Securing Decentralized Ecosystems: A Comprehensive Systematic Review of Blockchain Vulnerabilities, Attacks, and Countermeasures and Mitigation Strategies
Abstract
:1. Introduction
- RQ1: What are the most common types of attacks on blockchain technology, and how do they affect the security and integrity of the system?
- RQ2: What security measures and technologies have been employed to detect and mitigate malicious blockchain attacks?
- RQ3: How can context-specific mitigation strategies be designed to address the unique requirements and constraints of different blockchain applications?
2. Methodology
2.1. Scoping Criteria
2.2. Structured Literature Search Procedure
2.2.1. Eligibility Criteria
- Inclusion: Peer-reviewed studies, conference papers, journal papers, and research articles published between 1 January 2020 and 31 December 2024.
- Exclusion: Studies lacking empirical data, opinion pieces, keynotes, short papers, magazines, books, non-English articles, retracted papers, and studies that do not discuss mitigation, detection, and prevention strategies.
2.2.2. Search Strategy
- IEEE Xplore library: (((“All Metadata”: blockchain) AND (“All Metadata”: security) AND (“All Metadata”: privacy) AND (“All Metadata”: attack) AND (“All Metadata”: vulnerability*)) AND ((“All Metadata”: bitcoin) OR (“All Metadata”: btc) OR (“All Metadata”: tether) OR (“All Metadata”: usdt) OR (“All Metadata”: ethereum) OR (“All Metadata”: eth)) AND ((“All Metadata”: smart contract) OR (“All Metadata”: Cryptograph*) OR (“All Metadata”: Cryptocurrenc*)));
- ACM digital library: [All: blockchain] AND [All: security] AND [All: privacy] AND [All: attack] AND [All: vulnerabilit*] AND [[All: bitcoin] OR [All: btc] OR [All: tether] OR [All: usdt] OR [All: ethereum] OR [All: eth]] AND [[All: “smart contract”] OR [All: cryptograph*] OR [All: cryptocurrenc*]] AND [E-Publication Date: 1 January 2020 TO 31 December 2024)];
- Nature SpringerLink library: (blockchain AND security AND privacy AND attack AND vulnerability*) AND (bitcoin OR btc OR tether OR usdt OR ethereum OR eth) AND (smart contract OR cryptograph* OR cryptocurrenc*).
2.2.3. Selection Process
2.2.4. Data Extraction Process
2.2.5. Study Quality Assessment
2.3. Data Analysis Process
3. Attacks in Blockchain
3.1. Classification of Blockchain Attacks
3.1.1. The 51% Attack
- (a)
- Reversing transactions, enabling double spending (spending the same coins multiple times);
- (b)
- Altering the order of transactions;
- (c)
- Disrupting the activities of other miners;
- (d)
- Preventing confirmation of legitimate transactions.
3.1.2. Smart Contract Vulnerabilities
3.1.3. Double-Spending Attack
- Insufficiently secure or slow consensus algorithms;
- Delayed block confirmation times;
- Acceptance of unverified transactions;
3.1.4. Man-in-the-Middle (MITM) Attack
3.1.5. Routing Attack
- (a)
- Double-spending attacks;
- (b)
- Denial-of-Service (DoS) attacks;
- (c)
- 51% attacks.
3.1.6. Sybil Attack
3.1.7. Race Attack
3.1.8. Eclipse Attack
3.1.9. Replay Attack
3.2. Key Insights and Implications
3.3. Detecting and Mitigating Malicious Blockchain Attacks
3.3.1. The 51% Attack
Detection Techniques
- Hash rate monitoring: Continuous tracking of hash rate distribution among mining pools to detect centralization risks [68].
- Block propagation analysis: Observing block propagation times and orphan rates to identify potential manipulation [69].
- Network consensus monitoring: Analyzing deviations from normal consensus behavior, such as sudden changes in block confirmation times [70].
Mitigation Strategies
- Decentralization of mining power: Encouraging a diverse and distributed mining pool ecosystem to reduce the risk of hash rate concentration [69].
- Network size and security: Increasing the overall hash rate and network size to make it economically infeasible for an attacker to gain majority control [68].
- Consensus algorithm enhancements: Transitioning to more secure consensus mechanisms, such as Proof of Stake (PoS), which are less susceptible to hash-rate-based attacks [70].
- Real-time alerts and response systems: Implementing systems to detect and respond to unusual network activity, such as sudden hash rate spikes or block reorganizations [69].
3.3.2. Smart Contract Vulnerabilities
Detection Techniques
Mitigation Strategies
- Adopting established design patterns and best practices to minimize coding errors.
- Implementing robust access control mechanisms to prevent unauthorized interactions.
- Conducting thorough security audits and regular code reviews to identify potential vulnerabilities.
- Utilizing comprehensive testing methods, including fuzz testing and formal verification [73].
- Deploying upgradeable contracts to allow future improvements without disrupting the system.
3.3.3. Man-in-the-Middle (MITM) Attack
Detection Techniques
- Network Monitoring: Detects unusual activity, such as rogue nodes or unexpected data transmissions [74].
- Consensus Checks: Identifies discrepancies in transaction data and halts suspicious processes [75].
- Digital Signatures: Ensures data integrity and authenticates transaction senders, preventing tampering [76].
- Reputation Systems: Tracks node behavior to identify and flag potentially malicious nodes [77].
Mitigation Strategies
- Encryption: Ensures that data transmitted between nodes remain secure and incomprehensible to attackers [78].
- Multi-Factor Authentication (MFA): Protects private keys using techniques such as biometric authentication and one-time passwords [79].
- Consensus Mechanisms: Requires multiple nodes to verify and approve transactions, making it difficult for attackers to manipulate data [80].
- Identity Management: Authenticates and authorizes nodes before allowing them to join the network using tools like a public key infrastructure and digital certificates [81].
- Real-Time Monitoring: Combines network and transaction monitoring to detect and mitigate potential MITM attacks [82].
3.3.4. Routing Attack
3.3.5. Race Attack
3.3.6. Eclipse Attack
3.3.7. Double-Spending Attack
3.3.8. Sybil Attack
3.3.9. Replay Attack
4. Our Findings
4.1. Probability of Blockchain Attacks
4.2. Detection and Mitigation Strategies for Blockchain Attacks
4.3. Significant Keyword Frequencies
4.4. Publication Frequencies by Year
4.5. Distribution of Attack Categories
4.6. Analysis of Core Reasons for Vulnerabilities
4.7. Attack Categories and Their Impact Results Across the Included Studies
5. Discussion
5.1. RQ1: Common Types of Attacks on Blockchain Technology and Their Impact
- Smart contract vulnerabilities: Reentrancy attacks, integer overflow, and weak access control mechanisms lead to financial fraud and unauthorized transactions.
- Denial-of-service (DoS) attacks: DDoS blockchain state storage attacks cause network congestion and transaction delays, impacting system reliability.
- Consensus attacks: 51% attacks, selfish mining, and long-range attacks exploit mining power to reverse transactions and double spend assets.
- Oracle manipulation: Flash loan exploits and price manipulation enable attackers to control asset prices and execute fraudulent trades in DeFi applications.
- Cryptographic attacks: Quantum cryptographic threats, identity theft, and weak key management lead to unauthorized access and data breaches.
- Privacy violations: Data leaks in EHRs and IoT privacy breaches due to weak encryption mechanisms expose user-sensitive data.
- IoT security weaknesses: IoT device hijacking, unauthorized access, and industrial IoT intrusions result in compromised network security.
5.2. RQ2: Security Measures and Technologies for Detecting and Mitigating Blockchain Attacks
- Detection Techniques:
- −
- AI and ML-based anomaly detection for fraud and transaction manipulation.
- −
- Static and dynamic smart contract analysis for vulnerability detection.
- −
- Cryptographic verification ensuring transaction integrity.
- −
- Consensus monitoring for anomaly detection in mining behavior.
- Mitigation Measures:
- −
- Secure smart contract coding practices and formal verification.
- −
- Blockchain-based authentication for secure access control.
- −
- Privacy-preserving mechanisms such as zero-knowledge proofs (ZKP) and homomorphic encryption.
- −
- Hybrid blockchain models integrating public and private blockchains for enhanced security.
- Prevention Techniques:
- −
- Decentralized identity management with multi-factor authentication.
- −
- Intrusion prevention systems (IPS) for blocking unauthorized transactions.
- −
- Tokenization and encrypted storage for securing sensitive data.
5.3. RQ3: Context-Specific Mitigation Strategies for Different Blockchain Applications
- Smart Contracts (DeFi and Financial Transactions):
- −
- Pre-deployment formal verification to identify coding errors.
- −
- Multi-signature authentication to prevent unauthorized withdrawals.
- −
- Real-time transaction monitoring for Ponzi scheme detection.
- Enterprise and Government Blockchains:
- −
- Hybrid blockchain integration balancing transparency and confidentiality.
- −
- Regulatory compliance mechanisms such as AML and KYC frameworks.
- −
- Decentralized governance models using DAOs for decision-making.
- IoT and Industrial Blockchain Applications:
- −
- Lightweight blockchain security protocols for resource-constrained devices.
- −
- Edge and fog computing integration to secure IoT data.
- −
- Zero-knowledge proofs for securing IoT-generated data.
- Privacy-Critical Applications (Healthcare, Identity Management):
- −
- Decentralized identity management to prevent unauthorized access.
- −
- Confidential transactions with advanced encryption mechanisms.
- Blockchain-Based Voting and Governance:
- −
- Cryptographic vote verification for secure elections.
- −
- Resilient consensus mechanisms to prevent rollback attacks.
5.4. Broader Implications
5.5. Practical and Theoretical Contributions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chidambaranathan, S.; Geetha, R. Deep learning enabled blockchain based electronic heathcare data attack detection for smart health systems. Meas. Sens. 2024, 31, 100959. [Google Scholar] [CrossRef]
- Srivastava, A.; Gupta, J. Attack resistant blockchain-based healthcare record system using modified RSA Algorithm. Int. J. Inf. Technol. 2024, 16, 417–424. [Google Scholar] [CrossRef]
- Deloitte’s 2021 Global Blockchain Survey: Financial Leaders See Digital Assets as the Future. 2021. Available online: https://www2.deloitte.com/us/en/insights/topics/understanding-blockchain-potential/global-blockchain-survey.html (accessed on 25 March 2025).
- FinancialNewsMedia.com. Global Blockchain Technology Market Expected to Reach $1.4 Trillion by 2030. Available online: https://www.prnewswire.com/news-releases/global-blockchain-technology-market-expected-to-reach-1-4-trillion-by-2030-301535849.html (accessed on 20 April 2024).
- Pramod, B.; Vaibhav, M. Blockchain Distributed Ledger Market Expected to Reach $ 137.29 Billion by 2027; Allied Market Research: Wilmington, DE, USA, 2021. [Google Scholar]
- Sood, A.; Simon, R. Implementation of Blockchain in Cross Border Money Transfer. In Proceedings of the 2019 4th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 21–22 November 2019; pp. 104–107. [Google Scholar] [CrossRef]
- Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.Y. Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends. IEEE Trans. Syst. Man. Cybern. Syst. 2019, 49, 2266–2277. [Google Scholar] [CrossRef]
- Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and IoT Integration: A Systematic Survey. Sensors 2018, 18, 2575. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Islam, M.S.; Riad, A.K.; Tahora, S.; Shahriar, H.; Sneha, S. BlockTheFall: Wearable Device-based Fall Detection Framework Powered by Machine Learning and Blockchain for Elderly Care. arXiv 2023, arXiv:2306.06452. [Google Scholar]
- Tahora, S.; Saha, B.; Sakib, N.; Shahriar, H.; Haddad, H. Blockchain Technology in Higher Education Ecosystem: Unraveling the Good, Bad, and Ugly. arXiv 2023, arXiv:2306.04071. [Google Scholar]
- Shrier, D.; Wu, W.; Pentland, A. Blockchain & infrastructure (identity, data security). Mass. Inst. Technol.-Connect. Sci. 2016, 1, 1–19. [Google Scholar]
- Hölbl, M.; Kompara, M.; Kamišalić, A.; Nemec Zlatolas, L. A systematic review of the use of blockchain in healthcare. Symmetry 2018, 10, 470. [Google Scholar] [CrossRef]
- Randolph, J.; Faruk, M.J.H.; Saha, B.; Shahriar, H.; Valero, M.; Zhao, L.; Sakib, N. Blockchain-based Medical Image Sharing and Automated Critical-results Notification: A Novel Framework. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, June 27–1 July 2022; pp. 1756–1761. [Google Scholar]
- Faruk, M.J.H.; Shahriar, H.; Saha, B.; Barek, A. Security in Electronic Health Records System: Blockchain-Based Framework to Protect Data Integrity. In Blockchain for Cybersecurity in Cyber-Physical Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 125–137. [Google Scholar]
- Perboli, G.; Musso, S.; Rosano, M. Blockchain in Logistics and Supply Chain: A Lean Approach for Designing Real-World Use Cases. IEEE Access 2018, 6, 62018–62028. [Google Scholar] [CrossRef]
- Madine, M.; Salah, K.; Jayaraman, R.; Battah, A.; Hasan, H.; Yaqoob, I. Blockchain and NFTs for Time-Bound Access and Monetization of Private Data. IEEE Access 2022, 10, 94186–94202. [Google Scholar] [CrossRef]
- O’Reilly, P.; Rigopoulos, K. Fiscal Year 2023 Cybersecurity and Privacy Annual Report; Number NIST SP 800-229; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2024; p. NIST SP 800-229. [CrossRef]
- Kramer, S. Unpacking SonicWall 2024 Mid-Year Cyber Threat Report. 2024. Available online: https://thecuberesearch.com/unpacking-sonicwall-2024-midyear-cyber-threat-report/ (accessed on 20 April 2024).
