Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Ex Vitro Acclimatization System
2.2. Description of the IoT-Based Monitoring and Control System
2.3. IoT-Based Monitoring, Alerting, and Control Software Layout
2.4. Sensor Calibration and Validation
- The digital DHT22 temperature and RH sensors and the analog LM35 temperature sensor were calibrated by comparing the sensors’ readings to the readings of a calibrated incubator (model: PC900h, Helmer Scientific Inc., Noblesville, IN, USA). The incubator temperatures and RH were set at various values, and the observed temperature and RH values were compared with the sensor’s readings. Then, the regression equation for each parameter was used to calibrate the used sensors.
- The analog DX-250 pH sensor was calibrated by comparing the sensors’ readings to a pH meter’s readings (Model HI-99121, Hanna Instruments, Leighton Buzzard, Bedfordshire, UK) at various soil pH values, and the observed pH values were compared with the sensor’s readings. Then, the regression equation for the pH was used to calibrate the DX-250 pH sensors.
- The MQ-135 is an air quality sensor for detecting many gases, including CO2, NH3, alcohol, and smoke. In this study, the MQ-135 was used to measure the CO2 concentration (%) in the acclimatization chamber of the E-VAS. To calibrate the MQ-135 sensor, it was heated for 24 h then the reading was acquired. The sensor reading was compared with the reading recorded by a CO2 device (model: Extech EA80, FLIR Commercial Systems Inc., Nashua, NH, USA) at 25 °C in the closed incubator. The concentration of CO2 in the incubator was changed using a carbon dioxide cylinder containing 99.5% CO2. The CO2 concentration in the incubator was set at various values, and the observed CO2 values were compared with the sensor’s readings. Then, the regression equation for CO2 was used to calibrate the used MQ-135 sensor for detecting CO2 in the acclimatization chamber of the E-VAS.
- The VH400 volumetric soil moisture content sensor is a professional electronic sensor. This sensor was selected due to multiple advantages, i.e., it has high sensitivity, is waterproof and rugged, and it can ignore the soil’s salt. Moreover, the VH400 sensor is very thin; thus, the probe does not damage the roots of the plantlets and it suits our real-time measurements. The output voltage of this sensor is proportional to the medium moisture content. The VH400 sensor was calibrated by comparing its reading with the actual volumetric moisture content of the medium. It was determined by drying the medium sample of 100 g at 105 °C under a vacuum for 48 h using a vacuum-drying oven (LVO-2041P, Daihan Labtech Co., Ltd., Namyangju-si, Gyeonggi-do, Korea).
- To calibrate the light intensity sensor module, the reading of the module was compared with the reading acquired by the light intensity datalogger (model: Extech EA33, FLIR Commercial Systems Inc., Nashua, NH, USA). First, the calibration was conducted using a compact fluorescent light bulb in the acclimatization chamber with variable illumination intensity at a temperature of 27 °C. Then, the regression equation for light intensity was used to calibrate the sensor for detecting the light intensity in the acclimatization chamber of the E-VAS.
2.5. Experimental Setup
2.6. Tissue Culture-Derived Plant Material
2.7. Potting Media and Cultural Practices
2.8. Measurements of Morphological Parameters
2.9. Estimation of Physiological Parameters
2.10. Statistical Analysis
3. Results
3.1. System Validation
3.1.1. Sensors
