The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment
Abstract
:1. Introduction
2. Discussion
2.1. Safety
- perception errors (e.g., wrong data from the sensors, misinterpretation of them);
- decision errors (e.g., generation of false alarm, missing information);
- action errors (e.g., wrong actuation by the actuators, bad command).
2.2. Economy
- The automotive industry will see a gradual but substantial reduction in the number of vehicles if shared AVs gather momentum, but the maintenance and replacement of AVs will be more frequent due to their higher usage.
- The insurance sector will experience an increase due to the augmented price for insuring AVs in the first period, then a decrease due to a reduction in the total vehicles and accidents.
- Professional drivers will provide support in the case of emergency failures in the first stage of AV diffusion, but they might lose their jobs when the technology reaches full maturity.
- Fossil fuels will significantly diminish due to the transition to cleaner energy sources.
2.3. Society
- The first aspect is gender: she points out that males and females have different perceptions, with the former being more open to new technology and considering it less risky compared to the latter.
- The second aspect is age: it is interesting to note that it has a different impact on males and females, leading older males to be more doubtful and older females to be more open.
- The third factor is the cultural influence, even if this factor is less susceptible to gender and age.
2.4. Environment
3. Conclusions
4. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AV | Autonomous Vehicle |
VTTS | Value of Travel-Time Savings |
V2I | Vehicle-to-Infrastructure |
V2V | Vehicle-to-Vehicle |
V2N | Vehicle-to-Network |
V2P | Vehicle-to-Pedestrian |
CV2X | Cellular Vehicle-to-Everything |
NHTSA | National Highway Traffic Safety Administration |
LiDAR | Light Detection and Ranging |
GPS | Global Position System |
GDPR | General Data Protection Regulation |
PETs | Privacy Enhancing Technologies |
LINDDUN | Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of information, Unawareness, Non-compliance |
IMU | Inertial Measurement Unit |
References
- Cowan Schwartz, R. The “industrial revolution” in the home: Household technology and social change in the 20th century. Domest. Ideol. Domest. Work. 2012, 17, 375–397. [Google Scholar] [CrossRef]
- Weil, M.M.; Rosen, L.D. The psychological impact of technology from a global perspective: A study of technological sophistication and technophobia in university students from twenty-three countries. Comput. Hum. Behav. 1995, 11, 95–133. [Google Scholar] [CrossRef]
- Shuai, S.; Ma, X.; Li, Y.; Qi, Y.; Xu, H. Recent Progress in Automotive Gasoline Direct Injection Engine Technology. Automot. Innov. 2018, 1, 95–113. [Google Scholar] [CrossRef]
- Hirata, H. Recent Research Progress in Automotive Exhaust Gas Purification Catalyst. Catal. Surv. Asia 2014, 18, 128–133. [Google Scholar] [CrossRef]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef]
- Clark, B.; Chatterjee, K.; Martin, A.; Davis, A. How commuting affects subjective wellbeing. Transportation 2020, 47, 2777–2805. [Google Scholar] [CrossRef]
- Coelingh, E.; Eidehall, A.; Bengtsson, M. Collision warning with full auto brake and pedestrian detection—A practical example of automatic emergency braking. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 155–160. [Google Scholar] [CrossRef]
- Cerone, V.; Milanese, M.; Regruto, D. Combined automatic lane-keeping and driver’s maneuvers through a closed loop control strategy. IFAC Proc. Vol. (IFAC-PapersOnline) 2007, 5, 159–166. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wong, Y.D.; Ma, F.; Wang, X. The determinants of public acceptance of autonomous vehicles: An innovation diffusion perspective. J. Clean. Prod. 2020, 270, 121904. [Google Scholar] [CrossRef]
- Khoury, J.; Amine, K.; Abi Saad, R. An Initial Investigation of the Effects of a Fully Automated Vehicle Fleet on Geometric Design. J. Adv. Transp. 2019, 2019, 6126408. [Google Scholar] [CrossRef]
- Dey, U.K.; Akl, R.; Chataut, R. Performance Improvement in Cellular V2X (CV2X) by Using Low Density Parity Check (LDPC) Code. In Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2022, New York, NY, USA, 26–29 October 2022; pp. 296–302. [Google Scholar] [CrossRef]
- Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey; Technical Report March, National Highway Traffic Safety Administration, US Department of Transportation: Washington, DC, USA, 2018.