- Badertscher, C.; Lu, Y.; Zikas, V. A rational protocol treatment of 51% attacks. In Proceedings of the Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, 16–20 August 2021; Proceedings, Part III 41. Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–32. [Google Scholar]
- Sinclair, S. Ethereum Classic’s MESS Solution Won’t Provide ’Robust’ Security Against 51% Attacks. Available online: https://www.coindesk.com/markets/2020/08/20/ethereum-classics-mess-solution-wont-provide-robust-security-against-51-attacks/ (accessed on 20 April 2024).
- Kustov, V.; Aleksey, G.; Nikolay, B.; Ekaterina, S.; Ravi, R.V. Three Sources of Blockchain Technology Vulnerabilities—How to Deal with them? In Proceedings of the 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, 8 September 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Livni, E. Binance Blockchain Hit by $570 Million Hack, Exposing Crypto Vulnerabilities. The New York Times, 7 October 2022. [Google Scholar]
- Oxford Analytica. Binance breach underlines risks for crypto ecosystem. Emerald Expert Briefings 2022. [Google Scholar] [CrossRef]
- Beck, R.H. Top 10 Cryptocurrencies of March 4, 2025. Available online: https://www.investopedia.com/top-10-cryptocurrencies-5189931 (accessed on 20 April 2024).
- Li, X.; Cheng, J.; Shi, Z.; Liu, J.; Zhang, B.; Xu, X.; Tang, X.; Sheng, V. Blockchain Security Threats and Collaborative Defense: A Literature Review. Comput. Mater. Contin. 2023, 76, 2597–2629. [Google Scholar] [CrossRef]
- Hussain, A.H.; Hasan, M.N.; Prince, N.U.; Islam, M.M.; Islam, S.; Hasan, S.K. Enhancing cyber security using quantum computing and Artificial Intelligence: A review. World J. Adv. Res. Rev. 2021, 10, 448–456. [Google Scholar] [CrossRef]
- Mollajafari, S.; Bechkoum, K. Blockchain Technology and Related Security Risks: Towards a Seven-Layer Perspective and Taxonomy. Sustainability 2023, 15, 13401. [Google Scholar] [CrossRef]
- Karakostas, D.; Kiayias, A.; Zacharias, T. Blockchain bribing attacks and the efficacy of counterincentives. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, UT, USA, 14–18 October 2024; pp. 1031–1045. [Google Scholar]
- Madhushanie, N.; Vidanagamachchi, S.; Arachchilage, N. Selfish mining attack in blockchain: A systematic literature review. Int. J. Inf. Secur. 2024, 23, 2333–2351. [Google Scholar] [CrossRef]
- CASP Checklist for Systematic Reviews and Meta-Analysis. Available online: https://casp-uk.net/casp-tools-checklists/systematic-reviews-meta-analysis-observational-studies/ (accessed on 25 March 2025).
- Careem, M.A.A.; Dutta, A. Reputation based Routing in MANET using Blockchain. In Proceedings of the 2020 International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2020; pp. 1–6. [Google Scholar]
- Luu, L.; Chu, D.H.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), Vienna, Austria, 24–28 October 2016; pp. 254–269. [Google Scholar]
- Peng, K.; Li, M.; Huang, H.; Wang, C.; Wan, S.; Choo, K.K.R. Security challenges and opportunities for smart contracts in Internet of Things: A survey. IEEE Internet Things J. 2021, 8, 12004–12020. [Google Scholar] [CrossRef]
- Sayeed, S.; Marco-Gisbert, H.; Caira, T. Smart contract: Attacks and protections. IEEE Access 2020, 8, 24416–24427. [Google Scholar] [CrossRef]
- Mense, A.; Flatscher, M. Security Vulnerabilities in Ethereum Smart Contracts. In Proceedings of the 20th International Conference on Information Integration and Web-Based Applications & Services (iiWAS), Yogyakarta, Indonesia, 19–21 November 2018; pp. 375–380. [Google Scholar]
- Begum, A.; Tareq, A.H.; Sultana, M.; Sohel, M.K.; Rahman, T.; Sarwar, A.H. Blockchain Attacks, Analysis and a Model to Solve Double Spending Attack. Int. J. Mach. Learn. Comput. 2020, 10, 352–357. [Google Scholar]
- Marcus, Y.; Heilman, E.; Goldberg, S. Low-Resource Eclipse Attacks on Ethereum’s Peer-to-Peer Network. Cryptology ePrint Archive 2018, 2018, 857. Available online: https://eprint.iacr.org/2018/857 (accessed on 20 April 2024).
- Deirmentzoglou, E.; Papakyriakopoulos, G.; Patsakis, C. A survey on long-range attacks for proof of stake protocols. IEEE Access 2019, 7, 28712–28725. [Google Scholar] [CrossRef]
- Grundmann, M.; Neudecker, T.; Hartenstein, H. Exploiting transaction accumulation and double spends for topology inference in bitcoin. In Proceedings of the Financial Cryptography and Data Security: FC 2018 International Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, 2 March 2018; Revised Selected Papers 22. Springer: Berlin/Heidelberg, Germany, 2019; pp. 113–126. [Google Scholar]
- Riadi, I.; Umar, R.; Busthomi, I.; Muhammad, A.W. Block-hash of blockchain framework against man-in-the-middle attacks. Regist. J. Ilm. Teknol. Sist. Inf. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Razmjouei, P.; Kavousi-Fard, A.; Dabbaghjamanesh, M.; Jin, T.; Su, W. Ultra-lightweight mutual authentication in the vehicle based on smart contract blockchain: Case of MITM attack. IEEE Sens. J. 2020, 21, 15839–15848. [Google Scholar] [CrossRef]
- Akter, S.; Chellappan, S.; Chakraborty, T.; Khan, T.A.; Rahman, A.; Al Islam, A.A. Man-in-the-middle attack on contactless payment over NFC communications: Design, implementation, experiments and detection. IEEE Trans. Dependable Secur. Comput. 2020, 18, 3012–3023. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N. Attacks on blockchain. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2021; Volume 121, pp. 399–410. [Google Scholar]
- The Defiant Weekly. Saddle Finance Loses More than $10 Million in a Recent DeFi Exploit. Available online: https://thedefiant.io/saddle-finance-loses-10-million (accessed on 20 April 2024).
- CoinDesk. Japan’s Liquid Global Exchange Hacked; $90M in Crypto Siphoned Off. 2021. Available online: https://www.coindesk.com/markets/2021/08/19/japans-liquid-global-exchange-hacked-90m-in-crypto-siphoned-off/ (accessed on 6 April 2023).
- Shemov, G.; Garcia de Soto, B.; Alkhzaimi, H. Blockchain applied to the construction supply chain: A case study with threat model. Front. Eng. Manag. 2020, 7, 564–577. [Google Scholar] [CrossRef]
- Averin, A.; Averina, O. Review of blockchain technology vulnerabilities and blockchain-system attacks. In Proceedings of the 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 1–4 October 2019; pp. 1–6. [Google Scholar]
- König, L.; Unger, S.; Kieseberg, P.; Tjoa, S.; Blockchains, J.R.C. The Risks of the Blockchain A Review on Current Vulnerabilities and Attacks. J. Internet Serv. Inf. Secur. 2020, 10, 110–127. [Google Scholar]
- Rathod, N.; Motwani, D. Security threats on blockchain and its countermeasures. Int. Res. J. Eng. Technol. 2018, 5, 1636–1642. [Google Scholar]
- Castro, M.; Druschel, P.; Ganesh, A.; Rowstron, A.; Wallach, D.S. Secure routing for structured peer-to-peer overlay networks. ACM SIGOPS Oper. Syst. Rev. 2002, 36, 299–314. [Google Scholar] [CrossRef]
- Duan, L.; Sun, Y.; Zhang, K.; Ding, Y. Multiple-Layer Security Threats on the Ethereum Blockchain and Their Countermeasures. Secur. Commun. Networks 2022, 2022, 5307697. [Google Scholar] [CrossRef]
- NFTing. What is a Replay Attack? Available online: https://nfting.store/blogs/news/what-is-a-replay-attack (accessed on 20 April 2024).
- Aponte-Novoa, F.A.; Orozco, A.L.S.; Villanueva-Polanco, R.; Wightman, P. The 51% attack on blockchains: A mining behavior study. IEEE Access 2021, 9, 140549–140564. [Google Scholar] [CrossRef]
- Shanaev, S.; Shuraeva, A.; Vasenin, M.; Kuznetsov, M. Cryptocurrency value and 51% attacks: Evidence from event studies. J. Altern. Investments 2019, 22, 65–77. [Google Scholar] [CrossRef]
- Saad, M.; Spaulding, J.; Njilla, L.; Kamhoua, C.A.; Nyang, D.; Mohaisen, A. Overview of attack surfaces in blockchain. In Blockchain for Distributed Systems Security; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 51–66. [Google Scholar]
- Praitheeshan, P.; Pan, L.; Yu, J.; Liu, J.; Doss, R. Security analysis methods on ethereum smart contract vulnerabilities: A survey. arXiv 2019, arXiv:1908.08605. [Google Scholar]
- Vivar, A.L.; Castedo, A.T.; Orozco, A.L.S.; Villalba, L.J.G. An Analysis of Smart Contracts Security Threats Alongside Existing Solutions. Entropy 2020, 22, 203. [Google Scholar] [CrossRef] [PubMed]
- Sonnino, A.; Bano, S.; Al-Bassam, M.; Danezis, G. Replay Attacks and Defenses Against Cross-Shard Consensus in Sharded Distributed Ledgers. In Proceedings of the 2020 IEEE European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 7–11 September 2020; pp. 294–308. [Google Scholar]
- Zhang, S.; Lee, J.H. Double-Spending with a Sybil Attack in the Bitcoin Decentralized Network. IEEE Trans. Ind. Inform. 2019, 15, 5715–5722. [Google Scholar] [CrossRef]
- Apostolaki, M.; Zohar, A.; Vanbever, L. Hijacking Bitcoin: Routing Attacks on Cryptocurrencies. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017; pp. 375–392. [Google Scholar] [CrossRef]
- Otte, P.; de Vos, M.; Pouwelse, J. TrustChain: A Sybil-Resistant Scalable Blockchain. Future Gener. Comput. Syst. 2020, 107, 770–780. [Google Scholar] [CrossRef]
- Pradhan, S.; Tripathy, S.; Nandi, S. Blockchain-Based Security Framework for P2P File Sharing System. In Proceedings of the 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Indore, India, 16–19 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Rajab, T.; Manshaei, M.H.; Dakhilalian, M.; Jadliwala, M.; Rahman, M.A. On the Feasibility of Sybil Attacks in Shard-Based Permissionless Blockchains. arXiv 2020, arXiv:2002.06531. Available online: https://arxiv.org/abs/2002.06531 (accessed on 20 April 2024). [CrossRef]
- Morganti, G.; Schiavone, E.; Bondavalli, A. Risk Assessment of Blockchain Technology. In Proceedings of the 2018 Eighth Latin-American Symposium on Dependable Computing (LADC), Foz do Iguaçu, Brazil, 24–26 October 2018; pp. 87–96. [Google Scholar]
- Conti, M.; Kumar, E.S.; Lal, C.; Ruj, S. A survey on security and privacy issues of bitcoin. IEEE Commun. Surv. Tutor. 2018, 20, 3416–3452. [Google Scholar] [CrossRef]
- Alangot, B.; Reijsbergen, D.; Venugopalan, S.; Szalachowski, P.; Yeo, K.S. Decentralized and lightweight approach to detect eclipse attacks on proof of work blockchains. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1659–1672. [Google Scholar] [CrossRef]
- Xu, G.; Guo, B.; Su, C.; Zheng, X.; Liang, K.; Wong, D.S.; Wang, H. Am I eclipsed? A smart detector of eclipse attacks for Ethereum. Comput. Secur. 2020, 88, 101604. [Google Scholar] [CrossRef]
- Ghaffari, A.; Jelodari, N.; Pouralish, S.; Derakhshanfard, N.; Arasteh, B. Securing internet of things using machine and deep learning methods: A survey. Clust. Comput. 2024, 27, 9065–9089. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, X.; Diao, W. Stealing Trust: Unraveling Blind Message Attacks in Web3 Authentication. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communications Security (CCS), Salt Lake City, UT, USA, 9–13 December 2024; pp. 555–569. [Google Scholar] [CrossRef]
- Papaspirou, V.; Kantzavelou, I.; Yigit, Y.; Maglaras, L.; Katsikas, S. A Blockchain-Based Multi-Factor Honeytoken Dynamic Authentication Mechanism. In Proceedings of the 19th International Conference on Availability, Reliability and Security (ARES), Vienna, Austria, 29–31 July 2024; pp. 1–9. [Google Scholar] [CrossRef]
- Samreen, N.F.; Alalfi, M.H. A survey of security vulnerabilities in ethereum smart contracts. arXiv 2021, arXiv:2105.06974. [Google Scholar]
- Xu, J.; Dang, F.; Ding, X.; Zhou, M. A Survey on Vulnerability Detection Tools of Smart Contract Bytecode. In Proceedings of the 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 27–29 September 2020; pp. 94–98. [Google Scholar] [CrossRef]
- He, D.; Wu, R.; Li, X.; Chan, S.; Guizani, M. Detection of Vulnerabilities of Blockchain Smart Contracts. IEEE Internet Things J. 2023, 10, 12178–12185. [Google Scholar] [CrossRef]
- Choi, J.; Ahn, B.; Bere, G.; Ahmad, S.; Mantooth, H.A.; Kim, T. Blockchain-Based Man-in-the-Middle (MITM) Attack Detection for Photovoltaic Systems. In Proceedings of the 2021 IEEE Design Methodologies Conference (DMC), Virtual Event, 16–17 August 2021; pp. 1–6. [Google Scholar]
- Wazid, M.; Bera, B.; Mitra, A.; Das, A.K.; Ali, R. Private Blockchain-Envisioned Security Framework for AI-Enabled IoT-Based Drone-Aided Healthcare Services. In Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond (DroneCom), London, UK, 25 September 2020; pp. 37–42. [Google Scholar]
- Kulkarni, O. Preventing the Man-in-the-Middle Attack on Internet Communication Using Blockchain Technology. Ph.D. Thesis, National College of Ireland, Dublin, Ireland, 2019. [Google Scholar]
- Momeni, H.; Sadoogi, N.; Farrokhifar, M.; Gharibeh, H.F. Fault diagnosis in photovoltaic arrays using GBSSL method and proposing a fault correction system. IEEE Trans. Ind. Inform. 2019, 16, 5300–5308. [Google Scholar] [CrossRef]
- Homoliak, I.; Venugopalan, S.; Hum, Q.; Szalachowski, P. A Security Reference Architecture for Blockchains. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 390–397. [Google Scholar]
- Kebande, V.R.; Awaysheh, F.M.; Ikuesan, R.A.; Alawadi, S.A.; Alshehri, M.D. A blockchain-based multi-factor authentication model for a cloud-enabled internet of vehicles. Sensors 2021, 21, 6018. [Google Scholar] [CrossRef] [PubMed]
- Alkaeed, M.; Soliman, M.M.; Khan, K.M.; Elfouly, T.M. Distributed Framework via Blockchain Smart Contracts for Smart Grid Systems Against Cyber-Attacks. In Proceedings of the 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC), Johor Bahru, Malaysia, 8 August 2020; pp. 100–105. [Google Scholar]
- Jurcut, A.; Niculcea, T.; Ranaweera, P.; Le-Khac, N.A. Security considerations for Internet of Things: A survey. SN Comput. Sci. 2020, 1, 193. [Google Scholar] [CrossRef]
- Abdallah, R.; Besancenot, J.; Bertelle, C.; Duvallet, C.; Gilletta, F. An Extensive Preliminary Blockchain Survey from a Maritime Perspective. Smart Cities 2023, 6, 846–877. [Google Scholar] [CrossRef]
- Frankenfield, J. 51% Attack; Investopedia: New York, NY, USA, 2019; Volume 7. [Google Scholar]
- Ye, C.; Li, G.; Cai, H.; Gu, Y.; Fukuda, A. Analysis of Security in Blockchain: Case Study in 51% Attack Detecting. In Proceedings of the 2018 5th International Conference on Dependable Systems and Their Applications (DSA), Guangzhou, China, 18–21 December 2018; pp. 15–24. [Google Scholar]
- Bastiaan, M. Preventing the 51% Attack: A Stochastic Analysis of Two Phase Proof of Work in Bitcoin. Bachelor’s Thesis, University of Twente, Enschede, The Netherlands, 2015. Available online: https://essay.utwente.nl/74730/ (accessed on 20 April 2024).