3.1.2. IoT-Based Monitoring and Control System
3.2. Morpho-Physiological Attributes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Khayri, J.M. Date Palm Phoenix Dactylifera L. In Protocol for Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 309–319. ISBN 978-1-4020-2985-1. [Google Scholar]
- Zaid, A.; De Wet, P.F. Date Palm Cultivation. In FAO Plant Production and Protection Paper 156 Rev.1; FAO: Rome, Italy, 2002; pp. 1–28. [Google Scholar]
- Chao, C.C.T.; Krueger, R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Torres, K.C. Application of Tissue Culture Techniques to Horticultural Crops. In Tissue Culture Techniques for Horticultural Crops; Springer: Boston, MA, USA, 1989; pp. 66–69. [Google Scholar]
- Oseni, O.M.; Pande, V.; Nailwal, T.K. A Review on Plant Tissue Culture, A Technique for Propagation and Conservation of Endangered Plant Species. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3778–3786. [Google Scholar] [CrossRef]
- Krishnaraj, S.; Vasil, I.K. Somatic Embryogenesis in Herbaceous Monocots. In In Vitro Embryogenesis in Plants; Thorpe, T.A., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 417–470. ISBN 978-94-011-0485-2. [Google Scholar]
- Wang, J.; Seliskar, D.M.; Gallagher, J.L. Plant regeneration via somatic embryogenesis in the brackish wetland monocot Scirpus robustus. Aquat. Bot. 2004, 79, 163–174. [Google Scholar] [CrossRef]
- Carter, J.; Gunawardena, A.H. Regeneration of the aquatic monocot Aponogeton madagascariensis (lace plant) through callus induction. Aquat. Bot. 2011, 94, 143–149. [Google Scholar] [CrossRef]
- Rajmohan, K. Date Palm Tissue Culture: A Pathway to Rural Development. In Date Palm Biotechnology; Jain, S.M., Al-Khayri, J.M., Johnson, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 29–45. ISBN 978-94-007-1318-5. [Google Scholar]
- Mohan Jain, S. Date palm biotechnology: Current status and prospective-an overview. Emir. J. Food Agric. 2012, 24, 386–399. [Google Scholar]
- Aleid, S.M.; Al-Khayri, J.M.; Al-Bahrany, A.M. Date Palm Status and Perspective in Saudi Arabia; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9706-1. [Google Scholar]
- Intha, N.; Chaiprasart, P. Micropropagation of “KL1” date palm (Phoenix dactylifera L.). Agric. Nat. Resour. 2020, 54, 79–84. [Google Scholar]
- Zayed, E.M.M.; Abd Elbar, O.H. Morphogenesis of immature female inflorescences of date palm in vitro. Ann. Agric. Sci. 2015, 60, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Shareef, H.J.; Muhsen, K.A.; Alhamd, A.D. Improving the germination of somatic embryos in date palm Berhi cultivar in vitro. Int. J. Agron. Agric. Res. 2016, 8, 17–23. [Google Scholar]
- Al-Khayri, J.M.; Naik, P.M. Date palm micropropagation: Advances and applications. Ciência E Agrotecnologia 2017, 41, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Allam, M.A.; Shams El Din, I.M.; Malhat, M.H.; Taha, R.A. High-frequency direct somatic embryogenesis and plantlet regeneration from date palm immature inflorescences using picloram. J. Genet. Eng. Biotechnol. 2021, 19, 1–11. [Google Scholar] [CrossRef]
- Abahmane, L. Date Palm Micropropagation via Organogenesis. In Date Palm Biotechnology; Jain, S.M., Al-Khayri, J.M., Johnson, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 69–90. [Google Scholar]
- Fki, L.; Kriaa, W.; Nasri, A.; Baklouti, E.; Chkir, O.; Masmoudi, R.B.; Rival, A.; Drira, N. Indirect Somatic Embryogenesis of Date Palm Using Juvenile Leaf Explants and Low 2,4-D Concentration. In Methods in Molecular Biology; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Humana Press: New York, NY, USA, 2017; Volume 1637, pp. 99–106. [Google Scholar]