- Ilkova, V.; Ilka, A. Legal aspects of autonomous vehicles—An overview. In Proceedings of the 2017 21st International Conference on Process Control, PC 2017, Strbske Pleso, Slovakia, 6–9 June 2017; pp. 428–433. [Google Scholar] [CrossRef]
- Bertoncello, M.; Wee, D. Ten Ways Autonomous Driving Could Redefine the Automotive World; Mckinsey&Company: Chicago, IL, USA, 2015; pp. 1–6. [Google Scholar]
- The Report of the High Level Group on the Competitiveness and Sustainable Growth of the Automotive Industry in the European Union. In Gear 2030; European Union: Brussels, Belgium, 2017; pp. 1–74.
- Zhao, X.; Wang, Z.; Xu, Z.; Wang, Y.; Li, X.; Qu, X. Field experiments on longitudinal characteristics of human driver behavior following an autonomous vehicle. Transp. Res. Part C Emerg. Technol. 2020, 114, 205–224. [Google Scholar] [CrossRef]
- Dahl, A.; Fléchon, S.; Peter, S.; Walther, C. Microscopic Simulation and Impact Assessment of the coexistence of automated and conventional vehicles in european cities. In Proceedings of the European Transport Conference, Dublin, Ireland, 10–12 October 2018. [Google Scholar]
- Sukennik, P.; Lohmiller, J.; Schlaich, J. Simulation-Based Forecasting the Impacts of Autonomous Driving. Transp. Res. Procedia 2018, 6–8. [Google Scholar]
- Kocic, J.; Jovicic, N.; Drndarevic, V. Sensors and Sensor Fusion in Autonomous Vehicles. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 420–425. [Google Scholar] [CrossRef]
- Son, S.o.; Jeong, J.; Park, S.; Park, J. Effects of advanced warning information systems on secondary crash risk under connected vehicle environment. Accid. Anal. Prev. 2020, 148, 105786. [Google Scholar] [CrossRef] [PubMed]
- Bertogna, M.; Burgio, P.; Cabri, G.; Capodieci, N. Adaptive coordination in autonomous driving: Motivations and perspectives. In Proceedings of the 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Poznan, Poland, 21–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 15–17. [Google Scholar]
- Mariani, S.; Cabri, G.; Zambonelli, F. Coordination of autonomous vehicles: Taxonomy and survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–33. [Google Scholar] [CrossRef]
- Van der Hoek, W.; Wooldridge, M. Multi-agent systems. Found. Artif. Intell. 2008, 3, 887–928. [Google Scholar]
- Liang, J.; Li, Y.; Yin, G.; Xu, L.; Lu, Y.; Feng, J.; Shen, T.; Cai, G. A MAS-based hierarchical architecture for the cooperation control of connected and automated vehicles. IEEE Trans. Veh. Technol. 2022, 72, 1559–1573. [Google Scholar] [CrossRef]
- Klaver, F. The economic and social impacts of fully autonomous vehicles. Retrieved Febr. 2020, 18, 2022. [Google Scholar]
- Craigen, D.; Diakun-Thibault, N.; Purse, R. Defining cybersecurity. Technol. Innov. Manag. Rev. 2014, 4, 13. [Google Scholar] [CrossRef]
- Sun, X.; Yu, F.R.; Zhang, P. A survey on cyber-security of connected and autonomous vehicles (CAVs). IEEE Trans. Intell. Transp. Syst. 2021, 23, 6240–6259. [Google Scholar] [CrossRef]
- Yağdereli, E.; Gemci, C.; Aktaş, A.Z. A study on cyber-security of autonomous and unmanned vehicles. J. Def. Model. Simul. 2015, 12, 369–381. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.S.; Jeong, S.; Park, J.H.; Kim, H.K. Cybersecurity for autonomous vehicles: Review of attacks and defense. Comput. Secur. 2021, 103, 102150. [Google Scholar] [CrossRef]
- Bruce-Boye, C.; Eisenbarth, T.; Krebbel, M.; Fechner, A.; Luyken, R.; David, T. Autonomous Driving and Cybersecurity by Design. In MIMO Communications-Fundamental Theory, Propagation Channels, and Antenna Systems; IntechOpen: London, UK, 2023. [Google Scholar]