- Lee, H.; Shin, M.; Kim, K.S.; Kang, Y.; Kim, J. Recipient-Oriented Transaction for Preventing Double Spending Attacks in Private Blockchain; IEEE: Hong Kong, China, 2018. [Google Scholar]
- Dasgupta, D.; Shrein, J.M.; Gupta, K.D. A survey of blockchain from security perspective. J. Bank. Financ. Technol. 2019, 3, 1–17. [Google Scholar] [CrossRef]
- Sahay, R.; Geethakumari, G.; Mitra, B. A novel blockchain based framework to secure IoT-LLNs against routing attacks. Computing 2020, 102, 2445–2470. [Google Scholar] [CrossRef]
- Tran, M.; Choi, I.; Moon, G.J.; Vu, A.V.; Kang, M.S. A Stealthier Partitioning Attack Against Bitcoin Peer-to-Peer Network. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 894–909. [Google Scholar]
- Tekiner, E.; Acar, A.; Uluagac, A.S.; Kirda, E.; Selcuk, A.A. SoK: Cryptojacking Malware. In Proceedings of the 2021 IEEE European Symposium on Security and Privacy (EuroS&P), Vienna, Austria, 6–10 September 2021; pp. 120–139. [Google Scholar]
- Arisdakessian, S.; Wahab, O.A.; Mourad, A.; Otrok, H.; Guizani, M. A survey on iot intrusion detection: Federated learning, game theory, social psychology and explainable ai as future directions. IEEE Internet Things J. 2022, 10, 4059–4092. [Google Scholar] [CrossRef]
- ABBASSI, Y.; Benlahmer, H. BCSDN-IoT: Towards an IoT security architecture based on SDN and Blockchain. Int. J. Electr. Comput. Eng. Syst. 2022, 13, 155–163. [Google Scholar] [CrossRef]
- Mastilak, L.; Helebrandt, P.; Galinski, M.; Kotuliak, I. Secure Inter-Domain Routing Based on Blockchain: A Comprehensive Survey. Sensors 2022, 22, 1437. [Google Scholar] [CrossRef]
- Sayeed, S.; Marco-Gisbert, H. Assessing Blockchain Consensus and Security Mechanisms against the 51% Attack. Appl. Sci. 2019, 9, 1788. [Google Scholar] [CrossRef]
- Ihle, C.; Trautwein, D.; Schubotz, M.; Meuschke, N.; Gipp, B. Incentive Mechanisms in Peer-to-Peer Networks—A Systematic Literature Review. ACM Comput. Surv. 2023, 55, 308. [Google Scholar] [CrossRef]
- de Oliveira, M.T.; Reis, L.H.; Medeiros, D.S.; Carrano, R.C.; Olabarriaga, S.D.; Mattos, D.M. Blockchain reputation-based consensus: A scalable and resilient mechanism for distributed mistrusting applications. Comput. Netw. 2020, 179, 107367. [Google Scholar] [CrossRef]
- Alsunbul, A.; Elmedany, W.; Al-Ammal, H. Blockchain Application in Healthcare Industry: Attacks and Countermeasures. In Proceedings of the 2021 International Conference on Data Analytics for Business and Industry (ICDABI), Sakheer, Bahrain, 6–7 December 2021; pp. 621–629. [Google Scholar]
- Anita, N.; Vijayalakshmi, M. Blockchain Security Attack: A Brief Survey. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–6. [Google Scholar]
- Rottondi, C.; Panzeri, A.; Yagne, C.T.; Verticale, G. Detection and mitigation of the eclipse attack in chord overlays. Int. J. Comput. Sci. Eng. 2016, 13, 111–121. [Google Scholar] [CrossRef]
- Ekparinya, P.; Gramoli, V.; Jourjon, G. Double-Spending Risk Quantification in Private, Consortium and Public Ethereum Blockchains. arXiv 2018, arXiv:1805.05004. [Google Scholar]
- Quintyne-Collins, M. Short Paper: Towards Characterizing Sybil Attacks in Cryptocurrency Mixers. Cryptology ePrint Archive, Paper 2019/1111. 2019. Available online: https://eprint.iacr.org/2019/1111 (accessed on 25 March 2025).
- Swathi, P.; Modi, C.; Patel, D. Preventing Sybil Attack in Blockchain Using Distributed Behavior Monitoring of Miners. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Boi, B.; Esposito, C.; Lee, S. Smart Contract Vulnerability Detection: The Role of Large Language Model (LLM). ACM SIGAPP Appl. Comput. Rev. 2024, 24, 19–29. [Google Scholar] [CrossRef]
- Chen, C.; Su, J.; Chen, J.; Wang, Y.; Bi, T.; Yu, J.; Wang, Y.; Lin, X.; Chen, T.; Zheng, Z. When ChatGPT Meets Smart Contract Vulnerability Detection: How Far Are We? ACM Trans. Softw. Eng. Methodol. 2024, 33, 17. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Chen, X.; Huang, Y.; Zheng, Z. Smart Contract Code Repair Recommendation based on Reinforcement Learning and Multi-metric Optimization. ACM Trans. Softw. Eng. Methodol. 2024, 33, 106. [Google Scholar] [CrossRef]
- Rabieinejad, E.; Yazdinejad, A.; Parizi, R.M. A Deep Learning Model for Threat Hunting in Ethereum Blockchain. In Proceedings of the 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Shenyang, China, 22–25 October 2021; pp. 1185–1190. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Zhang, H.; Li, Z.; Chen, J.; Zheng, Z.; Xia, Q.; Fan, G.; Zhen, Y. DAppFL: Just-in-Time Fault Localization for Decentralized Applications in Web3. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Vienna, Austria, 15–19 July 2024; pp. 137–148. [Google Scholar] [CrossRef]
- Atiewi, S.; Al-Rahayfeh, A.; Almiani, M.; Abuhussein, A.; Yussof, S. Ethereum blockchain-based three factor authentication and multi-contract access control for secure smart home environment in 5G networks. Clust. Comput. 2024, 27, 4551–4568. [Google Scholar] [CrossRef]
- Brahmam, M.G.; R, V.A. ICSMPC: Design of an Iterative-Learning Contextual Side Chaining Model for Improving Security of Priority-Aware Cloud Resources. J. Grid Comput. 2023, 21, 55. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, S.; Biswas, U. A secure vehicle theft detection framework using Blockchain and smart contract. Peer- Netw. Appl. 2021, 14, 672–686. [Google Scholar] [CrossRef]
- Heikamp, F.; Pan, L.; Doss, R.; Trujillo-Rasua, R.; Ruj, S. ForTrac: A Secure NFT-Based Forward Traceability System for Providing Data Accuracy and Completeness. In Proceedings of the 5th ACM International Symposium on Blockchain and Secure Critical Infrastructure (BSCI), Melbourne, VIC, Australia, 10–14 July 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Huang, Q.; Liao, D.; Xing, Z.; Zuo, Z.; Wang, C.; Xia, X. Semantic-Enriched Code Knowledge Graph to Reveal Unknowns in Smart Contract Code Reuse. ACM Trans. Softw. Eng. Methodol. 2023, 32, 147. [Google Scholar] [CrossRef]
- Ilyas, B.; Kumar, A.; Ali, S.M.; Lei, H. Blockchain-enabled IoT access control model for sharing electronic healthcare data. Multimed. Tools Appl. 2024, 84, 8127–8148. [Google Scholar] [CrossRef]
- Liu, B.; Sun, S.; Szalachowski, P. SMACS: Smart Contract Access Control Service. In Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Valencia, Spain, 29 June–2 July 2020; pp. 221–232. [Google Scholar] [CrossRef]
- Si, J.J.; Sharma, T.; Wang, K.Y. Understanding User-Perceived Security Risks and Mitigation Strategies in the Web3 Ecosystem. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI ’24), Honolulu, HI, USA, 11–16 May 2024; pp. 1–22. [Google Scholar] [CrossRef]
- Wang, K.; Ling, Y.; Zhang, Y.; Yu, Z.; Wang, H.; Bai, G.; Ooi, B.C.; Dong, J.S. Characterizing Cryptocurrency-themed Malicious Browser Extensions. Proc. ACM Meas. Anal. Comput. Syst. 2022, 6, 43. [Google Scholar] [CrossRef]
- Al-Kafi, G.M.A.; Ali, G.; Faiza, J.T.; Pal, K.R.; Reno, S. Correction to: SHBF: A Secure and Scalable Hybrid Blockchain Framework for Resolving Trilemma Challenges. Int. J. Inf. Technol. 2024, 16, 269–270. [Google Scholar] [CrossRef]
- Vivekanandan, G.; Divya, B.; Madhav, V.T.; Naveen, K.; Karthick, T.K.; Yuvanesh, P. VoteChain: Promising a Secure and Transparent Election Using Blockchain and Biometrics. In Proceedings of the 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 17–18 October 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Govindaram, A.; A, J. FLBC-IDS: A Federated Learning and Blockchain-Based Intrusion Detection System for Secure IoT Environments. Multimed. Tools Appl. 2024, 83, Article 19777. [Google Scholar] [CrossRef]
- Vishwakarma, L.; Das, D. BlockTree: A nonlinear structured, scalable and distributed ledger scheme for processing digital transactions. Clust. Comput. 2021, 24, 3751–3765. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, J.; Liu, X.; Diao, W.; Guo, S. Bad Apples: Understanding the Centralized Security Risks in Decentralized Ecosystems. In Proceedings of the ACM Web Conference 2023 (WWW ’23), Austin, TX, USA, 30 April–4 May 2023; pp. 2274–2283. [Google Scholar] [CrossRef]
- Niu, J.; Peng, W.; Zhang, X.; Zhang, Y. NARRATOR: Secure and Practical State Continuity for Trusted Execution in the Cloud. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), Los Angeles, CA, USA, 7–11 November 2022; pp. 2385–2399. [Google Scholar] [CrossRef]
- Vidal, F.R.; Ivaki, N.; Laranjeiro, N. OpenSCV: An open hierarchical taxonomy for smart contract vulnerabilities. Empir. Softw. Eng. 2024, 29, 101. [Google Scholar] [CrossRef]
- Chen, J.; Chen, C.; Hu, J.; Grundy, J.; Wang, Y.; Chen, T.; Zheng, Z. Identifying Smart Contract Security Issues in Code Snippets from Stack Overflow. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Vienna, Austria, 15–19 July 2024; pp. 1198–1210. [Google Scholar] [CrossRef]
- Weiss, K.; Ferreira Torres, C.; Wendland, F. Analyzing the Impact of Copying-and-Pasting Vulnerable Solidity Code Snippets from Question-and-Answer Websites. In Proceedings of the 2024 ACM on Internet Measurement Conference (IMC), Madrid, Spain, 21–23 October 2024; pp. 713–730. [Google Scholar] [CrossRef]
- Akhras, R.; Hajj, W.E.; Hajj, H.; Shaban, K.; Jaber, R. ECC: Enhancing Smart Grid Communication with Ethereum Blockchain, Asymmetric Cryptography, and Cloud Services. In Proceedings of the 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA), Thessaloniki, Greece, 9–11 October 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Eshghie, M.; Artho, C.; Stammler, H.; Ahrendt, W.; Hildebrandt, T.; Schneider, G. HighGuard: Cross-Chain Business Logic Monitoring of Smart Contracts. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE), Sacramento, CA, USA, 16–20 September 2024; pp. 2378–2381. [Google Scholar] [CrossRef]
- Haugum, T.; Hoff, B.; Alsadi, M.; Li, J. Security and Privacy Challenges in Blockchain Interoperability—A Multivocal Literature Review. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering (EASE), Gothenburg, Sweden, 13–15 June 2022; pp. 347–356. [Google Scholar] [CrossRef]
- Tran, T.D.; Vo, K.A.; Phan, D.T.; Tan, C.N.; Pham, V.H. ChainSniper: A Machine Learning Approach for Auditing Cross-Chain Smart Contracts. In Proceedings of the 2024 9th International Conference on Intelligent Information Technology (ICIIT), Ho Chi Minh City, Vietnam, 26–28 January 2024; pp. 223–230. [Google Scholar] [CrossRef]
- Zheng, P.; Luo, X.; Zheng, Z. BSHUNTER: Detecting and Tracing Defects of Bitcoin Scripts. In Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 14–20 May 2023; pp. 307–318. [Google Scholar] [CrossRef]
- Awasthi, C.; Mishra, P.K.; Pal, P.K.; Khan, S.B.; Agarwal, A.K.; Gadekallu, T.R.; Malibari, A.A. Preservation of Sensitive Data Using Multi-Level Blockchain-Based Secured Framework for Edge Network Devices. J. Grid Comput. 2023, 21, 69. [Google Scholar] [CrossRef]
- Fischlin, M.; Günther, F. Verifiable Verification in Cryptographic Protocols. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS), Copenhagen, Denmark, 26–30 November 2023; pp. 3239–3253. [Google Scholar] [CrossRef]
- Liu, A.; Chen, X.b.; Xu, G.; Wang, Z.; Sun, Y.; Wang, Y.; Feng, H. QBIoV: A secure data sharing scheme for the Internet of vehicles based on quantum-enabled blockchain. Quantum Inf. Process. 2024, 23, 225. [Google Scholar] [CrossRef]
- Pedrosa, M.; Zúquete, A.; Costa, C. RAIAP: Renewable authentication on isolated anonymous profiles: A GDPR compliant self-sovereign architecture for distributed systems. Peer-to-Peer Netw. Appl. 2020, 13, 1577–1599. [Google Scholar] [CrossRef]
