Enhancing Sustainable Last-Mile Delivery: The Impact of Electric Vehicles and AI Optimization on Urban Logistics
Abstract
:1. Introduction
2. Literature Review
3. Sustainable Urban Logistics and Smart Cities
4. Electrification of Last-Mile Delivery Fleets
5. AI-Driven Urban Logistics
6. Framework Proposal and Case Study Validation: AI-Optimized Last-Mile Logistics via Consolidation Centers
6.1. Operational Framework
- A City Consolidation Center (CCC): the CCC acts as a central hub where goods are received in bulk via large vans, reducing congestion and pollution in urban areas.
- Electric Vehicle Deployment: small EVs are dispatched from the CCC for last-mile delivery, ensuring sustainable and efficient transportation.
- AI Optimization: AI algorithms optimize delivery routes based on real-time traffic, weather conditions, and delivery schedules, reducing delays and operational costs.
- Charging Process Monitoring: AI tracks the battery status of EVs, schedules charging times, and prevents operational disruptions.
- Delivery Process Tracking: AI-driven tools monitor the status of deliveries, providing real-time insights to fleet managers and ensuring timely distribution.
- Customer Feedback Collection: a notation tool is integrated to collect customer ratings and feedback, which informs future operational adjustments.
- Client Notifications: AI-driven alerts provide customers with estimated delivery times, real-time tracking, and proactive updates on delays or issues.
6.2. Baseline for Measuring AI Savings Effect
6.3. Specific Case: Urban Logistics Provider in Lisbon
7. Critical Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shuaibu, A.S.; Mahmoud, A.S.; Sheltami, T.R. A Review of Last-Mile Delivery Optimization: Strategies, Technologies, Drone Integration, and Future Trends. Drones 2025, 9, 158. [Google Scholar] [CrossRef]
- Giuffrida, N.; Fajardo-Calderin, J.; Masegosa, A.D.; Werner, F.; Steudter, M.; Pilla, F. Optimization and Machine Learning Applied to Last-Mile Logistics: A Review. Sustainability 2022, 14, 5329. [Google Scholar] [CrossRef]
- Silva, V.; Amaral, A.; Fontes, T. Sustainable Urban Last-Mile Logistics: A Systematic Literature Review. Sustainability 2023, 15, 2285. [Google Scholar] [CrossRef]
- Macioszek, E. First and Last Mile Delivery—Problems and Issues. In Advanced Solutions of Transport Systems for Growing Mobility; Sierpiński, G., Ed.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Swizerland, 2018; Volume 631, pp. 147–154. ISBN 978-3-319-62315-3. [Google Scholar]
- Monferdini, L.; Tebaldi, L.; Bottani, E. From Industry 4.0 to Industry 5.0: Opportunities, Challenges, and Future Perspectives in Logistics. Procedia Comput. Sci. 2025, 253, 2941–2950. [Google Scholar] [CrossRef]
- Demir, E.; Syntetos, A.; Van Woensel, T. Last mile logistics: Research trends and needs. IMA J. Manag. Math. 2022, 33, 549–561. [Google Scholar] [CrossRef]
- Browne, M.; Allen, J.; Leonardi, J. Evaluating the use of an urban consolidation centre and electric vehicles in central London. IATSS Res. 2011, 35, 1–6. [Google Scholar] [CrossRef]
- Paddeu, D. The Bristol-Bath Urban freight Consolidation Centre from the perspective of its users. Case Stud. Transp. Policy 2017, 5, 483–491. [Google Scholar] [CrossRef]
- Sonar, H.; Dey Sarkar, B.; Joshi, P.; Ghag, N.; Choubey, V.; Jagtap, S. Navigating barriers to reverse logistics adoption in circular economy: An integrated approach for sustainable development. Clean. Logist. Supply Chain 2024, 12, 100165. [Google Scholar] [CrossRef]
- Jayarathna, C.P.; Agdas, D.; Dawes, L. Viability of sustainable logistics practices enabling circular economy: A system dynamics approach. Bus. Strategy Environ. 2024, 33, 3422–3439. [Google Scholar] [CrossRef]
