Network-, Cost-, and Renewable-Aware Ant Colony Optimization for Energy-Efficient Virtual Machine Placement in Cloud Datacenters
Abstract
:1. Introduction
Materials and Methods
2. Related Work
3. Problem Formulation
3.1. Server Power Model
3.2. Datacenter Power Efficiency
Integration of Renewable Energy and Dynamic PUE
- Dynamic PUE Modeling
- Solar Energy Availability
- Incorporating Wind Energy into the Renewable-Aware Framework
4. Proposed Algorithm (NCRA-DP-ACO)
4.1. System Architecture
4.2. Pheromone Management
4.2.1. Local Updates
4.2.2. Global Updates
4.2.3. Initialization
4.2.4. Solution Construction
4.2.5. System Parameters
4.2.6. Objective Function
4.2.7. Algorithm
Algorithm 1: Initial Placement |
Input: D, VMnew Output: Deployment or Failure of VMs Compute: While (true) do | If (VMnew is not empty) then |
| | solList = new List() // Initialize solution list | | For (each datacenter d in D) do | | | PM = getAvailableServers(d) // (Equation (12)) | | | Sa = runACO(PM, VMnew) | | | solList = solList.add(Sa) // Combine solutions from all datacenters | | End | | If (solList is not empty) then | | | // Step 1: Calculate costs for each solution | | | solutionCostMap = new Map() | | | For (each solution Sa in solList) do | | | | solutionCost = calculateSolutionCost(Sa) // (Equation (21)) | | | | solutionCostMap.put(Sa, solutionCost) | | | End | | | // Step 2: Find the best solution | | | Sbest = null | | | maxGreenEnergy = −1 | | | solTotalCost = infinity | | | For (each entry in solutionCostMap) do | | | | Sa = entry.key | | | | cost = entry.value | | | | If (cost.usedGreenEnergy > maxGreenEnergy) then | | | | | maxGreenEnergy = cost.usedGreenEnergy | | | | | Sbest = Sa | | | | | solTotalCost = cost.totalCost | | | | Else if (cost.usedGreenEnergy == maxGreenEnergy and cost.totalCost < solTotalCost) then | | | | | Sbest = Sa | | | | | solTotalCost = cost.totalCost | | | | End | | | End | | | // Step 3: Deploy VMs using the best solution | | | createVMsAccordingTo(Sbest) | | End | | Else | | | failVMs(VMnew) | | End | EndEnd |
Algorithm 2: Ant Colony Optimization for VMP |
Input: PM, VM Output: Sbest Initialize: I = 1 Compute: While (i < I) do | a = 1 | While (a ≤ Nants) do | | VMnew = shuffleList(VMnew) | | Sa = ∅ | | in VMnew) do | | | ) | | | is empty) then | | | | Continue | | | End | | | ) do | | | | Calculate heuristic information (Equation (14)) | | | End | | | Generate a random number q ∈ [0, 1] | | | If (q ≤ q₀) then | | | | (Equation (18)) | | | Else | | | | (Equation (19)) | | | End | | | )) | | End | | | | If (Sa contains all VMs in VMnew) then | | | Sa.objective_value = calculateObjectiveFunctionValue(Sa) | | | If (Sbest == ∅ or Sa.objective_value < Sbest.objective_value) then | | | | Sbest = Sa | | | End | | End | | Do local pheromone updating (Equation (8)) | | a = a + 1 | End | If (Sbest ≠ ∅) then | | Do global pheromone update (Equation (9)) | End | i = i + 1 End Return Sbest |
Algorithm 3: Dynamic Placement |
Input: D Compute: While (true) do | For (each datacenter d in D) do | | vmlistToMigrate = new List() | | in getAvailableServers(d)) do | | | ) then | | | | ) | | | | vmlistToMigrate.addAll(vmList) | | | End | | | ) then | | | | ) | | | | vmlistToMigrate.addAll(vmList) | | | End | | End | | | | If (vmlistToMigrate is not empty) then | | | Sa = runACO(PM, vmlistToMigrate) | | | If (Sa ≠ ∅) then | | | | MigrateVMs(Sa) | | | End | | End | End End |
5. Experimental Setup and Results
5.1. Experimental Setup
5.1.1. Datacenter Configuration
5.1.2. VM Instances
5.1.3. Solar Energy
5.1.4. Temperature
5.1.5. Energy Price
5.1.6. Carbon Tax and Carbon Footprint
5.1.7. PUE Model
5.1.8. Server Power Consumption
5.1.9. Workload
5.2. Result Analysis
5.2.1. Energy Consumption
5.2.2. Carbon Footprint (kg CO2)
5.2.3. Total Cost
5.2.4. Number of Live Migrations
5.2.5. Average Host Uptime
5.2.6. SLA Violations
- PDM (Performance Degradation due to Migrations)
- 2.