- Malayjerdi, M.; Roberts, A.; Maennel, O.m.; Malayjerdi, E. Combined Safety and Cybersecurity Testing Methodology for Autonomous Driving Algorithms. In Proceedings of the 6th ACM Computer Science in Cars Symposium, Ingolstadt, Germany, 8 December 2022; pp. 1–10. [Google Scholar]
- Wang, J.; Zhang, L.; Huang, Y.; Zhao, J. Safety of autonomous vehicles. J. Adv. Transp. 2020, 2020, 8867757. [Google Scholar] [CrossRef]
- Mariani, R. An overview of autonomous vehicles safety. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 6A. 1-1–6A. 1-6. [Google Scholar]
- Berk, M.; Schubert, O.; Kroll, H.M.; Buschardt, B.; Straub, D. Exploiting Redundancy for Reliability Analysis of Sensor Perception in Automated Driving Vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 21, 5073–5085. [Google Scholar] [CrossRef]
- Makridis, M.; Mattas, K.; Ciuffo, B. Response Time and Time Headway of an Adaptive Cruise Control. An Empirical Characterization and Potential Impacts on Road Capacity. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1677–1686. [Google Scholar] [CrossRef]
- Li, X. Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method. Transp. Res. Part B Methodol. 2022, 166, 1–18. [Google Scholar] [CrossRef]
- Kolarova, V.; Steck, F.; Bahamonde-Birke, F.J. Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences. Transp. Res. Part A Policy Pract. 2019, 129, 155–169. [Google Scholar] [CrossRef]
- Othman, K. Impact of autonomous vehicles on the physical infrastructure: Changes and challenges. Designs 2021, 5, 40. [Google Scholar] [CrossRef]
- Cabri, G.; Gherardini, L.; Montangero, M.; Muzzini, F. About auction strategies for intersection management when human-driven and autonomous vehicles coexist. Multimed. Tools Appl. 2021, 80, 15921–15936. [Google Scholar] [CrossRef]
- Gherardini, L.; Cabri, G.; Montangero, M. Decentralized approaches for autonomous vehicles coordination. In Internet Technology Letters; Wiley Online Library: Hoboken, NJ, USA, 2022; p. e398. [Google Scholar] [CrossRef]
- Cabri, G.; Crisci, S.; Montangero, M. Traffic Flow Modelling When Autonomous Vehicles Coexist with Human Driven Vehicles: Perspectives and Challenges. Stud. Comput. Intell. 2022, 1026, 169–177. [Google Scholar] [CrossRef]
- Martínez-Díaz, M.; Soriguera, F.; Pérez, I. Autonomous driving: A bird’s eye view. IET Intell. Transp. Syst. 2019, 13, 563–579. [Google Scholar] [CrossRef]
- Thomas, E.; McCrudden, C.; Wharton, Z.; Behera, A. Perception of autonomous vehicles by the modern society: A survey. IET Intell. Transp. Syst. 2020, 14, 1228–1239. [Google Scholar] [CrossRef]
- Koo, J.; Kwac, J.; Ju, W.; Steinert, M.; Leifer, L.; Nass, C. Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance. Int. J. Interact. Des. Manuf. 2015, 9, 269–275. [Google Scholar] [CrossRef]
- Alonso, E.; Arpón, C.; González, M.; Fernández, R.Á.; Nieto, M. Economic impact of autonomous vehicles in Spain. Eur. Transp. Res. Rev. 2020, 12, 59. [Google Scholar] [CrossRef]
- Wåseth, H.; Safi, J.; Nielsen, T.; Bayr, U.; Johansen, N.; Fjeldaas, E.; Christensen, T. Embedding sustainability into the design of street lighting. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Stockholm, Sweden, 4–6 December 2023; IOP Publishing: Bristol, UK, 2024; Volume 1320, p. 012016. [Google Scholar]
- Walters, J.G.; Meng, X.; Xu, C.; Jing, H.J.; Marsh, S. Rural positioning challenges for connected and autonomous vehicles. In Proceedings of the 2019 International Technical Meeting of The Institute of Navigation, Reston, VA, USA, 28–31 January 2019; pp. 828–842. [Google Scholar]
- Vujić, M.; Gregurić, M.; Dedić, L.; Nečoska, D.K. The Impact of Unconditional Priority for Escorted Vehicles in Traffic Networks on Sustainable Urban Mobility. Sustainability 2024, 16, 151. [Google Scholar] [CrossRef]
