).
- Bruns, A. After the ‘APIcalypse’: Social media platforms and their fight against critical scholarly research. Inf. Commun. Soc. 2019, 22, 1544–1566. [Google Scholar] [CrossRef]
- Pearson, G.D.H.; Silver, N.A.; Robinson, J.Y.; Azadi, M.; Schillo, B.A.; Kreslake, J.M. Beyond the margin of error: A systematic and replicable audit of the TikTok research API. Inf. Commun. Soc. 2024, 1–19. [Google Scholar] [CrossRef]
- Zhao, B. Web Scraping. In Encyclopedia of Big Data; Schintler, L., McNeely, C., Eds.; Springer: Cham, Switzerland, 2022; pp. 345–349. [Google Scholar] [CrossRef]
- Mitchell, R. Web Scraping with Python: Data Extraction from the Modern Web, 3rd ed.; O’Reilly Media: Sebastopol, CA, USA, 2024. [Google Scholar]
- Dewi, L.C.; Meiliana, M.; Chandra, A. Social media web scraping using social media developers API and Regex. Procedia Comput. Sci. 2019, 157, 444–449. [Google Scholar] [CrossRef]
- Thivaharan, S.; Srivatsun, G.; Sarathambekai, S. A Survey on Python Libraries Used for Social Media Content Scraping. In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12 September 2020; pp. 361–366. [Google Scholar] [CrossRef]
- Martín-Gómez, L.; Cordero-Gutiérrez, R.; Pérez-Marcos, J. Business Benefits of Instagram Scraping: Questionable Uses of Data. In New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence. DiTTEt 2021. Advances in Intelligent Systems and Computing; de Paz Santana, J.F., de la Iglesia, D.H., López Rivero, A.J., Eds.; Springer: Cham, Switzerland, 2022; Volume 1410. [Google Scholar] [CrossRef]
- Khanom, A.; Kiesow, D.; Zdun, M.; Shyu, C. The news crawler: A big data approach to local information ecosystems. Media Commun. 2023, 11, 318–329. [Google Scholar] [CrossRef]
- Salem, H.; Mazzara, M. Pattern matching-based scraping of news websites. J. Phys. Conf. Ser. 2020, 1694, 012011. [Google Scholar] [CrossRef]
- Barbera, G.; Araujo, L.; Fernandes, S. The Value of Web Data Scraping: An Application to TripAdvisor. Big Data Cogn. Comput. 2023, 7, 121. [Google Scholar] [CrossRef]
- Luscombe, A.; Dick, K.; Walby, K. Algorithmic thinking in the public interest: Navigating technical, legal, and ethical hurdles to web scraping in the social sciences. Qual. Quant. 2022, 56, 1023–1044. [Google Scholar] [CrossRef]
- Lala, F. Data collection via web scraping: Privacy and facial recognition after Clearview. I-lex 2023, 16, 34–45. [Google Scholar] [CrossRef]
- Fontana, A.G. Web scraping: Jurisprudence and legal doctrines. J. World Intellect. Prop. 2024. [Google Scholar] [CrossRef]
- Brow, M.A.; Gruen, A.; Maldoff, G.; Messing, S.; Sanderson, Z.; Zimmer, M. Web scraping for research: Legal, ethical, institutional and scientific considerations. arXiv 2024, arXiv:2410.23432. [Google Scholar] [CrossRef]
- Goyal, A.; Gupta, V.; Kumar, M. Recent named entity recognition and classification techniques: A systematic review. Comput. Sci. Rev. 2018, 29, 21–43. [Google Scholar] [CrossRef]
- Chew, R.; Wenger, M.; Guillory, J.; Nonnemaker, J.; Kim, A. Identifying electronic nicotine delivery system brands and flavors on Instagram: Natural language processing analysis. J. Med. Internet Res. 2022, 24, e30257. [Google Scholar] [CrossRef]
- Cordeiro, D.F.; Lopezosa, C.; Vállez, M.; Guallar, J. Estrategias de comunicación del Ministerio de Sanidad de España en Instagram antes, durante y después de la pandemia de COVID-19. Rev. Icono 14 Rev. CientíFica Comun. Tecnol. Emergentes 2024, 22, e2189. [Google Scholar]
- Zhou, C.; Li, Q.; Li, C.; Yu, J.; Liu, Y.; Wang, G.; Zhang, K.; Ji, C.; Yan, Q.; He, L.; et al. A comprehensive survey on pretrained foundation models: A history from BERT to ChatGPT. Int. J. Mach. Learn. Cybern. 2024, 1–65. [Google Scholar] [CrossRef]
- Li, J.; Sun, A.; Han, J.; Li, C. A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 2022, 34, 50–70. [Google Scholar] [CrossRef]
- Tao, L.; Xie, Z.; Xu, D.; Ma, K.; Qiu, Q.; Pan, S.; Huang, B. Geographic Named Entity Recognition by Employing Natural Language Processing and an Improved BERT Model. ISPRS Int. J. Geo-Inf. 2022, 11, 598. [Google Scholar] [CrossRef]
- Object Management Group. Business Process Model and Notation (BPMN). 2013. Available online: https://www.omg.org/spec/BPMN/2.0.2/PDF (accessed on 30 November 2024).