- SLATAH (SLA Time per Active Host)
5.2.7. Total Computational Overhead
5.2.8. Comparisons with Hybrid and Multi-Objective Algorithms
Algorithm | Original VM Count | Energy/VM (kWh) | Total Energy at 5000 VM (kWh) | Trace Type | Source |
---|---|---|---|---|---|
NCRA-DP-ACO | 5000 | 0.169 | 845.10 | Metacentrum | This study |
NSGA-III | 200 | 2.13 | 10,650 | Synthetic | [19] |
ETA-ACO | 500 | 0.490 | 2450 | Synthetic | [25] |
Standard ACO | 500 | 0.606 | 3030 | Synthetic | [25] |
Standard PSO | 500 | 0.533 | 3190 | Synthetic | [25] |
ABGWO (GWO Hybrid) | 2000 | 0.210 | 1050 | Azure (real) | [46] |
GA + Threshold | 300 | 0.533 | 2666 | Synthetic | [48] |
5.3. Discussion of Results
- Scalability to Workload Intensity
- Energy savings reached up to 18% compared to traditional heuristics (see Figure 5).
- Carbon emissions were reduced by more than 15% in large-scale deployments due to intelligent VM consolidation and datacenter selection (see Figure 6).
- Live migrations remained low (under 2.3% of total VMs), showing that the solution is stable and does not rely on excessive re-optimization (see Figure 7).
- Sensitivity to Solar Energy Availability
- Environmental and Economic Effectiveness
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Institute of Standards and Technology. The NIST Definition of Cloud Computing. In NIST Special Publication 800-145; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. [Google Scholar] [CrossRef]
- Bliedy, D.; Mazen, S.; Ezzat, E. Datacentre Total Cost of Ownership (TCO) Models: A Survey. Int. J. Comput. Sci. Eng. Appl. 2018, 8, 47–62. [Google Scholar] [CrossRef]
- Khosravi, A.; Andrew, L.L.H.; Buyya, R. Dynamic VM Placement Method for Minimizing Energy and Carbon Cost in Geographically Distributed Cloud Data Centers. IEEE Trans. Sustain. Comput. 2017, 2, 183–196. [Google Scholar] [CrossRef]
- Borah, A.D.; Muchahary, D.; Singh, S.K.; Borah, J. Power saving strategies in green cloud computing systems. Int. J. Grid Distrib. Comput. 2015, 8, 299–306. [Google Scholar] [CrossRef]
- Data Center Power Market Size & Share|North America. Available online: https://www.globenewswire.com/en/news-release/2021/05/12/2227889/0/en/Data-Center-Power-Market-Size-Share-North-America-Europe-APAC-Industry-Forecasts-2026-Graphical-Research.html (accessed on 25 June 2021).
- García-Valls, M.; Cucinotta, T.; Lu, C. Challenges in real-time virtualization and predictable cloud computing. J. Syst. Archit. 2014, 60, 726–740. [Google Scholar] [CrossRef]
- METACENTRUM. MetaCentrum Workload Traces for Distributed and Cloud Computing Research. Available online: https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html (accessed on 15 August 2024).