- Khan, J.; Wang, L.; Jacobs, E.; Talebian, A.; Santo, C.; Golias, M.; Astorne-figari, C.; Khan, J.; Wang, L.; Jacobs, E.; et al. Smart Cities Connected and Autonomous Vehicles Readiness Index to cite this version: HAL Id: hal-02291446 Smart Cities Connected and Autonomous Vehicles Readiness Index. ACM SCC 2019, 1–8. [Google Scholar] [CrossRef]
- Narasipuram, R.P.; Mopidevi, S. A technological overview & design considerations for developing electric vehicle charging stations. J. Energy Storage 2021, 43, 103225. [Google Scholar] [CrossRef]
- Chen, Z.; He, F.; Yin, Y. Optimal deployment of charging lanes for electric vehicles in transportation networks. Transp. Res. Part B Methodol. 2016, 91, 344–365. [Google Scholar] [CrossRef]
- Saad, M.M.; Khan, M.T.R.; Shah, S.H.A.; Kim, D. Advancements in Vehicular Communication Technologies: C-V2X and NR-V2X Comparison. IEEE Commun. Mag. 2021, 59, 107–113. [Google Scholar] [CrossRef]
- Gambelli, M.; Mariani, S.; Cabri, G.; Zambonelli, F. Combining coordination strategies for autonomous vehicles in intersections networks. In International Symposium on Intelligent and Distributed Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 147–157. [Google Scholar]
- Anderson, J.; Nidhi, K.; Stanley, K.; Sorensen, P.; Samaras, C.; Oluwatola, O. Autonomous Vehicle Technology: A Guide for Policymakers; RAND Corporation research report series; RR-443-1-RC; RAND Corporation: Santa Monica, CA, USA, 2014. [Google Scholar]
- Gavanas, N. Autonomous Road Vehicles: Challenges for Urban Planning in European Cities. Urban Sci. 2019, 3, 61. [Google Scholar] [CrossRef]
- Pucher, J.; Schausberger, W.; Werneck, T.; Committee of the Regions; Metis GmbH. State of Play of Connected and Automated Driving and Future Challenges and Opportunities for Europe’s Cities and Regions. 2018. Available online: https://op.europa.eu/en/publication-detail/-/publication/82a26577-e70a-11e8-b690-01aa75ed71a1/language-en (accessed on 12 December 2024).
- Kim, T.J. Automated autonomous vehicles: Prospects and impacts on society. J. Transp. Technol. 2018, 8, 137. [Google Scholar] [CrossRef]
- Pettigrew, S.; Fritschi, L.; Norman, R. The potential implications of autonomous vehicles in and around the workplace. Int. J. Environ. Res. Public Health 2018, 15, 1876. [Google Scholar] [CrossRef]
- Nikitas, A.; Vitel, A.E.; Cotet, C. Autonomous vehicles and employment: An urban futures revolution or catastrophe? Cities 2021, 114, 103203. [Google Scholar] [CrossRef]
- Fasenfest, D.; Jacobs, J. An Anatomy of Change and Transition: The Automobile Industry of Southeast Michigan. Small Bus. Econ. 2003, 21, 153–172. [Google Scholar] [CrossRef]
- Van Fossen, J.A.; Chang, C.H.; Ford, J.K.; Mack, E.A.; Cotten, S.R. Identifying alternative occupations for truck drivers displaced due to autonomous vehicles by leveraging the O* NET database. Am. Behav. Sci. 2023, 67, 1693–1715. [Google Scholar] [CrossRef]
- Kim, S.; Shrestha, R. Security and Privacy in Intelligent Autonomous Vehicles. In Automotive Cyber Security; Springer: Singapore, 2020; pp. 35–66. [Google Scholar] [CrossRef]
- Xu, X.; Fan, C.K. Autonomous vehicles, risk perceptions and insurance demand: An individual survey in China. Transp. Res. Part A Policy Pract. 2019, 124, 549–556. [Google Scholar] [CrossRef]
- Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; Khreis, H.; Frumkin, H. Autonomous vehicles and public health. Annu. Rev. Public Health 2019, 41, 329–345. [Google Scholar] [CrossRef]