- Ramya, R.R.; Banumathi, J. An optimized approach with 128-bit key management for IoT-enabled smart grid: Enhancing efficiency, security, and sustainability. Electr. Eng. 2025, 107, 2207–2225. [Google Scholar] [CrossRef]
- Reddy, N.M.; Budati, A.K.; Islam, S.; Ramesh, G. Enhanced Elliptic Curve-Diffie Hellman Technique with Bigdata Analytics for Satellite Image Security Enhancement in Internet of Things Systems. Earth Sci. Inform. 2024, 17, 711–723. [Google Scholar] [CrossRef]
- Wu, G.; Wang, H.; Yang, Z.; He, D.; Chan, S. Electronic Health Records Sharing Based on Consortium Blockchain. J. Med. Syst. 2024, 48, 106. [Google Scholar] [CrossRef]
- Antonopoulos, P.; Kaushik, R.; Kodavalla, H.; Rosales Aceves, S.; Wong, R.; Anderson, J.; Szymaszek, J. SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD), Xi’an, China, 20–25 June 2021; pp. 2437–2449. [Google Scholar] [CrossRef]
- Shahaab, A.; Hewage, C.; Khan, I. Preventing Spoliation of Evidence with Blockchain: A Perspective from South Asia. In Proceedings of the 2021 3rd International Conference on Blockchain Technology (ICBCT), Shanghai, China, 26–28 March 2021; pp. 45–52. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, P. Tamper-proof multitenant data storage using blockchain. Peer-to-Peer Netw. Appl. 2023, 16, 431–449. [Google Scholar] [CrossRef]
- Aldaej, A.; Ahanger, T.A.; Ullah, I. Deep neural network-based secure healthcare framework. Neural Comput. Appl. 2024, 36, 17467–17482. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Leung, V.C.M.; Ji, H.; Liu, Y.; Zhang, H. Blockchain-empowered Data-driven Networks: A Survey and Outlook. ACM Comput. Surv. 2022, 54, 58. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Wang, J.; Zhai, D.; Liu, Y.; He, X. Anonymous Storage and Verification Model of IIoT Based on Blockchain: Anonymous storage and verification model of IIoT production status based on blockchain. In Proceedings of the 2021 4th International Conference on Blockchain Technology and Applications (ICBTA), Xi’an, China, 17–19 December 2021; pp. 144–150. [Google Scholar] [CrossRef]
- Pathak, M.; Mishra, K.N.; Singh, S.P. Securing data and preserving privacy in cloud IoT-based technologies: An analysis of assessing threats and developing effective safeguards. Artif. Intell. Rev. 2024, 57, 269. [Google Scholar] [CrossRef]
- Aguru, A.; Erukala, S. OTI-IoT: A Blockchain-based Operational Threat Intelligence Framework for Multi-vector DDoS Attacks. ACM Trans. Internet Technol. 2024, 24, 15. [Google Scholar] [CrossRef]
- Hadian, M.; Erfani, S.H.; Deypir, M.; Mirabi, M. CD-TMS: A combinatorial design-based token management system to enhance security and performance in blockchain. Clust. Comput. 2024, 27, 4515–4536. [Google Scholar] [CrossRef]
- He, Z.; Li, Z.; Qiao, A.; Luo, X.; Zhang, X.; Chen, T.; Song, S.; Liu, D.; Niu, W. Nurgle: Exacerbating Resource Consumption in Blockchain State Storage via MPT Manipulation. In Proceedings of the 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–23 May 2024; pp. 2180–2197. [Google Scholar] [CrossRef]
- Janjua, H.A.; Yue, L.; Hayat, S. Smart Scan: An Approach to Detect Denial of Service Vulnerability in Ethereum Smart Contracts. In Proceedings of the 2023 7th International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 13–15 October 2023; pp. 1572–1578. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Tang, Y. DETER: Denial of Ethereum Txpool sERvices. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS), Coex, Republic of Korea, 15–19 November 2021; pp. 1645–1667. [Google Scholar] [CrossRef]
- Mo, Y.; Chen, J.; Wang, Y.; Zheng, Z. Toward Automated Detecting Unanticipated Price Feed in Smart Contract. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Seattle, WA, USA, 17–21 July 2023; pp. 1257–1268. [Google Scholar] [CrossRef]
- Verma, A.; Saha, R.; Kumar, N.; Kumar, G.; Tai-Hoon-Kim. A detailed survey of denial of service for IoT and multimedia systems: Past, present and futuristic development. Multimed. Tools Appl. 2022, 81, 19879–19944. [Google Scholar] [CrossRef]
- Zkik, K.; Sebbar, A.; Fadi, O.; Kamble, S.; Belhadi, A. Securing blockchain-based crowdfunding platforms: An integrated graph neural networks and machine learning approach. Electron. Commer. Res. 2024, 24, 497–533. [Google Scholar] [CrossRef]
- Rishiwal, V.; Agarwal, U.; Yadav, M.; Alotaibi, A.; Yadav, P.; Tanwar, S. Blockchain-Secure Gaming Environments: A Comprehensive Survey. IEEE Access 2024, 12, 183466–183488. [Google Scholar] [CrossRef]
- Xia, P.; Wang, H.; Yu, Z.; Liu, X.; Luo, X.; Xu, G.; Tyson, G. Challenges in Decentralized Name Management: The Case of ENS. In Proceedings of the 22nd ACM Internet Measurement Conference (IMC), Nice, France, 25–27 October 2022; pp. 65–82. [Google Scholar] [CrossRef]
- Wang, Y.; Hsin, W.J.; Lamsal, M. EdGENI: Making GENI User-Friendly for General Computer Education. In Proceedings of the 53rd ACM Technical Symposium on Computer Science Education (SIGCSE), Providence, RI, USA, 3–5 March 2022; pp. 801–807. [Google Scholar] [CrossRef]
- Huang, J.; He, D.; Obaidat, M.S.; Vijayakumar, P.; Luo, M.; Choo, K.K.R. The Application of the Blockchain Technology in Voting Systems: A Review. ACM Comput. Surv. 2022, 54, 60. [Google Scholar] [CrossRef]
- Ahmed-Rengers, M. FrameProv: Towards End-to-End Video Provenance. In Proceedings of the New Security Paradigms Workshop (NSPW), San Carlos, Costa Rica, 23–26 September 2019; pp. 68–77. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Sui, Y.; He, N.; Wang, H.; Wu, L.; Luo, X. SADPonzi: Detecting and Characterizing Ponzi Schemes in Ethereum Smart Contracts. Proc. ACM Meas. Anal. Comput. Syst. 2021, 5, 26. [Google Scholar] [CrossRef]
- Faccia, A.; Moşteanu, N.R.; Cavaliere, L.P.L.; Mataruna-Dos-Santos, L.J. Electronic Money Laundering, The Dark Side of Fintech: An Overview of the Most Recent Cases. In Proceedings of the 2020 12th International Conference on Information Management and Engineering (ICIME), Amsterdam, The Netherlands, 18–20 September 2020; pp. 29–34. [Google Scholar] [CrossRef]
- Fan, S.; Min, T.; Wu, X.; Cai, W. Altruistic and Profit-Oriented: Making Sense of Roles in Web3 Community from Airdrop Perspective. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI), Hamburg, Germany, 23–28 April 2023; pp. 1–16. [Google Scholar] [CrossRef]
- Gürfidan, R. Suspicious transaction alert and blocking system for cryptocurrency exchanges in metaverse’s social media universes: RG-guard. Neural Comput. Appl. 2024, 36, 18825–18840. [Google Scholar] [CrossRef]
- He, B.; Feng, T.; Fang, J.; Liu, C.; Su, C. A Secure and Efficient Charitable Donation System Based on Ethereum Blockchain and Searchable Encryption. IEEE Trans. Consum. Electron. 2024, 70, 263–276. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Wu, L.; Tyson, G.; Luo, X.; Zhang, R.; Liu, X.; Huang, G.; Jiang, X. Understanding (Mis)Behavior on the EOSIO Blockchain. Proc. ACM Meas. Anal. Comput. Syst. 2020, 4, 37. [Google Scholar] [CrossRef]
- Iyer, V.; Shah, K.; Rane, S.; Shankarmani, R. Decentralised Peer-to-Peer Crop Insurance. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure (BSCI), Hong Kong, China, 7–11 June 2021; pp. 3–12. [Google Scholar] [CrossRef]
- Kuchumov, A.; Pecheritsa, E.; Chaikovskaya, A.; Maslova, E. Digitalization of Economics: Modern Financial Technologies and Their Influence on Economic Security. In Proceedings of the IV International Scientific and Practical Conference, St. Petersburg, Russia, 15–17 September 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Pan, B.; Stakhanova, N.; Zhu, Z. EtherShield: Time-interval Analysis for Detection of Malicious Behavior on Ethereum. ACM Trans. Internet Technol. 2024, 24, 2. [Google Scholar] [CrossRef]
- Ralli, R.; Jugran, G.; Gaurav, M.; Goyal, M. An Ensemble Based Fraudulent Blockchain Account Detection System. In Proceedings of the 2024 Sixteenth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2024; pp. 337–342. [Google Scholar] [CrossRef]
- Saranya, A.; Naresh, R. Block chain-based trusted smart contract for secure mobile user payment gateway in e-health systems. Soft Comput. 2024, 28, 10139–10151. [Google Scholar] [CrossRef]
- Su, J.; Lin, X.; Fang, Z.; Zhu, Z.; Chen, J.; Zheng, Z.; Lv, W.; Wang, J. DeFiWarder: Protecting DeFi Apps from Token Leaking Vulnerabilities. In Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), Luxembourg, 11–15 September 2023; pp. 1664–1675. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.; Wang, Z.; Liang, R.; Du, R. Semantic Sleuth: Identifying Ponzi Contracts via Large Language Models. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE), Sacramento, CA, USA, 16–20 September 2024; pp. 582–593. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.; Zhao, Z.; He, K.; Xu, G.; Wu, Y.; Wang, H.; Li, H.; Liu, Y.; Xiang, Y. TokenScout: Early Detection of Ethereum Scam Tokens via Temporal Graph Learning. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communications Security (CCS), Salt Lake City, UT, USA, 14–18 October 2024; pp. 956–970. [Google Scholar] [CrossRef]
- Wu, S.; Wu, L.; Zhou, Y.; Li, R.; Wang, Z.; Luo, X.; Wang, C.; Ren, K. Time-travel Investigation: Toward Building a Scalable Attack Detection Framework on Ethereum. ACM Trans. Softw. Eng. Methodol. 2022, 31, 54. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, J.; Ma, F.; Chen, Y.; Yan, Z.; Jiang, Y. Stop Pulling My Rug: Exposing Rug Pull Risks in Crypto Token to Investors. In Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Lisbon, Portugal, 14–20 April 2024; pp. 228–239. [Google Scholar] [CrossRef]
- Amin Rezaei, A.; Precht, H.; Marx Gómez, J. Supporting Prostitutes Protection Act through DLT. In Proceedings of the 2021 The 3rd International Conference on Blockchain Technology (ICBCT), Shanghai, China, 26–28 March 2021; pp. 102–108. [Google Scholar] [CrossRef]
- Le, M.Q.; Le, H.D.; Dinh-Duc, A.V.; Tran, T.T. IU-TransCert: A Blockchain-Based System for Academic Credentials with Auditability. In Proceedings of the 12th International Symposium on Information and Communication Technology (SoICT), Ho Chi Minh City, Vietnam, 7–8 December 2023; pp. 746–753. [Google Scholar] [CrossRef]
- Grüner, A.; Mühle, A.; Lockenvitz, N.; Meinel, C. Analyzing and comparing the security of self-sovereign identity management systems through threat modeling. Int. J. Inf. Secur. 2023, 22, 1231–1248. [Google Scholar] [CrossRef]
- Putz, B.; Vielberth, M.; Pernul, G. BISCUIT—Blockchain Security Incident Reporting Based on Human Observations. In Proceedings of the 17th International Conference on Availability, Reliability and Security (ARES), Vienna, Austria, 23–26 August 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, J.; Sinha, A.; Goli, P.; Subramanian, V.; Shukla, S.K.; Vyas, O.P. Insider attack mitigation in a smart metering infrastructure using reputation score and blockchain technology. Int. J. Inf. Secur. 2022, 21, 527–546. [Google Scholar] [CrossRef]
- Fang, Q. Designing of music copyright protection system based on deep belief network and blockchain. Soft Comput. 2024, 28, 1669–1684. [Google Scholar] [CrossRef]
- Hamza, R.; Dao, M.S.; Ito, S.; Koji, Z. Towards Intellectual Property Rights Protection in Big Data. In Proceedings of the 3rd ACM Workshop on Intelligent Cross-Data Analysis and Retrieval (ICDAR), Newark, NJ, USA, 1 July 2022; pp. 50–57. [Google Scholar] [CrossRef]
- Wang, F.; Fu, Z.; Zhang, X. A Self-Defense Copyright Protection Scheme for NFT Image Art Based on Information Embedding. ACM Trans. Multimed. Comput. Commun. Appl. 2025, 21, 42. [Google Scholar] [CrossRef]