- Yadav, R.; Zhang, W.; Kaiwartya, O.; Singh, P.R.; Elgendy, I.A.; Tian, Y.C. Adaptive Energy-Aware Algorithms for Minimizing Energy Consumption and SLA Violation in Cloud Computing. IEEE Access 2018, 6, 55923–55936. [Google Scholar] [CrossRef]
- Dias, D.S.; Costa, H.M.K. Online Traffic-aware Virtual Machine Placement in Data Center Networks. In Proceedings of the 2012 Global Information Infrastructure and Networking Symposium (GIIS), Choroni, Venezuela, 17–19 December 2012. [Google Scholar]
- Zhang, B.; Qian, Z.; Huang, W.; Li, X.; Lu, S. Minimizing communication traffic in data centers with power-aware VM placement. In Proceedings of the 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, Italy, 4–6 July 2012. [Google Scholar] [CrossRef]
- Shi, T.; Ma, H.; Chen, G. Energy-Aware Container Consolidation Based on PSO in Cloud Data Centers. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation, CEC 2018—Proceedings, Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Tripathi, A.; Pathak, I.; Vidyarthi, D.P. Energy Efficient VM Placement for Effective Resource Utilization using Modified Binary PSO. Comput. J. 2018, 61, 832–846. [Google Scholar] [CrossRef]
- Xiong, A.P.; Xu, C.X. Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center. Math. Probl. Eng. 2014, 2014, 816518. [Google Scholar] [CrossRef]
- Dubey, K.; Disciplines, C.; Sharma, S.C.; Disciplines, C.; Nasr, A.A. A Simulated Annealing based Energy-Efficient VM Placement Policy in Cloud Computing. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; pp. 1–5. [Google Scholar]
- Addya, S.K.; Turuk, A.K.; Sahoo, B.; Sarkar, M.; Biswash, S.K. Simulated annealing based VM placement strategy to maximize the profit for Cloud Service Providers. Eng. Sci. Technol. Int. J. 2017, 20, 1249–1259. [Google Scholar] [CrossRef]
- Marotta, A.; Avallone, S. A Simulated Annealing Based Approach for Power Efficient Virtual Machines Consolidation. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, CLOUD, New York, NY, USA, 27 June–2 July 2015; pp. 445–452. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Wang, H. Virtual machine placement strategy using cluster-based genetic algorithm. Neurocomputing 2021, 428, 310–316. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, W.; Zhu, H.; Li, J.; Cheng, Z.; Xiao, G. Optimal machine placement based on improved genetic algorithm in cloud computing. J. Supercomput. 2022, 78, 3448–3476. [Google Scholar] [CrossRef]
- Gopu, A.; Thirugnanasambandam, K.; AlGhamdi, A.S.; Alshamrani, S.S.; Maharajan, K.; Rashid, M. Energy-efficient virtual machine placement in distributed cloud using NSGA-III algorithm. J. Cloud Comput. 2023, 12, 124. [Google Scholar] [CrossRef]
- Karmakar, K.; Das, R.K.; Khatua, S. An ACO-based multi-objective optimization for cooperating VM placement in cloud data center. J. Supercomput. 2022, 78, 3093–3121. [Google Scholar] [CrossRef]
- Zambuk, F.U.; Gital, A.Y.U.; Jiya, M.; Gari, N.A.S.; Ja’afaru, B.; Muhammad, A. Efficient Task Scheduling in Cloud Computing using Multi-objective Hybrid Ant Colony Optimization Algorithm for Energy Efficiency. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 450–456. [Google Scholar] [CrossRef]
- Wei, W.; Gu, H.; Lu, W.; Zhou, T.; Liu, X. Energy Efficient Virtual Machine Placement with an Improved Ant Colony Optimization over Data Center Networks. IEEE Access 2019, 7, 60617–60625. [Google Scholar] [CrossRef]