- Singh, B.; Kaunert, C. Turbo Boost Digital Transformation Integration Business Sustainability and Innovation: Photovoltaic Cells for Smart Cities Gratifying SDG11 (Sustainable Cities and Communities). In Digital Transformation for Business Sustainability and Growth in Emerging Markets; Kumar, P., Dadwal, S., Verma, R., Kumar, S., Eds.; Emerald Publishing Limited: Leeds, UK, 2025; pp. 1–21. ISBN 978-1-83549-110-2. [Google Scholar]
- Milewski, D. Total Costs of Centralized and Decentralized Inventory Strategies—Including External Costs. Sustainability 2020, 12, 9346. [Google Scholar] [CrossRef]
- Kang, S. Why do warehouses decentralize more in certain metropolitan areas? J. Transp. Geogr. 2020, 88, 102330. [Google Scholar] [CrossRef]
- Xie, Z.; Long, H.; Ling, C.; Zhou, Y.; Luo, Y. An anomaly detection scheme for data stream in cold chain logistics. PLoS ONE 2025, 20, e0315322. [Google Scholar] [CrossRef] [PubMed]
- Lydia, E.L.; Jovith, A.A.; Devaraj, A.F.S.; Seo, C.; Joshi, G.P. Green Energy Efficient Routing with Deep Learning Based Anomaly Detection for Internet of Things (IoT) Communications. Mathematics 2021, 9, 500. [Google Scholar] [CrossRef]
- Rubrichi1, L.; Gnoni, M.G.; Tornese, F. Simulation modelling for integrating economic and environmental performance assessment for autonomous delivery systems in last mile logistics. In Proceedings of the 22nd International Conference on Modeling and Applied Simulation, San Diego, CA, USA, 1–3 July 2024. [Google Scholar] [CrossRef]
- Wei, H.; Callegari, C.; Oliveira Fiorini, A.C.; Schaeffer, R.; Szklo, A. Technical and economic modelling of last-mile transport: A case for Brazil. Case Stud. Transp. Policy 2024, 16, 101219. [Google Scholar] [CrossRef]
- Madhumithaa, N.; Elangovan, G.; Sridharan, S.; Karthick, L.; Islam, A.U.; Venkatesh, R.P. Cutting-Edge AI-Powered Driverless Delivery Solution. In Advances in Mechatronics and Mechanical Engineering; Padhi, S.N., Ed.; IGI Global: Hershey, PA, USA, 2024; pp. 131–148. ISBN 979-8-3693-1966-6. [Google Scholar]
- Lera-Romero, G.; Miranda Bront, J.J.; Soulignac, F.J. A branch-cut-and-price algorithm for the time-dependent electric vehicle routing problem with time windows. Eur. J. Oper. Res. 2024, 312, 978–995. [Google Scholar] [CrossRef]
- İbiş Bozyel, M.; Soysal, M.; Çimen, M. A many-to-many pick-up and delivery problem under stochastic battery depletion of electric vehicles. Transp. Lett. 2024, 16, 1287–1304. [Google Scholar] [CrossRef]
- Engelhardt, M.; Seeck, S.; Geier, B. Artificial Intelligence in Urban Last Mile Logistics—Status Quo, Potentials and Key Challenges. In Dynamics in Logistics; Freitag, M., Kinra, A., Kotzab, H., Megow, N., Eds.; Lecture Notes in Logistics; Springer International Publishing: Cham, Swizerland, 2022; pp. 275–289. ISBN 978-3-031-05358-0. [Google Scholar]
- Corti, F.; Nava, A. Investment in Greening Last-Mile Logistics: A Case Study. In Smart and Sustainable Planning for Cities and Regions; Bisello, A., Vettorato, D., Bottero, M., Kolokotsa, D., Eds.; Green Energy and Technology; Springer Nature Switzerland: Cham, Swizerland, 2024; pp. 75–84. ISBN 978-3-031-39205-4. [Google Scholar]
- Aslam, I.; Aniculaesei, A.; Buragohain, A.; Zhang, M.; Bamal, D.; Rausch, A. Runtime Safety Assurance of Autonomous Last-Mile Delivery Vehicles in Urban-like Environment. In Proceedings of the 2024 Stuttgart International Symposium, Stuttgart, Germany, 2–3 July 2024. [Google Scholar] [CrossRef]
- Alnıpak, S.; Toraman, Y. Acceptance of e-vehicles for last-mile parcel delivery from the perspective of drivers: A study in Turkiye. Logforum 2023, 19, 443–459. [Google Scholar] [CrossRef]