- Xu, L.; Chen, L.; Gao, Z.; Fan, X.; Shi, W. DL-DP: Improving the Security of Industrial IoT with Decentralized Ledger Defined Perimeter. In Proceedings of the 2nd ACM International Symposium on Blockchain and Secure Critical Infrastructure, Taipei, Taiwan, 27–29 October 2020; pp. 53–62. [Google Scholar] [CrossRef]
- Thomasset, C.; Barrera, D. SERENIoT: Distributed Network Security Policy Management and Enforcement for Smart Homes. In Proceedings of the 2020 Annual Computer Security Applications Conference (ACSAC), Austin, TX, USA, 7–11 December 2020; pp. 542–555. [Google Scholar] [CrossRef]
- Sharma, T.; Prasad, S.K. Enhancing cybersecurity in IoT networks: SLSTM-WCO algorithm for anomaly detection. Peer-to-Peer Netw. Appl. 2024, 17, 2237–2258. [Google Scholar] [CrossRef]
- Saxena, A.; Mittal, S. Internet of Medical Things (IoMT) Security and Privacy: A Survey of Recent Advances and Enabling Technologies. In Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing (IC3), Noida, India, 4–6 August 2022; pp. 550–559. [Google Scholar] [CrossRef]
- Rui, H.; Huan, L.; Yang, H.; YunHao, Z. Research on secure transmission and storage of energy IoT information based on Blockchain. Peer-to-Peer Netw. Appl. 2020, 13, 1225–1235. [Google Scholar] [CrossRef]
- Prajisha, C.; Vasudevan, A.R. An efficient intrusion detection system for MQTT-IoT using enhanced chaotic salp swarm algorithm and LightGBM. Int. J. Inf. Secur. 2022, 21, 1263–1282. [Google Scholar] [CrossRef]
- Paul, A.K.; Qu, X.; Wen, Z. Blockchain–a promising solution to internet of things: A comprehensive analysis, opportunities, challenges and future research issues. Peer-to-Peer Netw. Appl. 2021, 14, 2926–2951. [Google Scholar] [CrossRef]
- Olawale, O.P.; Ebadinezhad, S. Cybersecurity Anomaly Detection: AI and Ethereum Blockchain for a Secure and Tamperproof IoHT Data Management. IEEE Access 2024, 12, 131605–131620. [Google Scholar] [CrossRef]
- Niavis, H.; Loupos, K. ConSenseIoT: A Consensus Algorithm for Secure and Scalable Blockchain in the IoT context. In Proceedings of the 17th International Conference on Availability, Reliability and Security (ARES 2022), Vienna, Austria, 23–26 August 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Mathew, S.S.; Hayawi, K.; Dawit, N.A.; Taleb, I.; Trabelsi, Z. Integration of blockchain and collaborative intrusion detection for secure data transactions in industrial IoT: A survey. Clust. Comput. 2022, 25, 4129–4149. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhan, J. Privacy protection for fog computing and the internet of things data based on blockchain. Clust. Comput. 2021, 24, 1331–1345. [Google Scholar] [CrossRef]
- Lai, E.; Luo, W. Static Analysis of Integer Overflow of Smart Contracts in Ethereum. In Proceedings of the 2020 4th International Conference on Cryptography, Security and Privacy (CSP 2020), Nanjing, China, 10–12 January 2020; pp. 110–115. [Google Scholar] [CrossRef]
- Kokila, M.; Srinivasa Reddy, K. BlockDLO: Blockchain Computing With Deep Learning Orchestration for Secure Data Communication in IoT Environment. IEEE Access 2024, 12, 134521–134540. [Google Scholar] [CrossRef]
- Kamal, R.; Hemdan, E.E.D.; El-Fishway, N. A review study on blockchain-based IoT security and forensics. Multimed. Tools Appl. 2021, 80, 36183–36214. [Google Scholar] [CrossRef]
- Janani, K.; Ramamoorthy, S. A security framework to enhance IoT device identity and data access through blockchain consensus model. Clust. Comput. 2024, 27, 2877–2900. [Google Scholar] [CrossRef]
- Ilakkiya, N.; Rajaram, A. A secured trusted routing using the structure of a novel directed acyclic graph-blockchain in mobile ad hoc network internet of things environment. Multimed. Tools Appl. 2024, 83, 87903–87928. [Google Scholar] [CrossRef]
- Ghadi, Y.Y.; Mazhar, T.; Shahzad, T.; Amir Khan, M.; Abd-Alrazaq, A.; Ahmed, A.; Hamam, H. The role of blockchain to secure internet of medical things. Sci. Rep. 2024, 14, 18422. [Google Scholar] [CrossRef]
- Bansal, K.; Singhrova, A. Review on intrusion detection system for IoT/IIo -brief study. Multimed. Tools Appl. 2023, 83, 23083–23108. [Google Scholar] [CrossRef]
- Alfandi, O.; Khanji, S.; Ahmad, L.; Khattak, A. A survey on boosting IoT security and privacy through blockchain: Exploration, requirements, and open issues. Clust. Comput. 2021, 24, 37–55. [Google Scholar] [CrossRef]
- Jawahar, A.; Kaythry, P.; Vinoth Kumar, C.; Vinu, R.; Amrish, R.; Bavapriyan, K.; Gopinaath, V. DDoS mitigation using blockchain and machine learning techniques. Multimed. Tools Appl. 2024, 83, 60265–60278. [Google Scholar] [CrossRef]
- Moussaileb, R.; Cuppens, N.; Lanet, J.L.; Bouder, H.L. A Survey on Windows-based Ransomware Taxonomy and Detection Mechanisms. ACM Comput. Surv. 2022, 54, 117. [Google Scholar] [CrossRef]
- England, P.; Malvar, H.S.; Horvitz, E.; Stokes, J.W.; Fournet, C.; Burke-Aguero, R.; Chamayou, A.; Clebsch, S.; Costa, M.; Deutscher, J.; et al. AMP: Authentication of Media via Provenance. In Proceedings of the 12th ACM Multimedia Systems Conference (MMSys ’21), Istanbul, Turkey, 28–30 September 2021; pp. 108–121. [Google Scholar] [CrossRef]
- Gambín, Á.F.; Yazidi, A.; Vasilakos, A.; Haugerud, H.; Djenouri, Y. Deepfakes: Current and future trends. Artif. Intell. Rev. 2024, 57, 64. [Google Scholar] [CrossRef]
- Masood, M.; Nawaz, M.; Malik, K.M.; Javed, A.; Irtaza, A.; Malik, H. Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward. Appl. Intell. 2023, 53, 3974–4026. [Google Scholar] [CrossRef]
- Singleton, L.; Zhao, R.; Song, M.; Siy, H. CryptoTutor: Teaching Secure Coding Practices through Misuse Pattern Detection. In Proceedings of the 21st Annual Conference on Information Technology Education (SIGITE ’20), Omaha, NE, USA, 7–9 October 2020; pp. 403–408. [Google Scholar] [CrossRef]
- Hua, B.; Ouyang, W.; Jiang, C.; Fan, Q.; Pan, Z. Rupair: Towards Automatic Buffer Overflow Detection and Rectification for Rust. In Proceedings of the Annual Computer Security Applications Conference (ACSAC ’21), Austin, TX, USA, 6–10 December 2021; pp. 812–823. [Google Scholar] [CrossRef]
- Alfriehat, N.; Anbar, M.; Aladaileh, M.; Hasbullah, I.; Shurbaji, T.A.; Karuppayah, S.; Almomani, A. RPL-based attack detection approaches in IoT networks: Review and taxonomy. Artif. Intell. Rev. 2024, 57, 248. [Google Scholar] [CrossRef]
- Coretti, S.; Kiayias, A.; Moore, C.; Russell, A. The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS ’22), Los Angeles, CA, USA, 7–11 November 2022; pp. 595–608. [Google Scholar] [CrossRef]
- Dai, T.; Jeitner, P.; Shulman, H.; Waidner, M. From IP to transport and beyond: Cross-layer attacks against applications. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, Virtual Event, USA, 23–27 August 2021; pp. 836–849. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, S.; Ghosh, U.; Biswas, U.; Bashir, A.K. A decentralized vehicle anti-theft system using Blockchain and smart contracts. Peer- Netw. Appl. 2021, 14, 2775–2788. [Google Scholar] [CrossRef]
- Falzon, F.; Elkhiyaoui, K.; Manevich, Y.; De Caro, A. Short Privacy-Preserving Proofs of Liabilities. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS ’23), Copenhagen, Denmark, 26–30 November 2023; pp. 1805–1819. [Google Scholar] [CrossRef]
- Luo, R.; Luo, F.; Wang, B.; Chen, T. Smart Contract Vulnerability Detection Based on Variant LSTM. In Proceedings of the 2022 International Conference on Big Data, IoT, and Cloud Computing (ICBDICC ’22), Chengdu, China, 23–25 December 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Mutemwa, M.; Masango, M.G.; Gcaza, N. Managing the Shift in the Enterprise Perimeter in Order to Delay a Cybersecurity Breach. In Proceedings of the International Conference on Artificial Intelligence and Its Applications, Virtual Event, Mauritius, 18–20 August 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Su, Y.; Wang, B.; Xing, Q.; Wang, X. DISCA: Decentralized Infrastructure for Secure Community Attribute Certifying. In Proceedings of the 3rd International Conference on Advanced Information Science and System, Sanya, China, 19–21 November 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Arora, S.; Li, Y.; Feng, Y.; Xu, J. SecPLF: Secure Protocols for Loanable Funds against Oracle Manipulation Attacks. In Proceedings of the 19th ACM Asia Conference on Computer and Communications Security (AsiaCCS), Singapore, 1–5 July 2024; pp. 1394–1405. [Google Scholar] [CrossRef]
- Chen, Z.; Beillahi, S.M.; Long, F. FlashSyn: Flash Loan Attack Synthesis via Counter Example Driven Approximation. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE), Lisbon, Portugal, 14–20 April 2024; pp. 1–13. [Google Scholar] [CrossRef]
- Eskandari, S.; Salehi, M.; Gu, W.C.; Clark, J. SoK: Oracles from the Ground Truth to Market Manipulation. In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies, Arlington, VA, USA, 20–22 September 2021; pp. 127–141. [Google Scholar] [CrossRef]
- Xie, M.; Hu, M.; Kong, Z.; Zhang, C.; Feng, Y.; Wang, H.; Xue, Y.; Zhang, H.; Liu, Y.; Liu, Y. DeFort: Automatic Detection and Analysis of Price Manipulation Attacks in DeFi Applications. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Vienna, Austria, 15–19 July 2024; pp. 402–414. [Google Scholar] [CrossRef]
- Cao, C.; Wu, J.; Qi, H.; Eda, S. Blockchain-based Runtime Attestation against Physical Fault Injection Attacks on Edge Devices. In Proceedings of the Eighth ACM/IEEE Symposium on Edge Computing (SEC), Wilmington, DE, USA, 6–9 December 2023; pp. 133–144. [Google Scholar] [CrossRef]
- Kavya, S.; Sumathi, D. Staying ahead of phishers: A review of recent advances and emerging methodologies in phishing detection. Artif. Intell. Rev. 2024, 58, 50. [Google Scholar] [CrossRef]
- Li, S.; Gou, G.; Liu, C.; Xiong, G.; Li, Z.; Xiao, J.; Xing, X. TGC: Transaction Graph Contrast Network for Ethereum Phishing Scam Detection. In Proceedings of the Annual Computer Security Applications Conference (ACSAC), Austin, TX, USA, 4–8 December 2023; pp. 352–365. [Google Scholar] [CrossRef]
- Ali, W.; Kumar, R.; Zhou, X.; Shao, J. Responsible Recommendation Services with Blockchain Empowered Asynchronous Federated Learning. ACM Trans. Intell. Syst. Technol. 2024, 15, 78. [Google Scholar] [CrossRef]
- Alja’afreh, M.; Al Mallah, R.; Karime, A.; El Saddik, A. Cybersecurity in the Metaverse: Challenges and Approaches. In Proceedings of the 2023 International Conference on Intelligent Metaverse Technologies & Applications (iMETA), Tartu, Estonia, 2–4 October 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Dargahi, T.; Ahmadvand, H.; Alraja, M.N.; Yu, C.M. Integration of Blockchain with Connected and Autonomous Vehicles: Vision and Challenge. J. Data Inf. Qual. 2022, 14, 5. [Google Scholar] [CrossRef]
- Desai, N.; Maesa, D.D.F.; Sastry, N.; Schneider, S.; Ricci, L. Preserving Privacy of Vulnerable Users across Heterogeneous Sensitive Sensor Data Streams using Smart Contracts. In Proceedings of the Fifth ACM International Workshop on Blockchain-enabled Networked Sensor Systems, Istanbul, Turkiye, 13 November 2023; pp. 2–8. [Google Scholar] [CrossRef]
- Haque, S.M.U.; Sofi, S.A.; Sholla, S. A privacy-preserving deep learning framework for highly authenticated blockchain secure storage system. Multimed. Tools Appl. 2024, 83, 84299–84329. [Google Scholar] [CrossRef]
- He, Z.; Song, S.; Bai, Y.; Luo, X.; Chen, T.; Zhang, W.; He, P.; Li, H.; Lin, X.; Zhang, X. TokenAware: Accurate and Efficient Bookkeeping Recognition for Token Smart Contracts. ACM Trans. Softw. Eng. Methodol. 2023, 32, 26. [Google Scholar] [CrossRef]
- Jia, Y.; Madathil, V.; Kate, A. HomeRun: High-efficiency Oblivious Message Retrieval, Unrestricted. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, UT, USA, 14–18 October 2024; pp. 2012–2026. [Google Scholar] [CrossRef]