- Al-Khayri, J.M. Somatic Embryogenesis of Date Palm (Phoenix dactylifera L.) from Shoot Tip Explants. In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants: Volume II; Jain, S.M., Gupta, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 231–244. ISBN 978-3-319-79087-9. [Google Scholar]
- Sutter, E.G.; Shackel, K.; Diaz, J.C. Acclimatization of Tissue Cultured Plants. Acta Hortic. 1992, 23, 115–120. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. Vitr. Cell. Dev. Biol. Plant. 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef]
- Mahendra, R.; Chauhan, N.; Sharma, J.B.; Rana, K.; Bakshi, M. Ex-vitro Establishment of Tissue Cultured plants in Fruit Crops-A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3321–3329. [Google Scholar] [CrossRef]
- Benson, E.E. Sepecial symposium: In vitro plant recalcitrance in vitro plant recalcitrance: An introduction. Vitr. Cell. Dev. Biol. Plant. 2000, 36, 141–148. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Jain, S.M. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef]
- Hazarika, B.N. Acclimatization of tissue-cultured plants. Curr. Sci. 2003, 85, 1704–1712. [Google Scholar] [CrossRef]
- Conover, C.A.; Poole, R.T. Acclimatization of Indoor Foliage Plants. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1984; pp. 119–154. ISBN 9781118060797. [Google Scholar]
- Fuentes, G.; Talavera, C.; Espadas, F.; Quiroz, A.; Aguilar, M.; Coello, J.; Santamaría, J.M. Manipulation of abiotic in vitro factors to improve the physiology and subsequent field performance of micropropagated plantlets. Acta Hortic. 2007, 748, 77–85. [Google Scholar] [CrossRef]
- Joshi, P.; Joshi, N.; Purohit, S.D. Stomatal characteristics during micropropagation of Wrightia tomentosa. Biol. Plant. 2006, 50, 275–278. [Google Scholar] [CrossRef]
- Ďurkovič, J.; Lengyelová, A.; Čaňová, I.; Kurjak, D.; Hladká, D. Photosynthetic performance and stomatal characteristics during ex vitro acclimatisation of true service tree (Sorbus domestica L.). J. Hortic. Sci. Biotechnol. 2009, 84, 223–227. [Google Scholar] [CrossRef]
- Sáez, P.L.; Bravo, L.A.; Sánchez-Olate, M.; Bravo, P.B.; Ríos, D.G. Effect of Photon Flux Density and Exogenous Sucrose on the Photosynthetic Performance during <i>In Vitro</i> Culture of <i>Castanea sativa. Am. J. Plant. Sci. 2016, 7, 2087–2105. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.C.; Rossi, M.L.; Rosalem, I.B.; Teixeira da Silva, J.A. Pre-acclimatization in the greenhouse: An alternative to optimizing the micropropagation of gerbera. Sci. Hortic. 2013, 164, 616–624. [Google Scholar] [CrossRef]
- Kadleček, P.; Tichá, I.; Haisel, D.; Apková, V.; Schäfer, C. Importance of in vitro pretreatment for ex vitro acclimatization and growth. Plant. Sci. 2001, 161, 695–701. [Google Scholar] [CrossRef]
- Hronková, M.; Zahradníčková, H.; ŠIMKOVÁ, M.; Šimek, P.; Heydová, A. The role of abscisic acid in acclimation of plants cultivated in vitro to ex vitro conditions. Biol. Plant. 2003, 46, 535–541. [Google Scholar] [CrossRef]
- Pospíšilová, J.; Tichá, I.; Kadleček, P.; Haisel, D.; Plzáková, Š. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar] [CrossRef]
- Clapa, D.; Fira, A.; Joshee, N. An efficient ex vitro rooting and acclimatization method for horticultural plants using float hydroculture. HortScience 2013, 48, 1159–1167. [Google Scholar] [CrossRef] [Green Version]