- Vijaya, C.; Srinivasan, P. Multi-objective Meta-heuristic Technique for Energy Efficient Virtual Machine Placement in Cloud Computing Data Centers. Informatica 2024, 48, 1–18. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Y. Efficient Cloud Workflow Scheduling with Inverted Ant Colony Optimization Algorithm. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 2023. [Google Scholar] [CrossRef]
- Xing, H.; Zhu, J.; Qu, R.; Dai, P.; Luo, S.; Iqbal, M.A. An ACO for energy-efficient and traffic-aware virtual machine placement in cloud computing. Swarm. Evol. Comput. 2022, 68, 101012. [Google Scholar] [CrossRef]
- Farzai, S.; Shirvani, M.H.; Rabbani, M. Communication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology. J. Adv. Comput. Res. Q. 2020, 11, 1–21. [Google Scholar]
- Zhong, C.; Yang, G. An Improved Ant Colony Algorithm for Virtual Resource Scheduling in Cloud Computing Methods to Improve the Performance of Virtual Resource Scheduling. Int. J. Adv. Comput. Sci. Appl. 2025, 14, 2023. [Google Scholar]
- Sun, A.; Ji, T.; Yue, Q.; Xiong, F. IaaS Public Cloud Computing Platform Scheduling Model and Optimization Analysis. Int. J. Commun. Netw. Syst. Sci. 2011, 4, 803–811. [Google Scholar] [CrossRef]
- Pelley, S.; Meisner, D.; Wenisch, T.F.; VanGilder, J.W. Understanding and abstracting total data center power. In Workshop on Energy-Efficient Design; Ann Arbor, MI, USA. 2009. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c9f3ff0a7c7c823ca3994144f33eb7ee1b31f396 (accessed on 2 May 2025).
- Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef]
- Tawfeek, M.A.; El-Sisi, A.B.; Keshk, A.E.; Torkey, F.A. Virtual Machine Placement Based on Ant Colony Optimization for Minimizing Resource Wastage. Commun. Comput. Inf. Sci. 2014, 488, 153–164. [Google Scholar] [CrossRef]
- Tawfeek, M.A.; El-Sisi, A.; Keshk, A.E.; Torkey, F.A. Cloud Task Scheduling Based on Ant Colony Optimization. In Proceedings of the 2013 8th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 26–28 November 2013. [Google Scholar]
- Gao, Y.; Guan, H.; Qi, Z.; Hou, Y.; Liu, L. A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 2013, 79, 1230–1242. [Google Scholar] [CrossRef]
- Alharbi, F.; Tian, Y.C.; Tang, M.; Zhang, W.Z.; Peng, C.; Fei, M. An Ant Colony System for energy-efficient dynamic Virtual Machine Placement in data centers. Expert Syst. Appl. 2019, 120, 228–238. [Google Scholar] [CrossRef]
- Pang, S.; Xu, K.; Wang, S.; Wang, M.; Wang, S. Energy-Saving Virtual Machine Placement Method for User Experience in Cloud Environment. Math. Probl. Eng. 2020, 2020, 4784191. [Google Scholar] [CrossRef]
- Khodayarseresht, E.; Shameli-Sendi, A. A multi-objective cloud energy optimizer algorithm for federated environments. J. Parallel. Distrib. Comput. 2023, 174, 81–99. [Google Scholar] [CrossRef]
- Shabeera, T.P.; Kumar, S.D.M.; Salam, S.M.; Krishnan, K.M. Optimizing VM allocation and data placement for data-intensive applications in cloud using ACO metaheuristic algorithm. Eng. Sci. Technol. Int. J. 2017, 20, 616–628. [Google Scholar] [CrossRef]
- Filho, M.C.S.; Oliveira, R.L.; Monteiro, C.C.; Inácio, P.R.M.; Freire, M.M. CloudSim Plus: A cloud computing simulation framework pursuing software engineering principles for improved modularity, extensibility and correctness. In Proceedings of the IM 2017—2017 IFIP/IEEE International Symposium on Integrated Network and Service Management, Lisbon, Portugal, 8–12 May 2017; pp. 400–406. [Google Scholar] [CrossRef]
- Beloglazov, A.; Buyya, R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. Pract. Exp. 2012, 24, 1397–1420. [Google Scholar] [CrossRef]
- NSRDB. NSRDB: National Solar Radiation Database. National Renewable Energy Laboratory. Available online: https://nsrdb.nrel.gov/data-viewer (accessed on 15 August 2024).