- Kashif, M.; Kalkan, K. Differential privacy preserving based framework using blockchain for internet-of-things. Peer-to-Peer Netw. Appl. 2025, 18, 33. [Google Scholar] [CrossRef]
- Kasyap, H.; Tripathy, S. Privacy-preserving Decentralized Learning Framework for Healthcare System. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 17, 68. [Google Scholar] [CrossRef]
- Li, Y.; Soska, K.; Huang, Z.; Bellemare, S.; Quintyne-Collins, M.; Wang, L.; Liu, X.; Song, D.; Miller, A. Ratel: MPC-extensions for Smart Contracts. In Proceedings of the 19th ACM Asia Conference on Computer and Communications Security, Singapore, 1–5 July 2024; pp. 336–352. [Google Scholar] [CrossRef]
- Liang, W.; Ji, N. Privacy challenges of IoT-based blockchain: A systematic review. Clust. Comput. 2022, 25, 2203–2221. [Google Scholar] [CrossRef]
- Mahajan, H.B.; Junnarkar, A.A. Smart healthcare system using integrated and lightweight ECC with private blockchain for multimedia medical data processing. Multimed. Tools Appl. 2023, 82, 44335–44358. [Google Scholar] [CrossRef]
- Wang, Q.; He, L.; Zhu, X.; Huang, Y.; Li, Z. Privacy Protection of Blockchain Security Development Status. In Proceedings of the 2021 4th International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 17–19 September 2021; pp. 2592–2596. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, S.; Xiang, Y. Anonymous Blockchain-based System for Consortium. ACM Trans. Manag. Inf. Syst. 2021, 12, 26. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, L.; Wang, S. Design of Blockchain Smart Contract Based on Ring Signature. In Proceedings of the 2021 9th International Conference on Communications and Broadband Networking (ICCBN), Shanghai, China, 15–17 January 2021; pp. 108–114. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, C.L.; Weng, W.; Sun, H.; Tsaur, W.J.; Deng, Y.Y. An anonymous and fair auction system based on blockchain. J. Supercomput. 2023, 79, 13909–13951. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Wang, J.; Liu, B.; Liu, A.; Chen, X. Blockchain Query Framework Based on Trusted Execution Environment. In Proceedings of the 2024 5th International Conference on Computing, Networks and Internet of Things, Tokyo, Japan, 26–28 January 2024; pp. 182–185. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Y.; Yan, M.; Yu, Y.; Chen, J.; Wang, S.; Mao, X. Reentrancy Vulnerability Detection and Localization: A Deep Learning Based Two-phase Approach. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (ASE), Rochester, MI, USA, 10–14 October 2022; pp. 1–13. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, F.; Sun, W.; Shi, W. Speedster: An Efficient Multi-party State Channel via Enclaves. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, Nagasaki, Japan, 30 May–3 June 2022; pp. 637–651. [Google Scholar] [CrossRef]
- Alexopoulos, N.; Vasilomanolakis, E.; Roux, S.L.; Rowe, S.; Mühlhäuser, M. TRIDEnT: Towards a decentralized threat indicator marketplace. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020; pp. 332–341. [Google Scholar] [CrossRef]
- Ashizawa, N.; Yanai, N.; Cruz, J.P.; Okamura, S. Eth2Vec: Learning Contract-Wide Code Representations for Vulnerability Detection on Ethereum Smart Contracts. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure, Hong Kong, China, 3–5 June 2021; pp. 47–59. [Google Scholar] [CrossRef]
- Bhamidipati, V.S.V.; Chan, M.; Chamorro, D.; Jain, A.; Murthy, A. Adaptive Security for Smart Contracts using High Granularity Metrics. In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver, BC, Canada, 28–30 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Z.; Wang, H.; Luo, X.; Cai, H.; Wu, L. WASAI: Uncovering vulnerabilities in Wasm smart contracts. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Daejeon, Republic of Korea, 18–22 July 2022; pp. 703–715. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Beillahi, S.M.; Li, Y.; Long, F. Demystifying Invariant Effectiveness for Securing Smart Contracts. Proc. ACM Softw. Eng. 2024, 1, 1772–1795. [Google Scholar] [CrossRef]
- Chua, M.Y.K.; Yee, G.O.M.; Gu, Y.X.; Lung, C.H. Threats to Online Advertising and Countermeasures: A Technical Survey. Digit. Threat. Res. Pract. 2020, 1, 11. [Google Scholar] [CrossRef]
- Coblenz, M.; Oei, R.; Etzel, T.; Koronkevich, P.; Baker, M.; Bloem, Y.; Myers, B.A.; Sunshine, J.; Aldrich, J. Obsidian: Typestate and Assets for Safer Blockchain Programming. ACM Trans. Program. Lang. Syst. 2020, 42, 14. [Google Scholar] [CrossRef]
- Crincoli, G.; Iadarola, G.; La Rocca, P.E.; Martinelli, F.; Mercaldo, F.; Santone, A. Vulnerable Smart Contract Detection by Means of Model Checking. In Proceedings of the Fourth ACM International Symposium on Blockchain and Secure Critical Infrastructure, Nagasaki, Japan, 18–20 May 2022; pp. 3–10. [Google Scholar] [CrossRef]
- Cui, S.; Zhao, G.; Gao, Y.; Tavu, T.; Huang, J. VRust: Automated Vulnerability Detection for Solana Smart Contracts. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11 November 2022; pp. 639–652. [Google Scholar] [CrossRef]
- Eshghie, M.; Artho, C.; Gurov, D. Dynamic Vulnerability Detection on Smart Contracts Using Machine Learning. In Proceedings of the Evaluation and Assessment in Software Engineering, Trondheim, Norway, 21–22 June 2021; pp. 305–312. [Google Scholar] [CrossRef]
- Gao, C.; Yang, W.; Ye, J.; Xue, Y.; Sun, J. sGuard+: Machine Learning Guided Rule-Based Automated Vulnerability Repair on Smart Contracts. ACM Trans. Softw. Eng. Methodol. 2024, 33, 114. [Google Scholar] [CrossRef]
- Garfatta, I.; Klai, K.; Graïet, M.; Gaaloul, W. Model Checking of Vulnerabilities in Smart Contracts: A Solidity-to-CPN Approach. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, 25–29 April 2022; pp. 316–325. [Google Scholar] [CrossRef]
- Ghaleb, A. Towards Effective Static Analysis Approaches for Security Vulnerabilities in Smart Contracts. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Hamdi, A.; Fourati, L.; Ayed, S. Vulnerabilities and attacks assessments in blockchain 1.0, 2.0 and 3.0: Tools, analysis and countermeasures. Int. J. Inf. Secur. 2024, 23, 713–757. [Google Scholar] [CrossRef]
- Hao, X.; Ren, W.; Zheng, W.; Zhu, T. SCScan: A SVM-Based Scanning System for Vulnerabilities in Blockchain Smart Contracts. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 29 December–1 January 2021; pp. 1598–1605. [Google Scholar] [CrossRef]
- Hettmer, M.; Severin, B.; Blum, F.; Gruhn, V. Towards Assessing the Real-World Impact of Defects in Blockchain-Based Smart Contracts. In Proceedings of the 1st International Workshop on Software Defect Datasets, San Francisco, CA, USA, 11 July 2023; pp. 6–10. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, B.; Chan, W.K. EOSFuzzer: Fuzzing EOSIO Smart Contracts for Vulnerability Detection. In Proceedings of the 12th Asia-Pacific Symposium on Internetware, Singapore, 28–30 December 2020; pp. 99–109. [Google Scholar] [CrossRef]
- Ibba, G.; Aufiero, S.; Neykova, R.; Bartolucci, S.; Ortu, M.; Tonelli, R.; Destefanis, G. A Curated Solidity Smart Contracts Repository of Metrics and Vulnerability. In Proceedings of the 20th International Conference on Predictive Models and Data Analytics in Software Engineering, Porto de Galinhas, Brazil, 14–18 October 2024; pp. 32–41. [Google Scholar] [CrossRef]
- J J, L.; Singh, K.; Chakravarthi, B. Digital forensic framework for smart contract vulnerabilities using ensemble models. Multimed. Tools Appl. 2023, 83, 51469–51512. [Google Scholar] [CrossRef]
- Jiao, T.; Xu, Z.; Qi, M.; Wen, S.; Xiang, Y.; Nan, G. A Survey of Ethereum Smart Contract Security: Attacks and Detection. Distrib. Ledger Technol. Res. Pract. 2024, 3, 23. [Google Scholar] [CrossRef]
- Khor, J.; Masama, M.A.; Sidorov, M.; Leong, W.; Lim, J. An Improved Gas Efficient Library for Securing IoT Smart Contracts Against Arithmetic Vulnerabilities. In Proceedings of the 2020 9th International Conference on Software and Computer Applications, Langkawi, Malaysia, 18–21 February 2020; pp. 326–330. [Google Scholar] [CrossRef]
- Kitzler, S.; Victor, F.; Saggese, P.; Haslhofer, B. Disentangling Decentralized Finance (DeFi) Compositions. ACM Trans. Web 2023, 17, 10. [Google Scholar] [CrossRef]
- Lê Hồng, B.; Lê Đc, T.; Đoàn Minh, T.; Trần Tuấn, D.; Phan Thế, D.; Phạm Văn, H. Contextual Language Model and Transfer Learning for Reentrancy Vulnerability Detection in Smart Contracts. In Proceedings of the 12th International Symposium on Information and Communication Technology (SoICT), Ho Chi Minh City, Vietnam, 7–8 December 2023; pp. 739–745. [Google Scholar] [CrossRef]
- Li, P.; Wang, G.; Xing, X.; Zhu, J.; Gu, W.; Zhai, G. A smart contract vulnerability detection method based on deep learning with opcode sequences. Peer-to-Peer Netw. Appl. 2024, 17, 3222–3238. [Google Scholar] [CrossRef]
- Li, P.; Li, S.; Ding, M.; Yu, J.; Zhang, H.; Zhou, X.; Li, J. A Vulnerability Detection Framework for Hyperledger Fabric Smart Contracts Based on Dynamic and Static Analysis. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering (EASE), Gothenburg, Sweden, 13–15 June 2022; pp. 366–374. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Li, Z.; Zhang, Y. COBRA: Interaction-Aware Bytecode-Level Vulnerability Detector for Smart Contracts. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE), Sacramento, CA, USA, 21–25 October 2024; pp. 1358–1369. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Guo, S.; Xiao, B. SolSaviour: A Defending Framework for Deployed Defective Smart Contracts. In Proceedings of the Annual Computer Security Applications Conference (ACSAC), Austin, TX, USA, 6–10 December 2021; pp. 748–760. [Google Scholar] [CrossRef]
- Liao, X. Smart Contract Vulnerability Detection Based on Dynamic and Static Combination. In Proceedings of the International Conference on Digital Economy, Blockchain and Artificial Intelligence, Guangzhou, China, 10–11 April 2024; pp. 412–416. [Google Scholar] [CrossRef]
- Liao, Z.; Zheng, Z.; Chen, X.; Nan, Y. SmartDagger: A Bytecode-Based Static Analysis Approach for Detecting Cross-Contract Vulnerability. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Daejeon, Republic of Korea, 18–22 July 2022; pp. 752–764. [Google Scholar] [CrossRef]
- Ma, C.; Song, W.; Huang, J. TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), San Francisco, CA, USA, 11–17 December 2023; pp. 947–959. [Google Scholar] [CrossRef]
- Mi, F.; Zhao, C.; Wang, Z.; Halim, S.M.; Li, X.; Wu, Z.; Khan, L.; Thuraisingham, B. An Automated Vulnerability Detection Framework for Smart Contracts. Distributed Ledger Technologies: Research and Practice 2024, 3, 3705616. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Nguyen, N.M.; Doan, H.P.; Ahmadi, Z.; Doan, T.N.; Jiang, L. MANDO-GURU: Vulnerability Detection for Smart Contract Source Code by Heterogeneous Graph Embeddings. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), Singapore, 14–18 November 2022; pp. 1736–1740. [Google Scholar] [CrossRef]
- Otoni, R.; Marescotti, M.; Alt, L.; Eugster, P.; Hyvärinen, A.; Sharygina, N. A Solicitous Approach to Smart Contract Verification. ACM Trans. Priv. Secur. 2023, 26, 15. [Google Scholar] [CrossRef]
- Pani, S.; Nallagonda, H.V.; Vigneswaran; Medicherla, R.K.; Rajan, M. SmartFuzzDriverGen: Smart Contract Fuzzing Automation for Golang. In Proceedings of the 16th Innovations in Software Engineering Conference (ISEC), Allahabad, India, 23–25 February 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Patel, A.; Chauhan, K.; Maini, S.; Goyal, M. Smart Contract Vulnerabilities Detection Using Deep Learning. In Proceedings of the 2024 Sixteenth International Conference on Contemporary Computing (IC3), Noida, India, 1–3 August 2024; pp. 349–356. [Google Scholar] [CrossRef]