- Monja-Mio, K.M.; Olvera-Casanova, D.; Herrera-Herrera, G.; Herrera-Alamillo, M.Á.; Sánchez-Teyer, F.L.; Robert, M.L. Improving of rooting and ex vitro acclimatization phase of Agave tequilana by temporary immersion system (BioMINTTM). Vitr. Cell. Dev. Biol. Plant. 2020, 56, 662–669. [Google Scholar] [CrossRef]
- Premkumar, A.; Mercado, J.A.; Quesada, M.A. Effects of in vitro tissue culture conditions and acclimatization on the contents of Rubisco, leaf soluble proteins, photosynthetic pigments, and C/N ratio. J. Plant. Physiol. 2001, 158, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Kshitij Kumar, I.U.R. Morphophysiologicals Problems in Acclimatization of Micropropagated Plants in—Ex Vitro Conditions- A Reviews. J. Ornam. Hortic. Plants 2016, 4, 1–23. [Google Scholar]
- Solangi, N.; Jatoi, M.A.; Markhand, G.S.; Abul-Soad, A.A.; Solangi, M.A.; Jatt, T.; Mirbahar, A.A.; Mirani, A.A. Optimizing Tissue Culture Protocol for In Vitro Shoot and Root Development and Acclimatization of Date Palm (Phoenix dactylifera L.) Plantlets. Erwerbs Obstbau 2022, 64, 97–106. [Google Scholar] [CrossRef]
- Abul-Soad, A.A.; Jatoi, M.A. Factors affecting in vitro rooting of date palm (Phoenix dactylifera L.). Pak. J. Agric. Sci. 2014, 51, 477–484. [Google Scholar]
- Pushpakanth, P.; Krishnamoorthy, R.; Anandham, R.; Senthilkumar, M. Biotization of tissue culture banana plantlets with Methylobacterium salsuginis to enhance the survival and growth under greenhouse and open environment condition. J. Environ. Biol. 2021, 42, 1452–1460. [Google Scholar] [CrossRef]
- Wardle, K.; Dobbs, E.B.; Short, K.C. In Vitro Acclimatization of Aseptically Cultured Plantlets to Humidity. J. Am. Soc. Hortic. Sci. 2022, 108, 386–389. [Google Scholar] [CrossRef]
- Hazarika, B.N.; da Silva, J.A.T.; Talukdar, A. Effective Acclimatization of in Vitro Cultured Plants: Methods, Physiology and Genetics. In Floriculture, Ornamental and Plant Biotechnology; da Silva, J.A.T., Ed.; Global Science Books: Bexhill-on-Sea, UK, 2006; Volume 2, pp. 427–438. [Google Scholar]
- Mozas-Moral, A.; Bernal-Jurado, E.; Fernández-Uclés, D.; Medina-Viruel, M. Innovation as the Backbone of Sustainable Development Goals. Sustainability 2020, 12, 4747. [Google Scholar] [CrossRef]
- Edan, Y.; Han, S.; Kondo, N. Automation in Agriculture. In Springer Handbook of Automation; Nof, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1095–1128. [Google Scholar]
- Elhassan Ahmed, O.M.; Osman, A.A.; Awadalkarim, S.D. A Design of an Automated Fertigation System Using IoT. In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), IEEE, Khartoum, Sudan, 12–14 August 2018; pp. 1–5. [Google Scholar]
- Mohammed, M.; Riad, K.; Alqahtani, N. Efficient iot-based control for a smart subsurface irrigation system to enhance irrigation management of date palm. Sensors 2021, 21, 3942. [Google Scholar] [CrossRef]
- Lavanya, G.; Rani, C.; Ganeshkumar, P. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustain. Comput. Inform. Syst. 2020, 28, 100300. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Kashif, M.; Fati, S.M.; Bahaj, S.A.; Chaudhry, H. A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture. Agronomy 2022, 12, 127. [Google Scholar] [CrossRef]
- Chu, I. Economic analysis of automated micropropagation. In Automation and Environmental Control in Plant Tissue Culture; Springer: Dordrecht, The Netherlands, 1995; pp. 19–27. [Google Scholar]
- Ilan, A.; Khayat, E. An overview of commercial and technological limitations to marketing of micropropagated plants. Acta Hortic. 1997, 447, 643–648. [Google Scholar] [CrossRef]
- Leifert, C.; Cassells, A.C. Microbial hazards in plant tissue and cell cultures. Vitr. Cell. Dev. Biol. Plant. 2001, 37, 133–138. [Google Scholar] [CrossRef]
