Back EMF Waveform Comparison and Analysis of Two Kinds of Electrical Machines
Abstract
:1. Introduction
2. Back EMF Analysis of FSPM Machine and VFMPM Machine
2.1. Operation Principle Analysis
2.2. Back EMF Waveform Analysis of Machine with Straight Slot and Skewed Slot
2.3. Magnetization and Demagnetization Analysis of LNG52
3. Simulation of FSPM Machine and VFMPM Machine
3.1. Back EMF Waveforms of FSPM Machine with Straight Slot and Skewed Slot
3.2. Back EMF Waveforms of VFMPM Machine with Skewed Slot
4. Experimental Validation
5. Discussions of the Maximum Back EMF Waveform Amplitude Difference between FSPM Machine and VFMPM Machine
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, R.; Lu, M. Reduction of Thrust Force Ripple of High Temperature Superconducting Linear Flux-Switching Motors using Asymmetry Mover Structure. IEEE Trans. Appl. Supercond. 2021, 31, 5200905. [Google Scholar] [CrossRef]
- Chen, H.; El-Refaie, A.M.; Demerdash, N.A.O. Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges—Part I: Fundamentals and Topologies. IEEE Trans. Energy Convers. 2020, 35, 684–698. [Google Scholar] [CrossRef]
- Huang, W.; Hua, W.; Yin, F.; Yu, F.; Qi, J. Model Predictive Thrust Force Control of a Linear Flux-Switching Permanent Magnet Machine With Voltage Vectors Selection and Synthesis. IEEE Trans. Ind. Electron. 2018, 66, 4956–4967. [Google Scholar] [CrossRef]
- Ullah, W.; Khan, F.; Sulaiman, E.; Umair, M.; Ullah, N.; Khan, B. Analytical validation of novel consequent pole E-core stator permanent magnet flux switching machine. IET Electr. Power Appl. 2020, 14, 789–796. [Google Scholar] [CrossRef]
- Kim, J.H.; Li, Y.; Sarlioglu, B. Sizing, Analysis, and Verification of Axial Flux-Switching Permanent Magnet Machine. IEEE Trans. Ind. Appl. 2019, 55, 3512–3521. [Google Scholar] [CrossRef]
- Li, W.; Chen, M. Reliability Analysis and Evaluation for Flux-Switching Permanent Magnet Machine. IEEE Trans. Ind. Electron. 2019, 66, 1760–1769. [Google Scholar] [CrossRef]
- Ding, Q.; Ni, T.; Wang, X.; Deng, Z. Optimal Winding Configuration of Bearingless Flux-Switching Permanent Magnet Motor With Stacked Structure. IEEE Trans. Energy Convers. 2017, 33, 78–86. [Google Scholar] [CrossRef]
- Su, P.; Hua, W.; Wu, Z.; Chen, Z.; Zhang, G.; Cheng, M. Comprehensive Comparison of Rotor-Permanent Magnet and Stator-Permanent Magnet Flux-Switching Machines. IEEE Trans. Ind. Electron. 2018, 66, 5862–5871. [Google Scholar] [CrossRef]
- Awah, C.C. Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine. Electr. Eng. 2021, 103, 1647–1660. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, L.; Zheng, W.; Zhou, Q.; Li, T. Magnetic Circuit Modeling of Dual-Armature Flux-Switching Permanent Magnet Machine. IEEE Trans. Magn. 2021, 57, 8100513. [Google Scholar] [CrossRef]
- Yu, J.; Liu, C. DC-Biased Operation of a Double-Stator Hybrid Flux Switching Permanent-Magnet Machine. IEEE Trans. Magn. 2020, 56, 7505106. [Google Scholar] [CrossRef]
- Fard, J.R.; Ardebili, M. Design and Control of a Novel Yokeless Axial Flux-Switching Permanent-Magnet Motor. IEEE Trans. Energy Convers. 2018, 34, 631–642. [Google Scholar] [CrossRef]
- Lyu, S.; Yang, H.; Lin, H.; Zhu, Z.Q.; Zheng, H.; Pan, Z. Influence of Design Parameters on On-Load Demagnetization Characteristics of Switched Flux Hybrid Magnet Memory Machine. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Yang, H.; Lyu, S.; Lin, H.; Zhu, Z.Q.; Peng, F.; Zhuang, E.; Fang, S.; Huang, Y. Stepwise Magnetization Control Strategy for DC-Magnetized Memory Machine. IEEE Trans. Ind. Electron. 2018, 66, 4273–4285. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Lin, M.; Li, N.; Hao, L. Magnetization State Regulation Characteristic Study of Series Hybrid Permanent Magnet Axial Field Flux-Switching Memory Machine. IEEE Trans. Appl. Supercond. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Guo, L.; Geng, Q.; Chen, W.; Wang, H. Optimal design for low iron-loss variable flux permanent magnet memory machine. Int. J. Appl. Electromagn. Mech. 2020, 63, 299–313. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Hua, H.; Pride, A.; Deodhar, R.; Sasaki, T. Analysis and Reduction of Unipolar Leakage Flux in Series Hybrid Permanent-Magnet Variable Flux Memory Machines. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, D.; Mo, L.; Chen, Y.; Quan, L. Multiobjective Optimization Design of a Double-Rotor Flux-Switching Permanent Magnet Machine Considering Multimode Operation. IEEE Trans. Ind. Electron. 2019, 66, 641–653. [Google Scholar] [CrossRef]
