A Web-Based Geovisual Analytical System for Climate Studies
Abstract
:1. Introduction: Challenges of Geovisual Analysis on Climatic Data
- The spatiotemporal data include hundreds of climate variables to describe complex components of atmosphere, ocean, cryosphere and land surface [11].
- These variables have different spatial dimensions ranging from one dimension to many dimensions [12].
- The data include information from global to regional scales.
- Climate models also generate data in different temporal resolutions from daily to yearly. Climate analysis is usually based on the averaged values of data in basic time unit [13].
- To explicitly explore the structural uncertainty in the simulations, models are often run many times with different input parameter combinations [14].
2. Related Work
3. System Design
3.1. Data Repository
3.1.1. Simulation and Observation Data
3.1.2. Data Preparation and Initial Statistics
3.2. Application Server
3.2.1. Data Analysis Module
3.2.2. Data Rendering Module
3.3. Client
3.3.1. Map
3.3.2. Statistical Plots
4. Case Study and Result
4.1. ModelE Simulation and Customized Geovisual Analytical System
4.2. Examples of Data Exploration with the Geovisual Analytical System
4.2.1. Detecting Spatial Variations of Multiple Variables Using Maps
4.2.2. Advanced Analysis on Temporal Patterns
4.2.3. Model Validation between Simulation and Observations
4.2.4. Relationships between Inputs and Outputs
4.3. Performance Evaluation
5. Conclusions
References
- Haigh, J.D. The impact of solar variability on climate. Science 1996, 272, 981–984. [Google Scholar]
- Rozema, J.; van Geel, B.; Bjorn, L.O.; Lean, J.; Madronich, S. Towards solving the UV puzzle. Science 2002, 296, 1621–1622. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Robock, A.; Stouffer, R.J.; Walsh, J.E.; Parkinson, C.L.; Cavalieri, D.J.; Michell, J.; Garett, D.; Zakharov, V.F. Global warming and northern hemispheric sea ice extent. Science 1999, 286, 1934–1937. [Google Scholar]
- Maarten, B.; van Geel, B.; van der Plicht, J. Solar forcing of climaticchange during the mid Holocene: Indications from raised bogs in The Netherlands. Holocene 2004, 14, 35–44. [Google Scholar] [CrossRef]
- Houghton, R.A.; Skole, D.L. Carbon. In Earth as Transformed by Human Action; Turner, B.L., Clark, W.C., Kates, R.W., Richards, J.F., Matthews, J.T., Mayer, W.B., Eds.; Cambridge University Press: New York, NY, USA, 1990; pp. 393–408. [Google Scholar]
- Karoly, D.; Braganza, K.; Stott, P.A.; Arblaste, J.M.; Meehl, G.A.; Broccoli, A.J.; Dixton, K.W. Detection of a human influence on North American climate. Science 2003, 302, 1200–1203. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Organization. Available online: http://www.ipcc.ch/organization/organization.shtml#.T_8vMPXNXec (accessed on 12 July 2012).
- IPCC. Data Distribution Center. Available online: http://www.ipcc-data.org/index.html (accessed on 12 July 2012).
- Mote, P.W.; Salathé, E.P., Jr. Future climate in the Pacific Northwest. Clim. Chang. 2010, 102, 29–50. [Google Scholar] [CrossRef]
- Climate@Home. Available online: http://www.nasa.gov/offices/ocio/ittalk/08-2010_climate.html (accessed on 12 July 2012).
- GISS GCM ModelE. Available online: http://www.giss.nasa.gov/tools/modele/ (accessed on 12 July 2012).
- Giorgi, F. Simulation of regional climate using a limited area model nested in a General Circulation Model. J. Clim. 1990, 3, 941–963. [Google Scholar] [CrossRef]
- IPCC. Constructing Change Fields. Available online: http://www.ipcc-data.org/ddc_change_field.html (accessed on 12 July 2012).
- Gneiting, T.; Raftery, A. Atmospheric science: Weather forecasting with ensemble methods. Science 2005, 310, 248–249. [Google Scholar] [CrossRef]
- Stenliden, L.; Jern, M. How can we study learning with geovisual analytics applied to statistics? Future Internet 2012, 4, 22–41. [Google Scholar] [CrossRef]
- Tufte, E. Visual Explanations: Images and Quantities, Evidence and Narrative; Graphics Press: Cheshire, CT, USA, 1997. [Google Scholar]
- Roth, R.E.; Robbinson, A.; Stryker, M.; Maceschren, A.M.; Lengerich, E.J.; Koua, E. Web-based geovisualization and geocollaboration: Applications to public health. In Proceedings of Joint Statistical Meeting, Denver, CO, USA, 3–7 August 2008.
- DiBiase, D. Visualization in the earth sciences. Earth Min. Sci. 1990, 59, 13–18. [Google Scholar]
- Oliphant, T. Guide to NumPy; Trelgol Publishing: Spanish Fork, UT, USA, 2006. [Google Scholar]
- Saenz, J.; Zubillaga, J.; Fernandez, J. Geophysical data analysis using Python. Comput. Geosci. 2002, 28, 457–465. [Google Scholar] [CrossRef]
- Climate Charts & Graphs. Available online: http://chartsgraphs.wordpress.com/ (accessed on 12 July 2012).
