Identification Method and Quantification Analysis of the Critical Aging Speed Interval for Battery Knee Points
Abstract
:1. Introduction
2. Cycle Life Test and Battery Aging Datasets
3. Identification Method for Critical Aging Speed Range and Knee Points
3.1. Knee Point Characteristics Analysis
3.2. Knee Point and Critical Aging Speed Interval Indentification Method Based on the Knee Point Characteristics
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Attia, P.M.; Bills, A.; Brosa Planella, F.; Dechent, P.; Dos Reis, G.; Dubarry, M.; Gasper, P.; Gilchrist, R.; Greenbank, S.; Howey, D.; et al. Review—“Knees” in Lithium-Ion Battery Aging Trajectories. J. Electrochem. Soc. 2022, 169, 60517. [Google Scholar] [CrossRef]
- Atalay, S.; Sheikh, M.; Mariani, A.; Merla, Y.; Bower, E.; Widanage, W.D. Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction. J. Power Sources 2020, 478, 229026. [Google Scholar] [CrossRef]
- Sohn, S.; Byun, H.; Lee, J.H. CNN-based Online Diagnosis of Knee-point in Li-ion Battery Capacity Fade Curve. IFAC-PapersOnLine 2022, 55, 181–185. [Google Scholar] [CrossRef]
- Yu, G.; Jin, Y.; Olhofer, M. A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships. IEEE T Evol. Comput. 2021, 25, 145–158. [Google Scholar] [CrossRef]
- Liu, K.; Tang, X.; Teodorescu, R.; Gao, F.; Meng, J. Future Ageing Trajectory Prediction for Lithium-Ion Battery Considering the Knee Point Effect. IEEE T Energy Conver 2022, 37, 1282–1291. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium-ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Sun, S.; Guan, T.; Cheng, X.; Zuo, P.; Gao, Y.; Du, C.; Yin, G. Accelerated aging and degradation mechanism of LiFePO4/graphite batteries cycled at high discharge rates. RSC Adv. 2018, 8, 25695–25703. [Google Scholar] [CrossRef] [PubMed]
- Diao, W.; Kim, J.; Azarian, M.H.; Pecht, M. Degradation modes and mechanisms analysis of lithium-ion batteries with knee points. Electrochim. Acta 2022, 431, 141143. [Google Scholar] [CrossRef]
- Yang, X.; Leng, Y.; Zhang, G.; Ge, S.; Wang, C. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging. J. Power Sources 2017, 360, 28–40. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, S.; Jiang, J.; Zhang, C.; Zhang, W.; Zhou, X. The Mechanism and Characterization of Accelerated Capacity Deterioration for Lithium-Ion Battery with Li(NiMnCo) O2 Cathode. J. Electrochem. Soc. 2019, 166, A1623–A1635. [Google Scholar] [CrossRef]
- Sohn, S.; Byun, H.; Lee, J.H. Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation. Appl. Energy 2022, 328, 120204. [Google Scholar] [CrossRef]
- Saxena, S.; Ward, L.; Kubal, J.; Lu, W.; Babinec, S.; Paulson, N. A convolutional neural network model for battery capacity fade curve prediction using early life data. J. Power Sources 2022, 542, 231736. [Google Scholar] [CrossRef]
- Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U. One-shot battery degradation trajectory prediction with deep learning. J. Power Sources 2021, 506, 230024. [Google Scholar] [CrossRef]
- Greenbank, S.; Howey, D. Automated Feature Extraction and Selection for Data-Driven Models of Rapid Battery Capacity Fade and End of Life. IEEE T Ind. Inf. 2022, 18, 2965–2973. [Google Scholar] [CrossRef]
- Fermín-Cueto, P.; McTurk, E.; Allerhand, M.; Medina-Lopez, E.; Anjos, M.F.; Sylvester, J.; Dos Reis, G. Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells. Energy AI 2020, 1, 100006. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Gao, Y.; Wang, F.; Mu, B.; Zhang, W. Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method. Appl. Energy 2019, 256, 113841. [Google Scholar] [CrossRef]
- Diao, W.; Saxena, S.; Han, B.; Pecht, M. Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells. Energies 2019, 12, 2910. [Google Scholar] [CrossRef]
- Haris, M.; Hasan, M.N.; Qin, S. Degradation Curve Prediction of Lithium-Ion Batteries Based on Knee Point Detection Algorithm and Convolutional Neural Network. IEEE T Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, C.; Wang, L.Y.; Zhang, L.; Zhou, X. Early Diagnosis of Accelerated Aging for Lithium-Ion Batteries with an Integrated Framework of Aging Mechanisms and Data-Driven Methods. IEEE Trans. Transp. Electrif. 2022, 8, 4722–4742. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
Item | NCM | LFP | LiCoO2 |
---|---|---|---|
Cathode material | Li[NixCoyMn1−x−y]O2 | LiFePO4 | LiCoO2 |
Anode material | Graphite | Graphite | Graphite |
Nominal capacity | 114 Ah, 36 Ah | 1.1 Ah | 5 Ah |
Charging cut-off voltage | 4.25 V (114 Ah) 4.15 V (36 Ah) | 3.6 V | 4.48 V |
Discharging cut-off voltage | 2.8 V (114 Ah) 2.5 V (36 Ah) | 2 V | 3 V |
NCM Battery Number | Temperature | Discharge Current Rate |
---|---|---|
11, 12 | 25 °C | 0.5 C |
20, 21, 22, 23, 24 | 25 °C | 1 C |
25, 26 | 25 °C | 1.5 C |
27 | 25 °C | 2 C |
28 | 10 °C | 1.5 C |
29, 30 | 35 °C | 1 C |
31, 32, 33 | 35 °C | 1.5 C |
34, 35, 36 | 45 °C | 1 C |
Item | Proposed Method | Bacon Watts | Kneedle | Bisector | Tangent Ratio |
---|---|---|---|---|---|
Method category | Knee-point- characteristic-based | Model-based | Model-based | Model-based | Model-based |
Consider critical aging speed | Consider | Not | Not | Not | Not |
Data requirements for real application | Few | Large | Large | Large | Large |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Zhang, C.; Zhang, L.; Zhang, W.; Xu, Z. Identification Method and Quantification Analysis of the Critical Aging Speed Interval for Battery Knee Points. World Electr. Veh. J. 2023, 14, 346. https://doi.org/10.3390/wevj14120346
Jia X, Zhang C, Zhang L, Zhang W, Xu Z. Identification Method and Quantification Analysis of the Critical Aging Speed Interval for Battery Knee Points. World Electric Vehicle Journal. 2023; 14(12):346. https://doi.org/10.3390/wevj14120346
Chicago/Turabian StyleJia, Xinyu, Caiping Zhang, Linjing Zhang, Weige Zhang, and Zhongling Xu. 2023. "Identification Method and Quantification Analysis of the Critical Aging Speed Interval for Battery Knee Points" World Electric Vehicle Journal 14, no. 12: 346. https://doi.org/10.3390/wevj14120346
APA StyleJia, X., Zhang, C., Zhang, L., Zhang, W., & Xu, Z. (2023). Identification Method and Quantification Analysis of the Critical Aging Speed Interval for Battery Knee Points. World Electric Vehicle Journal, 14(12), 346. https://doi.org/10.3390/wevj14120346