- Huang, Y.J.; Lee, F.F. An automatic machine vision-guided grasping system for Phalaenopsis tissue culture plantlets. Comput. Electron. Agric. 2010, 70, 42–51. [Google Scholar] [CrossRef]
- Zhao, J.C.; Zhang, J.F.; Feng, Y.; Guo, J.X. The study and application of the IOT technology in agriculture. In Proceedings of the 2010 3rd IEEE International Conference on Computer Science and Information Technology, ICCSIT, Chengdu, China, 9–11 July 2010; Volume 2, pp. 462–465. [Google Scholar]
- Patil, V.C.; Al-Gaadi, K.A.; Biradar, D.P.; Rangaswamy, M. Internet of Things (Iot) and Cloud Computing for Agriculture: An Overview. AgroInform. Precis. Agric. 2012, 1, 292–296. [Google Scholar]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Salam, A. Internet of Things for Sustainable Community Development: Introduction and Overview. In Internet of Things; Salam, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–31. ISBN 978-3-030-35291-2. [Google Scholar]
- Memić, B.; Hasković Džubur, A.; Avdagić-Golub, E. Green IoT: Sustainability environment and technologies. Sci. Eng. Technol. 2022, 2, 24–29. [Google Scholar] [CrossRef]
- Mohammed, M.; Riad, K.; Alqahtani, N. Design of a Smart IoT-Based Control System for Remotely Managing Cold Storage Facilities. Sensors 2022, 22, 4680. [Google Scholar] [CrossRef]
- Dalina, D.U.; Sobejana, N. Automated Relative Humidity and Temperature Control System for Banana Tissue Culture Laboratory with Monitoring System and SMS Notification. SSRN Electron. J. 2019, 5, 6070. [Google Scholar] [CrossRef]
- Memon, M.H. Design of Centralized Intelligent Expert System and Contamination Detection of Tissue Cultured Sugarcane Crop. Sukkur IBA J. Emerg. Technol. 2021, 4, 47–63. [Google Scholar] [CrossRef]
- Widiawan, B.; Erawati, D.N.; Firgiyanto, R.; Anugro, A.P. Portable Device for Monitoring System in Network Culture Laboratory based on IoT. Food Agric. Sci. Polije Proc. Ser. 2021, 3, 119–127. [Google Scholar]
- Mohammed, M.; Alqahtani, N.; El-Shafie, H. Development and Evaluation of an Ultrasonic Humidifier to Control Humidity in a Cold Storage Room for Postharvest Quality Management of Dates. Foods 2021, 10, 949. [Google Scholar] [CrossRef]
- Mohammed, M.; El-Shafie, H.; Alqahtani, N. Design and Validation of Computerized Flight-Testing Systems with Controlled Atmosphere for Studying Flight Behavior of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier). Sensors 2021, 21, 2112. [Google Scholar] [CrossRef]
- Sagheer, A.; Mohammed, M.; Riad, K.; Alhajhoj, M. A cloud-based IoT platform for precision control of soilless greenhouse cultivation. Sensors 2021, 21, 223. [Google Scholar] [CrossRef]
- Elshibli, S.; Elshibli, E.M.; Korpelainen, H. Growth and photosynthetic CO2 responses of date palm plants to water availability. Emir. J. Food Agric. 2016, 28, 58–65. [Google Scholar] [CrossRef]
- Abul-Soad, A.A. Micropropagation of Date Palm Using Inflorescence Explants. In Date Palm Biotechnology; Jain, S., Al-Khayri, J., Johnson, D., Eds.; Springer: Dordrecht, The Netherland, 2011; pp. 91–117. [Google Scholar] [CrossRef]
- Ahmed Mohammed, M.E.; Refdan Alhajhoj, M.; Ali-Dinar, H.M.; Munir, M. Impact of a Novel Water-Saving Subsurface Irrigation System on Water Productivity, Photosynthetic Characteristics, Yield, and Fruit Quality of Date Palm under Arid Conditions. Agronomy 2020, 10, 1265. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of Date Fruit Quality Attributes during Cold Storage Based on Their Electrical Properties Using Artificial Neural Networks Models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef] [PubMed]