- Russo, A.; Tesoriere, G.; Al-Rashid, M.A.; Campisi, T. Pick-Up Point Location Optimization Using a Two-Level Multi-objective Approach: The Enna Case Study. In Computational Science and Its Applications—ICCSA 2023 Workshops; Gervasi, O., Murgante, B., Rocha, A.M.A.C., Garau, C., Scorza, F., Karaca, Y., Torre, C.M., Eds.; Lecture Notes in Computer Science; Springer Nature Switzerland: Cham, Swizerland, 2023; Volume 14106, pp. 309–322. ISBN 978-3-031-37110-3. [Google Scholar]
- Scherrer, M.; Steiner, A.; Rühlin, V. Greening urban logistics: Introducing a method to evaluate optimised decoupling hub locations. Transp. Res. Procedia 2023, 72, 572–579. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, X.; Liang, H.; Luo, P. Logistics Center Selection and Logistics Network Construction from the Perspective of Urban Geographic Information Fusion. Sensors 2024, 24, 1878. [Google Scholar] [CrossRef]
- Bertolini, M.; De Matteis, G.; Nava, A. Sustainable Last-Mile Logistics in Economics Studies: A Systematic Literature Review. Sustainability 2024, 16, 1205. [Google Scholar] [CrossRef]
- Alejandra Maldonado Bonilla, M.; Bouzon, M.; Cecilia Peña-Montoya, C. Taxonomy of key practices for a sustainable Last-Mile logistics network in E-Retail: A comprehensive literature review. Clean. Logist. Supply Chain 2024, 11, 100149. [Google Scholar] [CrossRef]
- Andruetto, C.; Mårtensson, J.; Pernestål, A. Categorization of urban logistics concepts according to their sustainability performance. Transp. Res. Procedia 2023, 72, 2708–2715. [Google Scholar] [CrossRef]
- Kotlars, A.; Skribans, V. Literature review: Efficiency, environment and robotization in first and last mile logistics. Transp. Res. Interdiscip. Perspect. 2024, 27, 101215. [Google Scholar] [CrossRef]
- Andreas, K. Sustainability and New Technologies: Last-Mile Delivery in the Context of Smart Cities. Sustainability 2024, 16, 8037. [Google Scholar] [CrossRef]
- Kafile, M.; Mbhele, T. Improving last mile distribution systems through the Internet of Things: A South African case. Acta Logist. 2023, 10, 597–603. [Google Scholar] [CrossRef]
- Kmiecik, M.; Wierzbicka, A. Enhancing Smart Cities through Third-Party Logistics: Predicting Delivery Intensity. Smart Cities 2024, 7, 541–565. [Google Scholar] [CrossRef]
- Peters, F.; Limbourg, S. Modelling shared logistics resources in loosely coupled software architectures. Transp. Res. Procedia 2023, 72, 1715–1722. [Google Scholar] [CrossRef]
- Andrei, N.; Scarlat, C.; Ioanid, A. Transforming E-Commerce Logistics: Sustainable Practices through Autonomous Maritime and Last-Mile Transportation Solutions. Logistics 2024, 8, 71. [Google Scholar] [CrossRef]
- Plazier, P.; Rauws, W.; Neef, R.; Buijs, P. Towards sustainable last-mile logistics? Investigating the role of cooperation, regulation, and innovation in scenarios for 2035. Res. Transp. Bus. Manag. 2024, 56, 101198. [Google Scholar] [CrossRef]
- Raj, R.; Singh, A.; Kumar, V.; De, T.; Singh, S. Assessing the e-commerce last-mile logistics’ hidden risk hurdles. Clean. Logist. Supply Chain 2024, 10, 100131. [Google Scholar] [CrossRef]
- Fadwa, F.; Chayma, F.; Badr, T.; Charif, M. Categorization of urban logistics stakeholders. Acta Logist. 2023, 10, 363–374. [Google Scholar] [CrossRef]
- Goulianou, P.; Regan, A.; Goodchild, A. Long-Term Planning for a Mixed Urban Freight Fleet with EVs and ICEVs in the USA. Sustainability 2024, 16, 3144. [Google Scholar] [CrossRef]