- Williams, D. The flexible Climate Data Analysis Tools (CDAT) for multi-model climate simulation data. In Proceedings of ICDM Workshops IEEE International Conference on Data Mining, Miami, FL, USA, 6–9 December 2009.
- CDAT (Climate Data Analysis Tools). Available online: http://www2-pcmdi.llnl.gov/ (accessed on 12 July 2012).
- Potter, K. Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather data with integrated ViSUS-CDAT systems. J. Phys. Conf. Ser. 2009, 180, 1–5. [Google Scholar]
- O’Reilly, T. What is Web 2.0: Design patterns and business models for the next generation of software. Commun. Strateg. 2007, 1, 17–37. [Google Scholar]
- Sun, X.; Shen, S.; Leptoukh, G.G.; Wang, P.; Di, L.; Lu, M. Development of a Web based visualization platform for climate research using GoogleEarth. Comput. Geosci. 2011, 47, 160–168. [Google Scholar]
- Open Statistics eXplorer-platform. Available online: http://www.ncomva.se/apps/ex/world/#story=0 (accessed on 12 July 2012).
- Taylor, K.E. Summarizing multiple aspects of model performance in single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge Univerity Press: Cambridge, UK, 1999. [Google Scholar]
- Kwan, M. Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: A methodological exploration with a large data set. Transp. Res. Part C 2000, 8, 185–203. [Google Scholar] [CrossRef]
- Schmidt, G.A.; Ruedy, R.; Hansen, J.E.; Aleinov, I.; Bell, N.; Bauer, M.; Bauer, S.; Cairns, B.; Canuto, V.; Cheng, Y.; et al. Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J. Clim. 2006, 19, 153–192. [Google Scholar] [CrossRef]
- James, P.; Stohl, A.; Forster, C.; Eckhardt, S.; Seibert, P.; Frank, A. A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model: 2. Mean climate and seasonal variability. J. Geophys. Res. 2003, 108, 8522:1–8522:14. [Google Scholar]
- MySQL: The World’s Most Popular Open Source Database. Available online: http://www.mysql.com (accessed on 12 July 2012).
- Zender, C.S. Analysis of self-describing gridded geoscience data with netCDF Operators (NCO). Environ. Model. Softw. 2008, 23, 1338–1342. [Google Scholar] [CrossRef]
- Crawley, M.J. Statistics an Introduction Using R; Wiley: London, UK, 2005. [Google Scholar]
- MacEachren, A.M.; Brewer, I. Developing a conceptual framework for visually-enabled geocollaboration. Int. J. Geogr. Inf. Sci. 2004, 18, 1–34. [Google Scholar] [CrossRef]
- Arronson, L. HTML Manual of Style; ZD Press: Emeryville, CA, USA, 1994. [Google Scholar]
- Seed, P. Flat Maps in a 3D World: Visualizing the Past. CTWatch Quarterly. May 2007. Available online: http://www.ctwatch.org/quarterly/articles/2007/05/flat-maps-in-a-3d-world/ (accessed on 10 December 2012).
- Brown, M.C. Hacking Google Maps and Google Earth; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Harrower, M.; Fabrikant, S.I. The role of map animation in Geographic Visualization. In Geographic Visualization: Concepts, Tools and Applications; Dodge, M., Turner, M., McDerby, M., Eds.; Wiley: Chichester, UK, 2008; pp. 49–65, Chapter 4. [Google Scholar]
- Ehlschlaeger, C.R.; Shortridge, A.M.; Goodchild, M.F. Visualizing spatial data uncertainty using animation. Comput. Geosci. 1997, 23, 387–395. [Google Scholar] [CrossRef]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Effect of urban albedo on global temperature. In Proceedings of 2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21st Century, Crete Island, Greece, 27–28 September 2007.
- Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Bambacus, M.; Xu, Y.; Fay, D. Spatial cloud computing—How can geospatial sciences use and help to shape cloud computing. Int. J. Digit. Earth. 2011, 4, 305–329. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sun, M.; Li, J.; Yang, C.; Schmidt, G.A.; Bambacus, M.; Cahalan, R.; Huang, Q.; Xu, C.; Noble, E.U.; Li, Z. A Web-Based Geovisual Analytical System for Climate Studies. Future Internet 2012, 4, 1069-1085. https://doi.org/10.3390/fi4041069
Sun M, Li J, Yang C, Schmidt GA, Bambacus M, Cahalan R, Huang Q, Xu C, Noble EU, Li Z. A Web-Based Geovisual Analytical System for Climate Studies. Future Internet. 2012; 4(4):1069-1085. https://doi.org/10.3390/fi4041069
Chicago/Turabian StyleSun, Min, Jing Li, Chaowei Yang, Gavin A. Schmidt, Myra Bambacus, Robert Cahalan, Qunying Huang, Chen Xu, Erik U. Noble, and Zhenlong Li. 2012. "A Web-Based Geovisual Analytical System for Climate Studies" Future Internet 4, no. 4: 1069-1085. https://doi.org/10.3390/fi4041069
APA StyleSun, M., Li, J., Yang, C., Schmidt, G. A., Bambacus, M., Cahalan, R., Huang, Q., Xu, C., Noble, E. U., & Li, Z. (2012). A Web-Based Geovisual Analytical System for Climate Studies. Future Internet, 4(4), 1069-1085. https://doi.org/10.3390/fi4041069