- Weatherbase. Available online: https://www.weatherbase.com/ (accessed on 15 August 2024).
- US Energy Information Administration. International Energy Outlook. Available online: http://large.stanford.edu/courses/2010/ph240/riley2/docs/EIA-0484-2010.pdf (accessed on 5 March 2025).
- Environmental Protection Agency; Emissions & Generation Resource Integrated Database (eGRID). United States Environmental Protection Agency. Available online: https://www.epa.gov/sites/production/files/2017-02/documents/egrid2014_summarytables_v2.pdf (accessed on 5 March 2025).
- Carbon Tax Center. International Affairs. Available online: https://www.carbontax.org/ (accessed on 15 August 2024).
- Liu, X.F.; Zhan, Z.H.; Zhang, J. An energy aware unified ant colony system for dynamic virtual machine placement in cloud computing. Energies 2017, 10, 609. [Google Scholar] [CrossRef]
- Feng, H.; Li, H.; Liu, Y.; Cao, K.; Zhou, X. A novel virtual machine placement algorithm based on grey wolf optimization. J. Cloud Comput. 2025, 14, 7. [Google Scholar] [CrossRef]
- Beloglazov, A.; Abawajy, J.; Buyya, R. Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Gener. Comput. Syst. 2012, 28, 755–768. [Google Scholar] [CrossRef]
- Alourani, A.; Khalid, A.; Tahir, M.; Sardaraz, M. Energy efficient virtual machines placement in cloud datacenters using genetic algorithm and adaptive thresholds. PLoS ONE 2024, 19, e0296399. [Google Scholar] [CrossRef]
Notation | Description | Notation | Description |
---|---|---|---|
Datacenter sites | |||
List of servers in a datacenter | Initial pheromone value | ||
) | |||
current CPU utilization | Pheromone reinforcement value | ||
Current generation’s best solution | |||
Number of ants | |||
power consumption at time t | Exploration and exploitation behavior of ants | ||
bandwidth | q | Random number [0, 1] | |
available network bandwidth | |||
β | Importance of heuristic information | ||
Set of available PMs for placement | |||
idle power | Overhead power consumption of server at time t | ||
Datacenter outside temperature at time t | |||
The cost of running all VMs at different sites | |||
at time t after placing new VM | |||
List of running VMs | Carbon tax in datacenter d | ||
List of VMs to be (re)placed | Carbon footprint in datacenter d | ||
Energy consumption cost | |||
Carbon footprint cost | |||
Underutilization threshold | |||
current CPU utilization | Matrix element to show VM-to-PM mapping | ||
Overutilization threshold | |||
VM assignment solution |
Symbol | ρ | θ, γ, δ | β | A | I | q₀ | ||
---|---|---|---|---|---|---|---|---|
Value | 0.3 | 0.3, 0.4, 0.3 | 2 | 20 | 2 | 0.7 | 30% | 90% |
Site Characteristics | Dallas | Richmond | San Jose | Portland |
---|---|---|---|---|
Server Power Model | Calculated using (5) based on SpecPower benchmark [39] | |||
PUE Model | ||||
Carbon Intensity (ton CO2 /MWh) | 0.335 | 0.268 | 0.199 | 0.287 |