- Dallepiane, P.G.; Canha, L.N.; Mallmann, L. Logistical and economic impact on the transport sector with the insertion of electric trucks for last-mile transport. In Advanced Technologies in Electric Vehicles; Elsevier: Amsterdam, The Netherlands, 2024; pp. 345–362. ISBN 978-0-443-18999-9. [Google Scholar]
- Tang, Q. The electric cold chain logistics vehicle routing problem with time windows for battery swap mode considering customer satisfaction. In Third International Conference on Intelligent Traffic Systems and Smart City (ITSSC 2023); Shangguan, W., Wu, J., Eds.; SPIE: Xi’an, China, 2024; p. 41. [Google Scholar] [CrossRef]
- Zhou, J. Research on multi-objective vehicle routing problem for a mixed fleet of electric and conventional vehicles. In Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023); Shakir Md Saat, M., Bin Ibne Reaz, M., Eds.; SPIE: Kuala Lumpur, Malaysia, 2023; p. 170. [Google Scholar] [CrossRef]
- Kłos, M.J.; Sierpiński, G. Strategy for the Siting of Electric Vehicle Charging Stations for Parcel Delivery Service Providers. Energies 2023, 16, 2553. [Google Scholar] [CrossRef]
- Castillo, O.; Álvarez, R. Electrification of Last-Mile Delivery: A Fleet Management Approach with a Sustainability Perspective. Sustainability 2023, 15, 16909. [Google Scholar] [CrossRef]
- Yang, D.; Hyland, M.F. Electric vehicles in urban delivery fleets: How far can they go? Transp. Res. Part Transp. Environ. 2024, 129, 104127. [Google Scholar] [CrossRef]
- Milenković, M.; De Yuso, A.M.; Realpe, G.L.; Munoz, M.R.; Saavedra, L. A holistic approach to introducing a light electric freight vehicle (LEFV) system in a historic urban environment: The case of Quito. Res. Transp. Bus. Manag. 2024, 56, 101157. [Google Scholar] [CrossRef]
- Vaibhav, K.; Mulik, R.V.; Shrikrishna Ramdasi, S. Design and Development of E-axle as a Retro and OE Fitment Solution for Light Commercial Vehicles Ranging from 1.5 to 5 Ton GVW. In Proceedings of the Symposium on International Automotive Technology, Pune, India, 28–30 January 2024. [Google Scholar] [CrossRef]
- Adeniran, I.O.; Ghazal, A.; Thaller, C. Simulation-Based Impact Assessment of Electric and Hydrogen Vehicles in Urban Parcel Delivery Operations. In Advances in Resilient and Sustainable Transport; Clausen, U., Dellbrügge, M., Eds.; Lecture Notes in Logistics; Springer International Publishing: Cham, Swizerland, 2023; pp. 163–182. ISBN 978-3-031-28196-9. [Google Scholar]
- Kallionpää, E.; Nair, S.; Liimatainen, H. Perspectives of using Electric- and Alternatively Fuelled Freight Transport Vehicles among Road Haulage Companies in Finland. Transp. Res. Procedia 2023, 72, 1894–1901. [Google Scholar] [CrossRef]
- Dadashzada, I.; Garza-Reyes, J.A.; Roy Ghatak, R.; Gonzalez-Aleu, F. An investigation into the major barriers to the adoption of electric vehicles in last-mile deliveries for sustainable transport. Int. J. Logist. Manag. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Anosike, A.; Loomes, H.; Udokporo, C.K.; Garza-Reyes, J.A. Exploring the challenges of electric vehicle adoption in final mile parcel delivery. Int. J. Logist. Res. Appl. 2023, 26, 683–707. [Google Scholar] [CrossRef]
- Li, X.; Tan, X.; Gao, M.; Xu, H.; Huang, Q.; Wang, R.; Ling, X. Application of New Energy Logistics Vehicles in China: Evidence from Pilot City Surveys. E3S Web Conf. 2023, 441, 03010. [Google Scholar] [CrossRef]
- Sanz, A.; Meyer, P. Electrifying the Last-Mile Logistics (LML) in Intensive B2B Operations—An European Perspective on Integrating Innovative Platforms. Logistics 2024, 8, 45. [Google Scholar] [CrossRef]
- Toraman, Y.; Bayirli, M.; Ramadani, V. New technologies in small business models: Use of electric vehicles in last-mile delivery for fast-moving consumer goods. J. Small Bus. Enterp. Dev. 2024, 31, 515–531. [Google Scholar] [CrossRef]