- Ciatto, G.; Schumacher, M.I.; Omicini, A.; Calvaresi, D. Agent-Based Explanations in AI: Towards an Abstract Framework; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 12175 LNAI, pp. 3–20. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Pedreschi, D.; Giannotti, F. Principles of Explainable Artificial Intelligence. In Explainable AI Within the Digital Transformation and Cyber Physical Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 9–31. [Google Scholar] [CrossRef]
- Goodman, B. A Step Towards Accountable Algorithms?: Algorithmic Discrimination and the European Union General Data Protection. In Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- MacCarthy, M. An Examination of the Algorithmic Accountability Act of 2019. SSRN Electron. J. 2020, 1–10. [Google Scholar] [CrossRef]
- Lazányi, K. Perceived Risks of Autonomous Vehicles. Risks 2023, 11, 26. [Google Scholar] [CrossRef]
- Chah, B.; Lombard, A.; Bkakria, A.; Yaich, R.; Abbas-Turki, A.; Galland, S. Privacy Threat Analysis for connected and autonomous vehicles. Procedia Comput. Sci. 2022, 210, 36–44. [Google Scholar] [CrossRef]
- Wuyts, K.; Scandariato, R.; Joosen, W. LIND (D) UN Privacy Threat Tree Catalog; Department of Computer Science, KU: Leuven, Belgium, 2014. [Google Scholar]
- Safa, N.S.; Mitchell, F.; Maple, C.; Azad, M.A.; Dabbagh, M. Privacy Enhancing Technologies (PETs) for connected vehicles in smart cities. Trans. Emerg. Telecommun. Technol. 2022, 33, e4173. [Google Scholar] [CrossRef]
- Shabanpour, R.; Shamshiripour, A.; Mohammadian, A. Modeling adoption timing of autonomous vehicles: Innovation diffusion approach. Transportation 2018, 45, 1607–1621. [Google Scholar] [CrossRef]
- Bissell, D.; Birtchnell, T.; Elliott, A.; Hsu, E.L. Autonomous automobilities: The social impacts of driverless vehicles. Curr. Sociol. 2020, 68, 116–134. [Google Scholar] [CrossRef]
- Sparrow, R.; Howard, M. Make way for the wealthy? Autonomous vehicles, markets in mobility, and social justice. Mobilities 2020, 15, 514–526. [Google Scholar] [CrossRef]
- Liu, H.Y. Irresponsibilities, inequalities and injustice for autonomous vehicles. Ethics Inf. Technol. 2017, 19, 193–207. [Google Scholar] [CrossRef]
- Eppenberger, N.; Richter, M.A. The opportunity of shared autonomous vehicles to improve spatial equity in accessibility and socio-economic developments in European urban areas. Eur. Transp. Res. Rev. 2021, 13, 32. [Google Scholar] [CrossRef]
- Greenblatt, J.B.; Shaheen, S. Automated Vehicles, On-Demand Mobility, and Environmental Impacts. Curr. Sustain. Energy Rep. 2015, 2, 74–81. [Google Scholar] [CrossRef]
- Brown, A.; Gonder, J.; Repac, B. An Analysis of Possible Energy Impacts of Automated Vehicles. In Road Vehicle Automation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 137–153. [Google Scholar] [CrossRef]
- Nechyba, T.J.; Walsh, R.P. Urban sprawl. J. Econ. Perspect. 2004, 18, 177–200. [Google Scholar] [CrossRef]
- Dubljević, V.; Douglas, S.; Milojevich, J.; Ajmeri, N.; Bauer, W.A.; List, G.; Singh, M.P. Moral and social ramifications of autonomous vehicles: A qualitative study of the perceptions of professional drivers. Behav. Inf. Technol. 2023, 42, 1271–1278. [Google Scholar] [CrossRef]
- Giacomin, J. What is human centred design? Des. J. 2014, 17, 606–623. [Google Scholar] [CrossRef]
- Giacomin, J. Humans and Autonomous Vehicles; Routledge: London, UK, 2022. [Google Scholar]
- Samsani, S.S.; Muhammad, M.S. Socially compliant robot navigation in crowded environment by human behavior resemblance using deep reinforcement learning. IEEE Robot. Autom. Lett. 2021, 6, 5223–5230. [Google Scholar] [CrossRef]
- Cha, K. Affective Scenarios in Automotive Design: A Human-Centred Approach Towards Understanding of Emotional Experience. Ph.D. Thesis, Brunel University London, Uxbridge, UK, 2019. [Google Scholar]