- ThingSpeak. LoT Analytics—ThingSpeak Internet of Things. Available online: https://thingspeak.com/ (accessed on 17 September 2022).
- Al-Mazroui, H.S.; Zaid, A.; Bouhouche, N. Morphological abnormalities in tissue culture-derived date palm (Phoenix dactylifera L.). In Proceedings of the Acta Horticulturae; III International Date Palm Conference, International Society for Horticultural Science: Abu Dhabi, United Arab Emirates, 2007; Volume 736, pp. 329–335. [Google Scholar]
- Ruffoni, B.; Savona, M. Physiological and biochemical analysis of growth abnormalities associated with plant tissue culture. Hortic. Environ. Biotechnol. 2013, 54, 191–205. [Google Scholar] [CrossRef]
- Lee, T.J.; Zobayed, S.; Firmani, F.; Park, E.J. A novel automated transplanting system for plant tissue culture. Biosyst. Eng. 2019, 181, 63–72. [Google Scholar] [CrossRef]
- Mahant, M.; Shukla, A.; Dixit, S.; Patel, D. Uses of ICT in Agriculture. Int. J. Adv. Comput. Res. 2012, 2, 46–49. [Google Scholar]
- Narinbaeva, G.; Menglikulov, B.; Siddikov, Z.; Bustonov, K.; Davlatov, S. Application of innovative technologies in agriculture of Uzbekistan. E3S Web Conf. 2021, 284, 02009. [Google Scholar] [CrossRef]
- Maene, L.; Debergh, P. Liquid medium additions to established tissue cultures to improve elongation and rooting in vivo. Plant. Cell. Tissue Organ. Cult. 1985, 5, 23–33. [Google Scholar] [CrossRef]
- Kozai, T.; Oki, H.; Fujiwara, K. Effect of CO2 enrichment and sucrose concentration under high photosynthetic photon fluxes on growth of tissue cultured cymbidium plantlet during the preparation stage in plant micropropagation in horticulture industries. In Plant Micropropagation in Horticultural Industries; Ducate, G., Jacobs, M., Simpson, A., Eds.; Arlon, University Press: Liege, Belgium, 1987; pp. 135–141. [Google Scholar]
- Kozai, T. High technology in protected cultivation from environmental control engineering point of view. In Horticulture in High Technology; Era, Special Lecture; Organizing Committee of International Symposium on High Technology in Protected Ccultivation: Tokyo, Japan, 1988; pp. 1–43. [Google Scholar]
- Harun, A.N.; Mohamed, N.; Ahmad, R.; Rahim, A.R.A.; Ani, N.N. Improved Internet of Things (IoT) monitoring system for growth optimization of Brassica chinensis. Comput. Electron. Agric. 2019, 164, 104836. [Google Scholar] [CrossRef]
- Yuan, S.; Tang, H.; Fu, L.J.; Tan, J.L.; Govindjee, G.; Guo, Y. An open Internet of Things (IoT)-based framework for feedback controlof photosynthetic activities. Photosynthetica 2022, 60, 79–87. [Google Scholar] [CrossRef]
- Mohamed, T.M.K.; Gao, J.; Tunio, M. Development and experiment of the intelligent control system for rhizosphere temperature of aeroponic lettuce via the Internet of Things. Int. J. Agric. Biol. Eng. 2022, 15, 225–233. [Google Scholar] [CrossRef]
- Rojas-Rishor, A.; Flores-Velazquez, J.; Villagran, E.; Aguilar-Rodríguez, C.E. Valuation of Climate Performance of a Low-Tech Greenhouse in Costa Rica. Processes 2022, 10, 693. [Google Scholar] [CrossRef]
- Chauhan, K.K.; Lunagaria, M.M. Interpolation of Microclimatic Parameters Over Capsicum Under Open Ventilated Greenhouse. Int. J. Econ. Plants 2022, 9, 095–100. [Google Scholar] [CrossRef]
- Muhl, Q.E.; Du Toit, E.S.; Robbertse, P.J. Moringa oleifera (Horseradish tree) leaf adaptation to temperature regimes. Int. J. Agric. Biol. 2011, 13, 1021–1024. [Google Scholar]