- Jehangir, B.; Radhakrishnan, S.; Agarwal, R. A survey on named entity recognition-datasets, tools, and methodologies. Nat. Lang. Process. J. 2023, 3, 100017. [Google Scholar] [CrossRef]
- Abzalov, M. Exploratory Data Analysis. In Applied Mining Geology; Modern Approaches in Solid Earth Sciences; Springer: Cham, Switzerland, 2016; Volume 12. [Google Scholar] [CrossRef]
- Hickman, L.; Thapa, S.; Tay, L.; Cao, M.; Srinivasan, P. Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations. Organ. Res. Methods 2022, 25, 114–146. [Google Scholar] [CrossRef]
- Anglin, K.L.; Wong, V.C.; Boguslav, A. A natural language processing approach to measuring treatment adherence and consistency using semantic similarity. AERA Open 2021, 7, 23328584211028615. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 1–9. [Google Scholar]
- Mikolov, T.; Corrado, G.; Chen, K.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Mikolov, T.; Yih, W.t.; Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, GA, USA, 9–14 June 2013; pp. 746–751. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Miller, Z.; Dickinson, B.; Deitrick, W.; Hu, W.; Wang, A.H. Twitter spammer detection using data stream clustering. Inf. Sci. 2014, 260, 64–73. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Cai, J.; Yu, Y.; Wang, H. Topic Detection and Tracking Based on Windowed DBSCAN and Parallel KNN. IEEE Access 2021, 9, 3858–3870. [Google Scholar] [CrossRef]
- Hanifa, A.; Debora, C.; Hasani, M.F.; Wicaksono, P. Analyzing Views on Presidential Candidates for Election 2024 Based on the Instagram and X Platforms with Text Clustering. Procedia Comput. Sci. 2024, 245, 730–739. [Google Scholar] [CrossRef]
- Mehta, V.; Bawa, S.; Singh, J. WEClustering: Word embeddings based text clustering technique for large datasets. Complex Intell. Syst. 2021, 7, 3211–3224. [Google Scholar] [CrossRef]
- Aurpa, T.T.; Sadik, R.; Ahmed, M.S. Abusive Bangla comments detection on Facebook using transformer-based deep learning models. Soc. Netw. Anal. Min. 2021, 12, 24. [Google Scholar] [CrossRef]
- Singh, J.; Tripathi, P. Sentiment analysis of Twitter data by making use of SVM, Random Forest and Decision Tree algorithm. In Proceedings of the 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 18–19 June 2021; pp. 193–198. [Google Scholar] [CrossRef]
- Kanahuati-Ceballos, M.; Valdivia, L.J. Detection of depressive comments on social media using RNN, LSTM, and random forest: Comparison and optimization. Soc. Netw. Anal. Min. 2024, 14, 44. [Google Scholar] [CrossRef]
- Li, X.; Lei, Y.; Ji, S. BERT- and BiLSTM-Based Sentiment Analysis of Online Chinese Buzzwords. Future Internet 2022, 14, 332. [Google Scholar] [CrossRef]
- Hu, C.; Liu, B.; Ye, Y.; Li, X. Fine-grained classification of drug trafficking based on Instagram hashtags. Decis. Support Syst. 2023, 165, 113896. [Google Scholar] [CrossRef]
- Singh, P.; Jain, B.; Sinha, K. Evaluating Bert and GPT-2 Models for Personalised Linkedin Post Recommendation. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Jain, B.; Goyal, G.; Sharma, M. Evaluating Emotional Detection & Classification Capabilities of GPT-2 & GPT-Neo Using Textual Data. In Proceedings of the 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 18–19 January 2024; pp. 12–18. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Z.; Ho, S.; Cambria, E. Survey on sentiment analysis: Evolution of research methods and topics. Artif. Intell. Rev. 2023, 56, 8469–8510. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.L.; Lee, C.P.; Lim, K.M. A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. Appl. Sci. 2023, 13, 4550. [Google Scholar] [CrossRef]
- Alslaity, A.; Orji, R. Machine learning techniques for emotion detection and sentiment analysis: Current state, challenges, and future directions. Behav. Inf. Technol. 2022, 43, 139–164. [Google Scholar] [CrossRef]
- Arfat, Y.; Tista, S.C. Bangla Misleading Clickbait Detection Using Ensemble Learning Approach. In Proceedings of the 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), Dhaka, Bangladesh, 2–4 May 2024; pp. 184–189. [Google Scholar] [CrossRef]