- Silva, Ó.; Cordera, R.; González-González, E.; Nogués, S. Environmental impacts of autonomous vehicles: A review of the scientific literature. Sci. Total Environ. 2022, 830, 154615. [Google Scholar] [CrossRef]
- Hannappel, R. The impact of global warming on the automotive industry. AIP Conf. Proc. 2017, 1871, 060001. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Nazzal, M.A.; Darras, B.M.; Deiab, I.M. Global warming potential, water footprint, and energy demand of shared autonomous electric vehicles incorporating circular economy practices. Sustain. Prod. Consum. 2023, 36, 449–462. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming. Int. J. Hydrogen Energy 2020, 45, 3396–3406. [Google Scholar] [CrossRef]
- Lim, L.; Tawfik, A.M. Estimating Future Travel Costs for Autonomous Vehicles (AVs) and Shared Autonomous Vehicles (SAVs). In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Maui, HI, USA, 4–7 November 2018; pp. 1702–1707. [Google Scholar] [CrossRef]
- Schaller, B. Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities. Transp. Policy 2021, 102, 1–10. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, H.; Lin, F. Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Adv. Energy Mater. 2022, 12, 2200383. [Google Scholar] [CrossRef]
- Xia, X.; Li, P. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Sci. Total Environ. 2022, 814, 152870. [Google Scholar] [CrossRef]
- Liang, J.; Feng, J.; Fang, Z.; Lu, Y.; Yin, G.; Mao, X.; Wu, J.; Wang, F. An Energy-Oriented Torque-Vector Control Framework for Distributed Drive Electric Vehicles. IEEE Trans. Transp. Electrif. 2023, 9, 4014–4031. [Google Scholar] [CrossRef]
- Nangia, V.; Patil, S.; Chigurupati, A.; Lassar, N. Convex optimization of durability testing profiles for autonomous vehicles. In Proceedings of the Annual Reliability and Maintainability Symposium, Tucson, AZ, USA, 25–28 January 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, W.; Zhang, Y.; Tao, D.; Li, G.; Qu, X. What drives people to use automated vehicles? A meta-analytic review. Accid. Anal. Prev. 2021, 159, 106270. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Ma, L. Human acceptance of autonomous vehicles: Research status and prospects. Int. J. Ind. Ergon. 2023, 95, 103458. [Google Scholar] [CrossRef]
- Rahman, M.M.; Thill, J.C. Impacts of connected and autonomous vehicles on urban transportation and environment: A comprehensive review. Sustain. Cities Soc. 2023, 96, 104649. [Google Scholar] [CrossRef]
- Duarte, F.; Ratti, C. The Impact of Autonomous Vehicles on Cities: A Review. J. Urban Technol. 2018, 25, 3–18. [Google Scholar] [CrossRef]
- Kopelias, P.; Demiridi, E.; Vogiatzis, K.; Skabardonis, A.; Zafiropoulou, V. Connected & autonomous vehicles—Environmental impacts—A review. Sci. Total Environ. 2020, 712, 135237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherardini, L.; Cabri, G. The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment. World Electr. Veh. J. 2024, 15, 579. https://doi.org/10.3390/wevj15120579
Gherardini L, Cabri G. The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment. World Electric Vehicle Journal. 2024; 15(12):579. https://doi.org/10.3390/wevj15120579
Chicago/Turabian StyleGherardini, Luca, and Giacomo Cabri. 2024. "The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment" World Electric Vehicle Journal 15, no. 12: 579. https://doi.org/10.3390/wevj15120579
APA StyleGherardini, L., & Cabri, G. (2024). The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment. World Electric Vehicle Journal, 15(12), 579. https://doi.org/10.3390/wevj15120579