- Zhu, L.; Bloomfield, K.J.; Asao, S.; Tjoelker, M.G.; Egerton, J.J.G.; Hayes, L.; Weerasinghe, L.K.; Creek, D.; Griffin, K.L.; Hurry, V.; et al. Acclimation of leaf respiration temperature responses across thermally contrasting biomes. New Phytol. 2021, 229, 1312–1325. [Google Scholar] [CrossRef] [PubMed]
- Ryder, N.L.; Geiman, J.A.; Weckman, E.J. Hierarchical Temporal Memory Continuous Learning Algorithms for Fire State Determination. Fire Technol. 2021, 57, 2905–2928. [Google Scholar] [CrossRef]
- Talavera, C.; Contreras, F.; Espadas, F.; Fuentes, G.; Santamaría, J.M. Cultivating in vitro coconut palms (Cocos nucifera) under glasshouse conditions with natural light, improves in vitro photosynthesis nursery survival and growth. Plant. Cell. Tissue Organ. Cult. 2005, 83, 287–292. [Google Scholar] [CrossRef]
Sensors | Min-Max Values | n | Evaluation Criteria | LRE | ||
---|---|---|---|---|---|---|
R2 | MAPE | RMSE | ||||
DTS | 1–50 °C | 200 | 0.976 | 8.613 | 1.668 | y = 0.991x − 0.652 |
RHS | 10–90% | 200 | 0.966 | 10.462 | 4.375 | y = 1.014x + 2.078 |
pHS | 5–8 | 20 | 0.948 | 3.516 | 0.290 | y = 0.973x + 0.003 |
ATS | 1–50 °C | 200 | 0.994 | 4.303 | 0.834 | y = 0.997x − 0.326 |
VMCS | 22–40% | 20 | 0.968 | 1.991 | 0.894 | y = 1.006x − 0.075 |
AQS | 0.04–0.4% | 30 | 0.994 | 9.804 | 0.011 | y = 0.983x − 0.001 |
LIS | 10–890 µmol m−2 s−1 | 50 | 0.995 | 7.547 | 22.761 | y = 11.65x + 1.505 |
Parameters | Plant Height (cm) | Rhizome Size (mm) | Root Length (cm) | Root Number | Leaf Number | Total Leaf Area (cm2) |
---|---|---|---|---|---|---|
A. Environment | ||||||
E-VAS | 28.38 ± 1.99 a | 14.10 ± 0.93 a | 10.75 ± 1.23 a | 2.73 ± 0.48 a | 3.33 ± 0.30 a | 47.27 ± 3.56 a |
TGAS | 24.90 ± 2.18 b | 12.36 ± 1.08 b | 8.84 ± 0.95 b | 2.47 ± 0.33 a | 2.87 ± 0.18 b | 43.11 ± 3.58 b |
LSD(p ≤ 0.05) | 1.70 * | 0.87 * | 0.92 | 0.39 NS | 0.26 * | 2.95 * |
B. Plant age | ||||||
TTP | 13.58 ± 0.69 c | 6.11 ± 0.53 c | 5.51 ± 0.39 c | 1.00 ± 0.00 c | 2.00 ± 0.00 c | 25.36 ± 1.60 c |
6MOP | 23.82 ± 3.47 b | 12.93 ± 0.81 b | 9.23 ± 1.33 b | 2.00 ± 0.45 b | 2.90 ± 0.50 b | 39.89 ± 4.01 b |
12MOP | 42.52 ± 2.10 a | 20.65 ± 1.69 a | 14.64 ± 1.54 a | 4.80 ± 0.77 a | 4.40 ± 0.22 a | 70.33 ± 5.10 a |
LSD(p ≤ 0.05) | 2.08 * | 1.07 * | 1.12 * | 0.47 * | 0.31 * | 3.61 * |
C. Interaction | ||||||
E-VAS × TTP | 13.50 ± 0.69 e | 6.00± 0.70 d | 5.41 ± 0.32 e | 1.00 ± 0.01 c | 2.00 ± 0.01 e | 25.2 ± 2.05 e |
E-VAS × 6MOP | 26.60 ± 3.36 c | 13.26 ± 0.80 c | 10.50 ± 1.78 c | 2.20 ± 0.45 b | 3.20 ± 0.45 c | 42.89 ± 3.08 c |
E-VAS × 12MOP | 45.00 ± 1.93 a | 23.05 ± 1.31 a | 16.34 ± 1.59 a | 5.00 ± 1.00 a | 4.80 ± 0.45 a | 73.73 ± 5.55 a |
TGAS × TTP | 13.65 ± 0.70 e | 6.22 ± 0.36 d | 5.62 ± 0.46 e | 1.00 ± 0.01 c | 2.00 ± 0.01 e | 25.52 ± 1.15 e |
TGAS × 6MOP | 21.02 ± 3.57 d | 12.60 ± 0.81 c | 7.96 ± 0.88 d | 1.80 ± 0.45 b | 2.60 ± 0.55 d | 36.89 ± 4.94 d |
TGAS × 12MOP | 40.05 ± 2.27 b | 18.25 ± 2.07 b | 12.94 ± 1.49 b | 4.60 ± 0.55 a | 4.00 ± 0.01 b | 66.93 ± 4.65 b |
LSD(p ≤ 0.05) | 2.94 * | 1.51 * | 1.59 * | 0.67 * | 0.44 * | 5.10 * |
Parameters | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Root Fresh Weight (g) | Root Dry Weight (g) | Root Shoot FW Ratio | Root Shoot DW Ratio | Total Biomass (g) |
---|---|---|---|---|---|---|---|
A. Environment | |||||||
E-VAS | 6.75 ± 0.81 a | 2.28 ± 0.20 a | 0.65 ± 0.05 a | 0.29 ± 0.02 a | 0.09 ± 0.01 a | 0.12 ± 0.01 a | 7.57 ± 0.81 a |
TGAS | 5.35 ± 0.74 b | 1.91 ± 0.11 b | 0.54 ± 0.05 b | 0.19 ± 0.02 b | 0.09 ± 0.02 a | 0.10 ± 0.01 b | 6.02 ± 0.74 b |
LSD(p ≤ 0.05) | 0.64 * | 0.12 * | 0.05 * | 0.02 * | 0.01 NS | 0.01 * | 0.63 * |
B. Plant age | |||||||