- Hu, B.; Mao, Z.; Zhang, Y. An overview of fake news detection: From a new perspective. Fundam. Res. 2024, 5, 332–346. [Google Scholar] [CrossRef]
- Panda, I.; Singh, J.; Pradhan, G.; Kumari, K. A deep learning framework for clickbait spoiler generation and type identification. J. Comput. Soc. Sci. 2024, 7, 671–693. [Google Scholar] [CrossRef]
- Raj, R.; Sharma, C.; Uttara, R.; Animon, C.R. A literature review on clickbait detection techniques for social media. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Garewal, I.K.; Jha, S.; Mahamuni, C.V. Topic Modeling for Identifying Emerging Trends on Instagram Using Latent Dirichlet Allocation and Non-Negative Matrix Factorization. In Proceedings of the 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 14–15 March 2024; pp. 1103–1110. [Google Scholar] [CrossRef]
- Shin, S.H.; Baek, O.J. A Study on Internet News for Patient Safety Campaigns: Focusing on Text Network Analysis and Topic Modeling. Healthcare 2024, 12, 1914. [Google Scholar] [CrossRef]
- Miyers, D.; Mohawesh, R.; Chellaboina, V.; Sathvik, A.L.; Venkatesh, P.; Ho, Y.H.; Henshaw, H.; Alhawawreh, M.; Berdik, D.; Jararweh, Y. Foundation and large language models: Fundamentals, challenges, opportunities, and social impacts. Clust. Comput. 2023, 27, 1–26. [Google Scholar] [CrossRef]
- Yang, J.; Hu, X.; Xiao, G.; Shen, Y. A Survey of Knowledge Enhanced Pre-trained Language Models. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2024, 36, 1413–1430. [Google Scholar] [CrossRef]
- Lopezosa, C.; Vállez, M.; Guallar, J. The vision of Google News from the academy: Scoping review. Doxa Comun. Rev. Interdiscip. Estud. Comun. Cienc. Soc. 2024, 38, 317–332. [Google Scholar] [CrossRef]
- Bukhari, S.R.H.; Iqbal, N.; Khan, A.U. Israel’s Military Actions in Palestine and Lebanon: A Critical Analysis of Humanitarian, Political, and Strategic Implications. J. Dev. Soc. Sci. 2024, 5, 577–586. [Google Scholar] [CrossRef]
- Harari, M.; Sözen, A. Lebanon and Israel: Natural Resources and Security Interests as Catalysts for Conflict Resolution. In Conflict Resolution in the Mediterranean: Energy as a Potential Game-Changer; Sözen, A., Goren, N., Limon, C., Eds.; Diplomeds—The Council for Mediterranean Diplomacy and Friedrich-Ebert-Stiftung (FES): Amsterdam, The Netherlands, 2024; pp. 23–36. [Google Scholar]
- Hassan, Z. Regional Geopolitical Conflict and the Fragile State: Foreign Influence and Lebanon’s Sovereignty. In Reconciliation, Heritage and Social Inclusion in the Middle East and North Africa; AlDajani, I.M., Leiner, M., Eds.; Springer: Cham, Switzerland, 2022; p. 27. [Google Scholar] [CrossRef]
- Hokayem, E. The Death of Nasrallah and the Fate of Lebanon. Survival 2024, 66, 33–40. [Google Scholar] [CrossRef]
- Nuwayhid, I.; Zurayk, H.; Sibai, A.M. Lebanon: A humanitarian crisis in a complex geopolitical context. Lancet 2024, 404, 2416–2417. [Google Scholar] [CrossRef] [PubMed]
- Barari, H.A.; Yacoub, R. Desmascarando o preconceito da mídia e a influência política impeditiva do sionismo religioso no conflito israelense-palestino. Am. J. Arts Hum. Sci. 2024, 3, 1–11. [Google Scholar] [CrossRef]
- Kareem, A.H.; Najm, Y.M. A critical discourse analysis of the biased role of Western Media in Israeli-Palestinian conflict. J. Lang. Stud. 2024, 8, 200–215. [Google Scholar] [CrossRef]
- Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; Stoyanov, V. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th annual meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 8440–8451. [Google Scholar] [CrossRef]
- Christodoulou, C. XLM-RoBERTa-Multilingual-Clickbait-Detection. Hugging Face. 2024. Available online: https://huggingface.co/christinacdl/XLM_RoBERTa-Multilingual-Clickbait-Detection (accessed on 10 November 2024).
- Cao, N.; Cui, W. Introduction to Text Visualization; Atlantis Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Uddin, R. Israeli Archaeologist ’Examining Ancient Site’ in Lebanon Killed by Hezbollah. 2024. Available online: https://www.middleeasteye.net/news/israel-archaeologist-ancient-site-lebanon-killed-hezbollah (accessed on 30 November 2024).