- Qian, P.; Liu, Z.; Yin, Y.; He, Q. Cross-Modality Mutual Learning for Enhancing Smart Contract Vulnerability Detection on Bytecode. In Proceedings of the ACM Web Conference 2023 (WWW ’23), Austin, TX, USA, 30 April–4 May 2023; pp. 2220–2229. [Google Scholar] [CrossRef]
- Russo, A.; Lax, G.; Dromard, B.; Mezred, M. A System to Access Online Services with Minimal Personal Information Disclosure. Inf. Syst. Front. 2022, 24, 1563–1575. [Google Scholar] [CrossRef]
- Su, P.; Hu, J. Smart contract vulnerabilities detection with bidirectional encoder representations from transformers and control flow graph. Multimed. Syst. 2024, 30, 204. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, X.; Duan, L.; Ma, H.; Wang, B.; Su, C.; Wang, W. DeFiScanner: Spotting DeFi Attacks Exploiting Logic Vulnerabilities on Blockchain. IEEE Trans. Comput. Soc. Syst. 2024, 11, 1577–1588. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Gao, J.; Wang, K.; Zhang, J.; Guan, Z.; Chen, Z. SolaSim: Clone Detection for Solana Smart Contracts via Program Representation. In Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension (ICPC), Lisbon, Portugal, 16–17 May 2024; pp. 258–269. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Wu, H.; Liu, D.; Peng, C.; Wu, Y.; Fan, M.; Liu, T. Skyeye: Detecting Imminent Attacks via Analyzing Adversarial Smart Contracts. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering (ASE), Sacramento, CA, USA, 27 October–1 November 2024; pp. 1570–1582. [Google Scholar] [CrossRef]
- Wen, H.; Liu, H.; Song, J.; Chen, Y.; Guo, W.; Feng, Y. FORAY: Towards Effective Attack Synthesis against Deep Logical Vulnerabilities in DeFi Protocols. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communications Security (CCS), Salt Lake City, UT, USA, 14–18 October 2024; pp. 1001–1015. [Google Scholar] [CrossRef]
- Xue, Y.; Ma, M.; Lin, Y.; Sui, Y.; Ye, J.; Peng, T. Cross-contract Static Analysis for Detecting Practical Reentrancy Vulnerabilities in Smart Contracts. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, Australia, 21–25 September 2020; pp. 1029–1040. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, C.; Lu, Z.; Wang, Z.; Liu, Y.; Liu, B. Blockchain abnormal behavior awareness methods: A survey. Cybersecurity 2022, 5, 5. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, N.; Su, J.; Zhong, Z.; Ye, M.; Chen, J. Turn the Rudder: A Beacon of Reentrancy Detection for Smart Contracts on Ethereum. In Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 14–20 May 2023; pp. 295–306. [Google Scholar] [CrossRef]
- Ding, M.; Li, P.; Li, S.; Zhang, H. HFContractFuzzer: Fuzzing Hyperledger Fabric Smart Contracts for Vulnerability Detection. In Proceedings of the Evaluation and Assessment in Software Engineering (EASE), Trondheim, Norway, 21–23 June 2021; pp. 321–328. [Google Scholar] [CrossRef]
- Dong, C.; Huang, H.; Shang, Y. Erinys: Efficient Fuzzing by Function Invoke Sequence Generation for Smart Contracts. In Proceedings of the 2024 8th International Conference on Big Data and Internet of Things (BDIOT), Macau, China, 23–25 August 2024; pp. 236–241. [Google Scholar] [CrossRef]
- Jang, D.; Askar, A.; Yun, I.; Tong, S.; Cai, Y.; Kim, T. Fuzzing@Home: Distributed Fuzzing on Untrusted Heterogeneous Clients. In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses (RAID), Limassol, Cyprus, 26–28 October 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Ren, M.; Yin, Z.; Ma, F.; Xu, Z.; Jiang, Y.; Sun, C.; Li, H.; Cai, Y. Empirical Evaluation of Smart Contract Testing: What Is the Best Choice? In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Aarhus, Denmark, 11–17 July 2021; pp. 566–579. [Google Scholar] [CrossRef]
- Ye, M.; Nan, Y.; Dai, H.N.; Yang, S.; Luo, X.; Zheng, Z. FunFuzz: A Function-Oriented Fuzzer for Smart Contract Vulnerability Detection with High Effectiveness and Efficiency. ACM Trans. Softw. Eng. Methodol. 2024, 33, 191. [Google Scholar] [CrossRef]
- Zhao, X.; Qu, H.; Xu, J.; Li, X.; Lv, W.; Wang, G.G. A systematic review of fuzzing. Soft Comput. 2024, 28, 5493–5522. [Google Scholar] [CrossRef]
- Aniello, L.; Halak, B.; Chai, P.; Dhall, R.; Mihalea, M.; Wilczynski, A. Anti-BlUFf: Towards counterfeit mitigation in IC supply chains using blockchain and PUF. Int. J. Inf. Secur. 2021, 20, 445–460. [Google Scholar] [CrossRef]
- Marjanović, J.; Dalčeković, N.; Sladić, G. Improving Critical Infrastructure Protection by Enhancing Software Acquisition Process Through Blockchain. In Proceedings of the 7th Conference on the Engineering of Computer Based Systems, Novi Sad, Serbia, 2–3 September 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Xuan, S.; Tang, H.; Wang, W.; Yang, W. Application of Block Chain Technology in Constructing Network Threat Intelligence System. In Proceedings of the 2020 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 2–4 March 2020; pp. 144–149. [Google Scholar] [CrossRef]
- Lew, C.C.; Torres, C.F.; Shinde, S.; Brandenburger, M. Revisiting Rollbacks on Smart Contracts in TEE-protected Private Blockchains. In Proceedings of the 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria, 8–12 July 2024; pp. 217–224. [Google Scholar] [CrossRef]
- Rajmohan, R.; Kumar, T.A.; Sandhya, S.G.; Hu, Y.C. R-GCN: A residual-gated recurrent unit convolution network model for anomaly detection in blockchain transactions. Multimed. Tools Appl. 2024, 83, 87527–87551. [Google Scholar] [CrossRef]
- Shetty, M.; Tamane, S. Unveiling bitcoin network attack using deep reinforcement learning with Boltzmann exploration. Peer-to-Peer Netw. Appl. 2025, 18, 47. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, F.; Huang, K.; Chen, X.; Yang, Y.; Zhu, F. SoK: MEV Countermeasures. In Proceedings of the Workshop on Decentralized Finance and Security (DeFiSec), Salt Lake City, UT, USA, 14 April 2024; pp. 21–30. [Google Scholar] [CrossRef]
- Masmoudi, M.; Amous, I.; Zayani, C.A.; Sèdes, F. Trust attack prevention based on Spark-blockchain in social IoT: A survey. Int. J. Inf. Secur. 2024, 23, 3179–3198. [Google Scholar] [CrossRef]
- Wang, P.; Ding, Y.; Sun, M.; Wang, H.; Li, T.; Zhou, R.; Chen, Z.; Jing, Y. Building and Maintaining a Third-Party Library Supply Chain for Productive and Secure SGX Enclave Development. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Seoul, Republic of Korea, 27 June–19 July 2020; pp. 100–109. [Google Scholar] [CrossRef]
- Zichichi, M.; Ferretti, S.; D’Angelo, G.; Rodríguez-Doncel, V. Data governance through a multi-DLT architecture in view of the GDPR. Clust. Comput. 2022, 25, 4515–4542. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, Z.; Dai, H.N.; Xue, Q.; Chen, J.; Nan, Y. PrettySmart: Detecting Permission Re-delegation Vulnerability for Token Behaviors in Smart Contracts. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE), Lisbon, Portugal, 14–20 April 2024; pp. 1–12. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Z. Distributed storage scheme for encryption speech data based on blockchain and IPFS. J. Supercomput. 2023, 79, 897–923. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, F.; Shen, T.; Gong, B.; Luo, J. Trusted Blockchain-Based Data Fingerprinting Differential-Traceability and SkipList Indexing Methods in Privacy Protection. In Proceedings of the 2022 4th Blockchain and Internet of Things Conference (BIOTC), Tokyo, Japan, 5–7 August 2022; pp. 73–83. [Google Scholar] [CrossRef]
- Yuan, B.; Wan, J.; Wu, Y.H.; Zou, D.Q.; Jin, H. On the Security of Smart Home Systems: A Survey. J. Comput. Sci. Technol. 2023, 38, 228–247. [Google Scholar] [CrossRef]
- Yi, X.; Zhou, Y.; Lin, Y.; Xie, B.; Chen, J.; Wang, C. Digital rights management scheme based on redactable blockchain and perceptual hash. Peer-to-Peer Netw. Appl. 2023, 16, 2630–2648. [Google Scholar] [CrossRef]
- Yang, S.; Chen, J.; Huang, M.; Zheng, Z.; Huang, Y. Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE), Lisbon, Portugal, 14–20 April 2024; pp. 1–12. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Wang, R.; Chen, J.; Zheng, Z. Can Neural Networks Help Smart Contract Testing? An Empirical Study. In Proceedings of the 14th Asia-Pacific Symposium on Internetware, Hangzhou, China, 21–23 October 2023; pp. 79–89. [Google Scholar] [CrossRef]
- Wu, A.; Guo, Y.; Guo, Y. A decentralized lightweight blockchain-based authentication mechanism for Internet of Vehicles. Peer-to-Peer Netw. Appl. 2023, 16, 1340–1353. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, D.; Xue, Y.; Liu, H.; Wang, H.; Xu, Z.; Xie, X.; Liu, Y. GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE), Lisbon, Portugal, 14–20 April 2024; pp. 1–13. [Google Scholar] [CrossRef]
- Pailoor, S.; Chen, Y.; Wang, F.; Rodríguez, C.; Van Geffen, J.; Morton, J.; Chu, M.; Gu, B.; Feng, Y.; Dillig, I. Automated Detection of Under-Constrained Circuits in Zero-Knowledge Proofs. Proc. ACM Program. Lang. 2023, 7, 1510–1532. [Google Scholar] [CrossRef]
- Ooi, S.K.; Ooi, C.A.; Yeap, J.A.L.; Goh, T.H. Embracing Bitcoin: Users’ perceived security and trust. Qual. Quant. 2021, 55, 1219–1237. [Google Scholar] [CrossRef]
- Oh, S.J.; Xiao, S.; Park, B.I.; Roh, T. Coping or threat? Unraveling the mechanisms enabling user acceptance of blockchain technologies. Inf. Technol. Manag. 2023, 24, 261–278. [Google Scholar] [CrossRef]
- Ma, F.; Ren, M.; Ouyang, L.; Chen, Y.; Zhu, J.; Chen, T.; Zheng, Y.; Dai, X.; Jiang, Y.; Sun, J. Pied-Piper: Revealing the Backdoor Threats in Ethereum ERC Token Contracts. ACM Trans. Softw. Eng. Methodol. 2023, 32, 61. [Google Scholar] [CrossRef]
- Luo, F.; Luo, R.; Chen, T.; Qiao, A.; He, Z.; Song, S.; Jiang, Y.; Li, S. SCVHunter: Smart Contract Vulnerability Detection Based on Heterogeneous Graph Attention Network. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE), Lisbon, Portugal, 14–20 April 2024; pp. 1–13. [Google Scholar] [CrossRef]
- Li, W.; Jia, S.; Liu, L.; Zheng, F.; Ma, Y.; Lin, J. CryptoGo: Automatic Detection of Go Cryptographic API Misuses. In Proceedings of the 38th Annual Computer Security Applications Conference (ACSAC), Austin, TX, USA, 5–9 December 2022; pp. 318–331. [Google Scholar] [CrossRef]
- Lewis, T.G. Digital Economy: The Economics of the Digital Economy. Ubiquity 2023, 2023, 1. [Google Scholar] [CrossRef]
- Kong, Q.; Chen, J.; Wang, Y.; Jiang, Z.; Zheng, Z. DeFiTainter: Detecting Price Manipulation Vulnerabilities in DeFi Protocols. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Seattle, WA, USA, 17–21 July 2023; pp. 1144–1156. [Google Scholar] [CrossRef]
- Karode, T.; Werapun, W. Robustness against fraudulent activities of a blockchain-based online review system. Peer-to-Peer Netw. Appl. 2022, 15, 92–106. [Google Scholar] [CrossRef]
- Ipchi Sheshgelani, M.; Pashazadeh, S.; Salehpoor, P. Cooperative hybrid consensus with function optimization for blockchain. Clust. Comput. 2023, 26, 3565–3576. [Google Scholar] [CrossRef]
- Ellul, J.; Galea, J.; Ganado, M.; Mccarthy, S.; Pace, G.J. Regulating Blockchain, DLT and Smart Contracts: A technology regulator’s perspective. ERA Forum 2020, 21, 209–220. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Z.; Gong, Z.; Hao, D. Improving Smart Contract Security with Contrastive Learning-based Vulnerability Detection. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE), Lisbon, Portugal, 14–20 April 2024; pp. 1–11. [Google Scholar] [CrossRef]
- Aljabri, A.; Jemili, F.; Korbaa, O. Intrusion detection in cyber-physical system using rsa blockchain technology. Multimed. Tools Appl. 2023, 83, 48119–48140. [Google Scholar] [CrossRef]