TTP | 2.97 ± 0.62 c | 0.91 ± 0.13 c | 0.22 ± 0.01 c | 0.09 ± 0.00 c | 0.07 ± 0.01 b | 0.10 ± 0.02 b | 3.40 ± 0.62 c |
6MOP | 5.67 ± 0.25 b | 1.90 ± 0.10 b | 0.48 ± 0.07 b | 0.19 ± 0.01 b | 0.09 ± 0.01 b | 0.10 ± 0.01 b | 6.40 ± 0.25 b |
12MOP | 9.51 ± 1.46 a | 3.47 ± 0.23 a | 1.08 ± 0.07 a | 0.43 ± 0.04 a | 0.12 ± 0.02 a | 0.12 ± 0.01 a | 10.58 ± 1.46 a |
LSD(p ≤ 0.05) | 0.78 * | 0.14 * | 0.06 * | 0.02 * | 0.02 * | 0.01 * | 0.77 * |
C. Interaction | |||||||
E-VAS × TTP | 3.02 ± 0.61 e | 0.92 ± 0.15 e | 0.21 ± 0.01 e | 0.09 ± 0.00 e | 0.07 ± 0.01 c | 0.10 ± 0.02 b | 3.44 ± 0.61 e |
E-VAS × 6MOP | 6.44 ± 0.29 c | 2.22 ± 0.12 c | 0.56 ± 0.05 c | 0.24 ± 0.01 c | 0.09 ± 0.01 bc | 0.11 ± 0.01 b | 7.28 ± 0.28 c |
E-VAS × 12MOP | 10.81 ± 1.54 a | 3.70 ± 0.32 a | 1.17 ± 0.10 a | 0.53 ± 0.04 a | 0.11 ± 0.02 ab | 0.14 ± 0.01 a | 11.97 ± 1.52 a |
TGAS × TTP | 2.93 ± 0.62 e | 0.89 ± 0.11 e | 0.22 ± 0.02 e | 0.09 ± 0.00 e | 0.08 ± 0.02 c | 0.10 ± 0.01 b | 3.37 ± 0.63 e |
TGAS × 6MOP | 4.91 ± 0.22 d | 1.59 ± 0.07 d | 0.40 ± 0.09 d | 0.14 ± 0.01 d | 0.08 ± 0.02 c | 0.09 ± 0.01 c | 5.51 ± 0.22 d |
TGAS × 12MOP | 8.21 ± 1.39 b | 3.24 ± 0.14 b | 0.99 ± 0.03 b | 0.33 ± 0.04 b | 0.12 ± 0.02 a | 0.10 ± 0.02 b | 9.19 ± 1.39 b |
LSD(p ≤ 0.05) | 1.11 * | 0.20 * | 0.08 * | 0.03 * | 0.02 * | 0.02 * | 1.08 * |
Parameters | Chlorophyll (SPAD) | Photosynthesis (µmol m−2 s−1) | Stomatal Conductance (mmol m−2 s−1) | Transpiration Rate (mmol m−2 s−1) | Inter. CO2 Conc. (µmol mol−1) |
---|---|---|---|---|---|
A. Environment | |||||
E-VAS | 46.05 ± 2.90 a | 9.30 ± 0.81 a | 17.85 ± 1.11 a | 0.52 ± 0.02 a | 165.14 ± 23.36 a |
TGAS | 43.54 ± 2.16 b | 8.87 ± 0.67 a | 17.38 ± 0.97 a | 0.51 ± 0.03 a | 174.54 ± 12.89 a |
LSD(p ≤ 0.05) | 1.97 * | 0.59 NS | 0.75 NS | 0.02 NS | 12.89 NS |
B. Plant age | |||||
TTP | 25.28 ± 2.18 c | 7.34 ± 0.77 c | 15.98 ± 0.88 c | 0.50 ± 0.02 b | 211.86 ± 15.47 a |
6MOP | 51.44 ± 2.75 b | 9.24 ± 0.43 b | 17.66 ± 0.96 b | 0.51 ± 0.03 b | 159.28 ± 20.51 b |
12MOP | 57.66 ± 2.66 a | 10.67 ± 1.03 a | 19.20 ± 1.28 a | 0.55 ± 0.03 a | 138.38 ± 18.40 c |
LSD(p ≤ 0.05) | 2.42 * | 0.72 * | 0.92 * | 0.03 * | 15.79 * |
C. Interaction | |||||
E-VAS × TTP | 25.24 ± 2.86 d | 7.34 ± 0.69 d | 15.99 ± 0.76 d | 0.50 ± 0.02 c | 212.16 ± 16.86 a |
E-VAS × 6MOP | 52.44 ± 3.05 bc | 9.50 ± 0.57 bc | 18.06 ± 1.12 bc | 0.52 ± 0.03 ac | 152.28 ± 26.39 bc |
E-VAS × 12MOP | 60.46 ± 2.78 a | 11.07 ± 1.18 a | 19.50 ± 1.44 a | 0.55 ± 0.03 a | 130.98 ± 26.84 c |
TGAS × TTP | 25.32 ± 1.50 d | 7.35 ± 0.85 d | 15.98 ± 1.00 d | 0.50 ± 0.03 c | 211.56 ± 14.08 a |
TGAS × 6MOP | 50.44 ± 2.44 c | 8.99 ± 0.29 c | 17.26 ± 0.79 cd | 0.51 ± 0.03 bc | 166.28 ± 14.64 b |
TGAS × 12MOP | 54.86± 2.54 b | 10.27 ± 0.88 ab | 18.90 ± 1.13 ab | 0.54 ± 0.02 ab | 145.78 ± 9.95 bc |
LSD(p ≤ 0.05) | 3.42 * | 1.02 * | 1.29 * | 0.04 * | 22.33 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, M.; Munir, M.; Ghazzawy, H.S. Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets. Agronomy 2023, 13, 78. https://doi.org/10.3390/agronomy13010078
Mohammed M, Munir M, Ghazzawy HS. Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets. Agronomy. 2023; 13(1):78. https://doi.org/10.3390/agronomy13010078
Chicago/Turabian StyleMohammed, Maged, Muhammad Munir, and Hesham S. Ghazzawy. 2023. "Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets" Agronomy 13, no. 1: 78. https://doi.org/10.3390/agronomy13010078
APA StyleMohammed, M., Munir, M., & Ghazzawy, H. S. (2023). Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets. Agronomy, 13(1), 78. https://doi.org/10.3390/agronomy13010078