Carbon Tax (USD/ton CO2) | 24 | 17.6 | 38.59 | 25.75 |
Energy Price (cents/kWh) | 6.38 | 8.62 | 19.8 | 7.7 |
Server Type | CPU Cores | Memory (GB) | Storage (GB) |
---|---|---|---|
Type 1 | 2 | 16 | 2000 |
Type 2 | 4 | 32 | 6000 |
Type 3 | 8 | 32 | 7000 |
Type 4 | 8 | 64 | 7000 |
Type 5 | 16 | 128 | 9000 |
Type 6 | 32 | 128 | 12,000 |
VM Type | Number of PEs (CPU Cores) | Memory (GB) | Storage (GB) |
---|---|---|---|
Type 1 A1_Medium | 1 | 1 | 100 |
Type2 m5.large | 2 | 2 | 200 |
Type 3 m5.xlarge | 4 | 4 | 500 |
Type 4 m5.2xlarge | 8 | 8 | 1000 |
Type 5 m5.4xlarge | 16 | 64 | 2000 |
Server Model | CPU Utilization (%) | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G4 | Power (W) | 86 | 89.4 | 92.6 | 96 | 99.5 | 102 | 106 | 108 | 112 | 114 | 117 |
G5 | Power (W) | 93.7 | 97 | 101 | 105 | 110 | 116 | 121 | 125 | 129 | 133 | 135 |
Cloudlet PEs | VM Type | Cloudlets Percentage | Example Workload |
---|---|---|---|
1 | Type 1 | 40% | Small web apps, APIs, development environments |
2 | Type 2 | 30% | Medium-sized apps, databases, caching servers |
4 | Type 3 | 20% | Enterprise apps, high-traffic web servers |
8 | Type 4 | 8% | Video encoding, data processing |
16+ | Type 5 | 2% | Machine learning, big data |
VM Workload Size | Average Execution Time (s) | Standard Deviation |
---|---|---|
500 | 4983.96 | 428.23 |
1000 | 9151.37 | 944.57 |
5000 | 18,160.69 | 581.48 |
10,000 | 13,640.21 | 1259.35 |
14,000 | 18,655.12 | 1934.12 |
Metric | NCRA-DP-ACO | BFD | FFD | CRADP | UACS |
---|---|---|---|---|---|
Energy Consumption (Max) | −18% | Baseline | −10% | −6% | −8% |
Carbon Emissions (Max) | −15% | Baseline | −8% | −5% | −6% |
Total Cost (Max) | −17% | Baseline | −9% | −7% | −9% |
Live Migrations | −48.2% vs. UACS | N/A | N/A | N/A | Baseline |
PDM (Placement Quality) | <1% | 2–4% | 3–5% | 1.7% | 1.4% |
SLAV | Very low | Moderate | Moderate | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baydoun, A.M.; Zekri, A.S. Network-, Cost-, and Renewable-Aware Ant Colony Optimization for Energy-Efficient Virtual Machine Placement in Cloud Datacenters. Future Internet 2025, 17, 261. https://doi.org/10.3390/fi17060261
Baydoun AM, Zekri AS. Network-, Cost-, and Renewable-Aware Ant Colony Optimization for Energy-Efficient Virtual Machine Placement in Cloud Datacenters. Future Internet. 2025; 17(6):261. https://doi.org/10.3390/fi17060261
Chicago/Turabian StyleBaydoun, Ali Mohammad, and Ahmed Sherif Zekri. 2025. "Network-, Cost-, and Renewable-Aware Ant Colony Optimization for Energy-Efficient Virtual Machine Placement in Cloud Datacenters" Future Internet 17, no. 6: 261. https://doi.org/10.3390/fi17060261
APA StyleBaydoun, A. M., & Zekri, A. S. (2025). Network-, Cost-, and Renewable-Aware Ant Colony Optimization for Energy-Efficient Virtual Machine Placement in Cloud Datacenters. Future Internet, 17(6), 261. https://doi.org/10.3390/fi17060261