- Fischer, S.; Jaidka, K.; Lelkes, Y. Auditing local news presence on Google News. Nat. Hum. Behav. 2020, 4, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Cobos, T.L. Origin and weight of news media outlets indexed on Google News: An exploration of the editions from Brazil, Colombia, and Mexico. Braz. J. Res. 2021, 17, 28–63. [Google Scholar] [CrossRef]
- Ward, S. Patriotism and Journalism. In Handbook of Patriotism; Sardoč, M., Ed.; Springer: Cham, Switzerland, 2020; pp. 329–340. [Google Scholar] [CrossRef]
- Ojala, M. Is the Age of Impartial Journalism Over? The Neutrality Principle and Audience (Dis)trust in Mainstream News. J. Stud. 2021, 22, 2042–2060. [Google Scholar] [CrossRef]
Google News Israel | Google News Lebanon | ||
---|---|---|---|
ynet ידדיעות אחרונות (Ynet Yedioth Ahronoth) | 190 (19.94%) | الجزيرة نت (Al Jazeera Net) | 73 (7.37%) |
mako (mako) | 115 (12.07%) | ليبانون ديبايت (Lebanon Debate) | 66 (6.67%) |
מעריב און לין (Maariv Online) | 80 (8.39%) | Elnashra | 49 (4.95%) |
האר (The Country) | 40 (4.20%) | لبنان ٤٢ (Lebanon 24) | 39 (3.94) |
סרגים (Knitted) | 39 (4.09%) | القوات اللبنانية (Lebanese Forces) | 36 (3.64%) |
Google News Israel | Google News Lebanon | ||
---|---|---|---|
(Benjamin) Netanyahu | 51 (9.78%) | (Donald) Trump | 37 (9.56%) |
(Donald) Trump | 49 (9.40%) | (Benjamin) Netanyahu | 30 (7.75%) |
(Eli) Feldstein | 22 (0.42%) | (Amos) Hochstein | 19 (4.90%) |
(Israel) Katz | 13 (0.24%) | (Nabih) Berri | 11 (2.84%) |
(Joe) Biden | 11 (0.21%) | (Max) Verstappen | 10 (2.58%) |
Google News Israel | Google News Lebanon | ||
---|---|---|---|
Lebanon | 72 (23.53%) | Israel | 115 (32.58%) |
USA | 46 (15.03%) | USA | 48 (13.60%) |
Netherlands | 30 (9.80%) | Syria | 35 (9.92%) |
Iran | 22 (7.19%) | Palestinian Territory | 24 (6.80%) |
Syria | 19 (6.21%) | Iran | 18 (5.10%) |
Google News Israel | |
---|---|
Meta gets a major upgrade: These are all the new features in the Messenger app (
/Ace) A revolution in the military as well: Trump is going to cause a shock in the Holy of Holies of the USA ( /Maariv Online) A small change to Google Authenticator will save you some time ( /Geeky) For the third time: Einav and Raz from “Chatonami” got married in a large, elaborate event (mako/mako) Flights to Israel will be completely banned: This is the dramatic decision announced ( /Ace) | |
Google News Lebanon | |
What does Miss Lebanon say about her participation in the Miss Universe competition during the war? (BBC News عربي/BBC News Arabic) Here is the death toll of the Lebanese army since the outbreak of the war (LebanonDebate/LebanonDebate) After Berri referred to a letter signed by Trump in a restaurant in Dearborn for a ceasefire in Lebanon…this is what the restaurant owner said (LBCI Lebanon/LBCI Lebanon) Al-Duwairi: For these reasons, Israel will expand its penetration into Lebanon, and this is what will happen (الجزيرة نت/Al Jazeera Net) Will the ceasefire agreement between Hezbollah and Israel succeed? (Lebanon24/Lebanon24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordeiro, D.; Lopezosa, C.; Guallar, J. A Methodological Framework for AI-Driven Textual Data Analysis in Digital Media. Future Internet 2025, 17, 59. https://doi.org/10.3390/fi17020059
Cordeiro D, Lopezosa C, Guallar J. A Methodological Framework for AI-Driven Textual Data Analysis in Digital Media. Future Internet. 2025; 17(2):59. https://doi.org/10.3390/fi17020059
Chicago/Turabian StyleCordeiro, Douglas, Carlos Lopezosa, and Javier Guallar. 2025. "A Methodological Framework for AI-Driven Textual Data Analysis in Digital Media" Future Internet 17, no. 2: 59. https://doi.org/10.3390/fi17020059
APA StyleCordeiro, D., Lopezosa, C., & Guallar, J. (2025). A Methodological Framework for AI-Driven Textual Data Analysis in Digital Media. Future Internet, 17(2), 59. https://doi.org/10.3390/fi17020059