- Andreica, T.; Musuroi, A.; Anistoroaei, A.; Jichici, C.; Groza, B. Blockchain integration for in-vehicle CAN bus intrusion detection systems with ISO/SAE 21434 compliant reporting. Sci. Rep. 2024, 14, 8169. [Google Scholar] [CrossRef] [PubMed]
- Bakar, A.; Zouhair, A.; En-Naimi, E.M. Review of Vulnerabilities and Countermeasures Against Sybil Attacks on Decentralized Systems Based on Machine Learning Algorithms. In Proceedings of the 6th International Conference on Networking, Intelligent Systems & Security (NISS), Larache, Morocco, 24–26 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Bargayary, B.; Medhi, N. Preserving flow table integrity in OpenFlow networks through smart contract. Clust. Comput. 2024, 27, 4569–4588. [Google Scholar] [CrossRef]
- Bhan, R.; Pamula, R.; Faruki, P.; Gajrani, J. Blockchain-enabled secure and efficient data sharing scheme for trust management in healthcare smartphone network. J. Supercomput. 2023, 79, 16233–16274. [Google Scholar] [CrossRef] [PubMed]
- Bhudia, A.; Cartwright, A.; Cartwright, E.; Hurley-Smith, D.; Hernandez-Castro, J. Game Theoretic Modelling of a Ransom and Extortion Attack on Ethereum Validators. In Proceedings of the 18th International Conference on Availability, Reliability and Security (ARES), Benevento, Italy, 29 August–1 September 2023; pp. 1–11. [Google Scholar] [CrossRef]
Attack Name | Cause of Vulnerability | Impact on Sectors | References |
---|---|---|---|
51% Attack |
|
| [53,54,55] |
Smart Contract Vulnerabilities |
|
| [56,57] |
Man-in-the-Middle Attack |
|
| [40,41,42] |
Replay Attack |
|
| [51,58] |
Double-Spending Attack |
|
| [36,38,59] |
Routing Attack |
|
| [43,60] |
Sybil Attack |
|
| [61,62,63] |
Race Attack |
|
| [64,65] |
Eclipse Attack |
|
| [37,66,67] |
Attack | Detection Techniques | Security Measures (Mitigation) | References |
---|---|---|---|
51% Attack |
|
| [83,84,85] |
Smart Contract Vulnerabilities |
|
| [57,71,72] |
Double-Spending Attack |
|
| [36,59,86] |
Race Attack |
|
| [46,87] |
Replay Attack |
|
| [51,58] |
Sybil Attack |
|
| [61,62] |
Eclipse Attack |
|
| [37,66] |
Man-in-the-Middle Attack |
|
| [74,76] |
Routing Attack |
|
| [88,89] |
Attack Type | Target | Key Factors Influencing Likelihood |
---|---|---|
51% Attack | PoW (Bitcoin, Litecoin, Small Chains) | Hash rate concentration, mining cost, network difficulty |
Sybil Attack | PoS, Permissionless Chains | Node diversity, validator stake, network entry barriers |
Eclipse Attack | P2P Nodes | Network size, node connectivity, topology |
Smart Contract Vulnerabilities | Ethereum, BSC, DeFi Contracts | Code vulnerabilities, audit quality, formal verification |
Double-Spending Attack | PoW/PoS Networks | Transaction finality, block confirmation time |
Routing Attack | All Blockchain Networks | ISP dependency, network propagation speed |
Replay Attack | Transaction Authentication | Weak authentication, transaction replay capability |
Man-in-the-Middle Attack | Blockchain Communication Layer | Unencrypted communication, weak key exchange |
Race Attack | PoW/PoS Networks (Fast Transaction Confirmations) | Transaction propagation speed, network latency, low block confirmation requirements |
Keyword | Count |
---|---|
Technology/Technologies | 4378 |
Security | 11,518 |
Systems | 3697 |
Blockchain | 16,400 |
Distributed | 2112 |
Privacy | 4454 |
Information | 5438 |
Control | 2881 |
Encryption | 1633 |
Detection | 7043 |
Prevention | 381 |
Attack | 5450 |
Vulnerability/Vulnerabilities | 8422 |
Protocol | 1901 |
Transaction | 5249 |
Network | 6848 |
Bitcoin | 1971 |
Ethereum | 4672 |
Smart | 13,760 |
Internet | 2375 |
Cryptocurrency/Cryptocurrencies | 1221 |
Strategies | 554 |
Strategy | 590 |
Mitigation | 385 |
Cryptography | 642 |
IoT | 633 |
Tether | 20 |
Reference(s) | Attack Category | Impact Result |
---|---|---|
[103,104,105,106] | AI/ML Security | Unreliable vulnerability detection, financial exploitation risks, missed security flaws in contract audits, and unpatched vulnerabilities in deployed contracts. |
[107] | Application Vulnerability | Undetected execution faults in Web3 applications, leading to potential security breaches. |
[69,70,108,109,110,111,112,113,114,115,116] | Authentication or Authorization | User errors, private key leaks, unauthorized access attempts, patient data exposure, healthcare service disruptions, legal liabilities, data breaches, loss of intellectual property, regulatory penalties, compromised data integrity, financial loss, reputation damage, operational disruption, unauthorized vehicle use, financial fraud, identity theft, data theft, and unauthorized smart contract execution. |
[117,118,119,120] | Blockchain Security | Performance degradation, increased attack surface, data tampering risks, election result manipulation, transaction bottlenecks, and reduced performance. |
[121] | Centralization Vulnerability | Anonymity loss and privileged operations due to centralized control. |
[122] | Cloud Security | State continuity violations in cloud-based systems. |
[123] | Code Injection | Database manipulation through malicious code injection. |
[124,125] | Code Reuse Vulnerability | Propagation of known security flaws and widespread deployment of vulnerable contracts. |
[126] | Critical Infrastructure | Grid data manipulation in critical infrastructure systems. |
[127,128,129] | Cross-Chain Vulnerability | Unintended contract behavior exploitation, cross-chain transaction fraud, and privacy leaks. |
[130] | Cryptocurrency Vulnerability | Bitcoin loss due to script flaws in cryptocurrency systems. |
[68,131,132,133,134,135,136,137] | Cryptographic Attack | Unauthorized data access in smart grids, data breaches, loss of user trust, legal liabilities, data theft, espionage, compromised encryption, and privacy leakage. |
[138,139,140] | Data Integrity | Loss of critical digital evidence, unauthorized modifications, and compromised tenant data. |
[141,142,143,144] | Data Security | Data loss, unauthorized access, medical data breaches, identity theft, and loss of control over information. |
[145,146,147,148,149,150,151,152] | Denial of Service | Service disruption, network security compromise, financial losses, blockchain slowdown, transaction delays, and smart contract failure. |
[153] | Digital Asset Theft | Player data compromises in digital asset systems. |
[154] | Domain Security | Phishing attacks and lost domain access due to security vulnerabilities. |
[155] | Educational | Knowledge gaps in blockchain security education and training. |
[156] | Electoral Fraud | Vote tampering and lack of transparency in electoral systems. |
[157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173] | Financial Fraud | Financial fraud, illicit contract use, fund misuse, investor losses, scam tokens, unfair governance token distributions, and cyber threats to financial stability. |
[174,175] | Fraud/Identity Theft | Fake degrees, credential fraud, compromised health data, and fraudulent registrations. |
[176] | Identity Management | Higher threat exposure in self-sovereign identity systems. |
[177] | Incident Response | Delayed security responses and uncoordinated mitigation efforts. |
[178] | Insider Threat | Compromised smart grid infrastructure due to insider threats. |
[179,180,181] | Intellectual Property Theft | Revenue loss for copyright holders, unauthorized data usage, and copyright infringement. |
[119,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201] | IoT Vulnerability | Data interception, unauthorized access, widespread IoT network vulnerabilities, data leaks, privacy issues, sensitive data exposure, financial loss, and compromised industrial control systems. |
[202] | Malware | Data loss and ransom demands due to malware attacks. |
[203,204,205,206] | Media Manipulation | Public misinformation, identity theft, political and financial misinformation risks, fake news, and lack of content authenticity. |
[207] | Memory Vulnerability | Memory corruption and code execution vulnerabilities. |
[89,196,208,209,210,211,212,213,214,215] | Network Attack | Operational disruptions, compromised data integrity, financial losses, service disruption, data tampering, cybercriminal activities, and denial-of-service (DoS) attacks. |
[216,217,218,219] | Oracle Manipulation | Flash-loan-based financial exploits, price manipulations, inaccurate data inputs, and market manipulation. |
[152,220,221,222] | Phishing/Social Engineering | User credential theft, financial fraud, and unauthorized fund theft. |
[223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240] | Privacy Violation | Privacy violations in AI models, user identity theft, misinformation, data exposure, identity leaks, compromised vehicle safety, legal and financial risks, and unauthorized access to stored blockchain data. |
[241] | Scalability Security | High fees and slow transactions due to scalability issues. |
[163,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286] | Smart Contract Vulnerability | Financial exploits, blockchain instability, unauthorized fund transfers, contract hijacking, financial fraud, money laundering, and irreversible financial losses. |
[287,288,289,290,291,292] | Software Testing | Security vulnerabilities overlooked, undetected software vulnerabilities, and unreliable security testing results. |
[293,294] | Supply Chain Attack | Malfunctioning electronic components and compromised software due to supply chain attacks. |
[295] | Threat Intelligence | Slow response to cyber threats due to inadequate threat intelligence. |
[296,297,298,299] | Transaction Manipulation | Financial loss, disruption of services, unauthorized transactions, and financial manipulation. |
[300] | Trust Exploitation | False service discovery and compromised interactions due to trust exploitation. |
[301] | Trusted Execution Environment | Vulnerabilities in trusted execution environments. |
[109,123,278,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329] | Various (studies that discuss attacks from multiple categories) | Online fraud, identity theft, unauthorized access to ECUs, denial of service (DoS), financial losses, privacy violations, data breaches, network collapse, theft of NFTs, and unauthorized code execution. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siam, M.K.; Saha, B.; Hasan, M.M.; Hossain Faruk, M.J.; Anjum, N.; Tahora, S.; Siddika, A.; Shahriar, H. Securing Decentralized Ecosystems: A Comprehensive Systematic Review of Blockchain Vulnerabilities, Attacks, and Countermeasures and Mitigation Strategies. Future Internet 2025, 17, 183. https://doi.org/10.3390/fi17040183
Siam MK, Saha B, Hasan MM, Hossain Faruk MJ, Anjum N, Tahora S, Siddika A, Shahriar H. Securing Decentralized Ecosystems: A Comprehensive Systematic Review of Blockchain Vulnerabilities, Attacks, and Countermeasures and Mitigation Strategies. Future Internet. 2025; 17(4):183. https://doi.org/10.3390/fi17040183
Chicago/Turabian StyleSiam, Md Kamrul, Bilash Saha, Md Mehedi Hasan, Md Jobair Hossain Faruk, Nafisa Anjum, Sharaban Tahora, Aiasha Siddika, and Hossain Shahriar. 2025. "Securing Decentralized Ecosystems: A Comprehensive Systematic Review of Blockchain Vulnerabilities, Attacks, and Countermeasures and Mitigation Strategies" Future Internet 17, no. 4: 183. https://doi.org/10.3390/fi17040183
APA StyleSiam, M. K., Saha, B., Hasan, M. M., Hossain Faruk, M. J., Anjum, N., Tahora, S., Siddika, A., & Shahriar, H. (2025). Securing Decentralized Ecosystems: A Comprehensive Systematic Review of Blockchain Vulnerabilities, Attacks, and Countermeasures and Mitigation Strategies. Future Internet, 17(4), 183. https://doi.org/10.3390/fi17040183