- Chen, Z.; Cui, Y. Numerical Simulation and Experimental Validation of a Flux Switching Permanent Magnet Memory Machine. IEEE Access 2020, 8, 194904–194911. [Google Scholar] [CrossRef]
- Zhu, X.; Hua, W. Back-EMF waveform optimization of flux-reversal permanent magnet machines. AIP Adv. 2017, 7, 056613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hua, W.; Zhang, G. Analysis and optimization of back-EMF waveform of a novel outer-rotor-permanent-magnet flux-switching machine. In Proceedings of the 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, FL, USA, 13–16 November 2016. [Google Scholar] [CrossRef]
- Roekke, A.; Nilssen, R. Analytical Calculation of Yoke Flux Patterns in Fractional-Slot Permanent Magnet Machines. IEEE Trans. Magn. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Arabul, F.K.; Senol, I.; Oner, Y. Performance Analysis of Axial-Flux Induction Motor with Skewed Rotor. Energies 2020, 13, 4991. [Google Scholar] [CrossRef]
- Xu, W.; Bao, X.; Xu, S.; Li, Z. Design of Dual Skewed Rotor in Cage Induction Motor for Reducing Synchronous Parasitic Torque. J. Magn. 2019, 24, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Fu, X.; Lin, M.; Li, N.; Li, H. Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines. J. Power Electron. 2019, 19, 158–167. [Google Scholar]
- Hu, Y.; Chen, B.; Xiao, Y.; Li, X.; Zhang, Z.; Shi, J.; Li, L. Research and Design on Reducing the Difficulty of Magnetization of a Hybrid Permanent Magnet Memory Motor. IEEE Trans. Energy Convers. 2020, 35, 1. [Google Scholar] [CrossRef]
- Reigosa, D.; Fernández, D.; Park, Y.; Diez, A.B.; Lee, S.B.; Briz, F. Detection of Demagnetization in Permanent Magnet Synchronous Machines Using Hall-Effect Sensors. IEEE Trans. Ind. Appl. 2018, 54, 3338–3349. [Google Scholar] [CrossRef]
Descriptions | FSPM | VFMPM | |
---|---|---|---|
Stator | Outer radius | 65.5 mm | 79.2 mm |
Inner radius | 35 mm | 35 mm | |
Tooth width | 8.22 deg | 8.22 deg | |
Axial length | 75 mm | 75 mm | |
Quantity of slots | 12 | 12 | |
Materials (iron core) | DW360_50 | DW360_50 | |
Rotor | Outer radius | 34.5 mm | 34.5 mm |
Tooth width | 10 deg | 10 deg | |
Axial length | 75 mm | 75 mm | |
Poles | 14 | 14 | |
Materials (iron core) | DW360_50 | DW360_50 | |
NdFeB35 | Thick | 3.5 mm | 3.5 mm |
Length | 15 mm | 15 mm | |
Magnet coercive force | 625 kA/m | 625 kA/m | |
LNG52 | Length | None | 12 mm |
Thick | None | 5 mm | |
Magnet coercive force | None | 56 kA/m | |
Others | Air gap wide | 0.5 mm | 0.5 mm |
Turns of armature winding per phase | 140 | 140 | |
Turns of field regulating winding per LNG52 | None | 60 | |
Maximum current of field regulating winding | None | 15 A | |
DC-link voltage | 220 A | 220 A | |
Rated current | 5 A rms | 5 A rms | |
Resistance per phase | 0.9 Ω | 0.9 Ω | |
Rated power (approximate value) | 1 kW | 1 kW | |
Rated speed | 3000 rpm | 3000 rpm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Faizan, M.; Chen, Z. Back EMF Waveform Comparison and Analysis of Two Kinds of Electrical Machines. World Electr. Veh. J. 2021, 12, 149. https://doi.org/10.3390/wevj12030149
Cui Y, Faizan M, Chen Z. Back EMF Waveform Comparison and Analysis of Two Kinds of Electrical Machines. World Electric Vehicle Journal. 2021; 12(3):149. https://doi.org/10.3390/wevj12030149
Chicago/Turabian StyleCui, Yingjie, Munawar Faizan, and Zhongxian Chen. 2021. "Back EMF Waveform Comparison and Analysis of Two Kinds of Electrical Machines" World Electric Vehicle Journal 12, no. 3: 149. https://doi.org/10.3390/wevj12030149
APA StyleCui, Y., Faizan, M., & Chen, Z. (2021). Back EMF Waveform Comparison and Analysis of Two Kinds of Electrical Machines. World Electric Vehicle Journal, 12(3), 149. https://doi.org/10.3390/wevj12030149