- Azari, M.; Arif, J.; Jawab, F.; Moustabchir, H. Smart city implementation of electric vehicles: Challenges and Opportunities. In Proceedings of the 2024 IEEE 15th International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), Sousse, Tunisia, 2–4 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Gillström, H.; Jobrant, M.; Sallnäs, U. Towards building an understanding of electrification of logistics systems—A literature review and a research agenda. Clean. Logist. Supply Chain 2024, 10, 100134. [Google Scholar] [CrossRef]
- Alarcón, F.E.; Cawley, A.M.; Sauma, E. Electric mobility toward sustainable cities and road-freight logistics: A systematic review and future research directions. J. Clean. Prod. 2023, 430, 138959. [Google Scholar] [CrossRef]
- Comi, A.; Polimeni, A.; Belcore, O.M.; Cartisano, A.G.; Micari, S.; Napoli, G. Assessing the Opportunity Offered by Electric Vehicles in Performing Service Trips to End Consumers. Appl. Sci. 2024, 14, 4061. [Google Scholar] [CrossRef]
- Honrao, Y.; Mantri, S. Artificial Intelligence in Trucking Business Operations—A Systematic Review. In ICT: Smart Systems and Technologies; Kaiser, M.S., Xie, J., Rathore, V.S., Eds.; Lecture Notes in Networks and Systems; Springer Nature Singapore: Singapore, 2024; Volume 878, pp. 121–131. ISBN 978-981-99-9488-5. [Google Scholar]
- Reyana, A.; Kautish, S. Machine learning techniques for route optimizations and logistics management description. In Computational Intelligence Techniques for Sustainable Supply Chain Management; Elsevier: Amsterdam, The Netherlands, 2024; pp. 197–224. ISBN 978-0-443-18464-2. [Google Scholar]
- Owais, M.; Alshehri, A. Pareto Optimal Path Generation Algorithm in Stochastic Transportation Networks. IEEE Access 2020, 8, 58970–58981. [Google Scholar] [CrossRef]
- Ridaoui, H.; Moufad, I.; Jawab, F.; Arif, J. Artificial Intelligence: A Key to Smart and Sustainable Urban Freight Transport. In Proceedings of the 2024 IEEE 15th International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), Sousse, Tunisia, 2–4 May 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Musau, E.G. Optimizing Transportation and Distribution for Environmental Sustainability: Green Logistics. In Advances in Logistics, Operations, and Management Science; Martínez-Falcó, J., Marco-Lajara, B., Sánchez-García, E., Millán-Tudela, L.A., Eds.; IGI Global: Hershey, PA, USA, 2024; pp. 84–101. ISBN 979-8-3693-3486-7. [Google Scholar]
- Kumar, C.V.; Chaturvedi, A.; Tony, A.A.; Srinivas, P.V.V.S.; Ranjit, P.S.; Rastogi, R.; Arun, M.R.; Rajaram, A. AI-IOT-Based Adaptive Control Techniques for Electric Vehicles. Electr. Power Compon. Syst. 2024, 1–19. [Google Scholar] [CrossRef]
- Almutairi, A.; Owais, M. Active Traffic Sensor Location Problem for the Uniqueness of Path Flow Identification in Large-Scale Networks. IEEE Access 2024, 12, 180385–180403. [Google Scholar] [CrossRef]
- Owais, M.; El Sayed, M.A. Red light crossing violations modelling using deep learning and variance-based sensitivity analysis. Expert Syst. Appl. 2025, 267, 126258. [Google Scholar] [CrossRef]
- Taniguchi, E.; Thompson, R.G.; Qureshi, A.G. Recent developments in urban freight analytics for collaborative city logistics. Transp. Res. Procedia 2024, 79, 3–12. [Google Scholar] [CrossRef]
- Moufad, I.; Jawab, F.; El Yadari, M.; Ridaoui, H. Artificial intelligence use in urban logistics and transport activities: Overview and research trends. In Proceedings of the 2024 IEEE 15th International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), Sousse, Tunisia, 2–4 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Varsha, P.S. How can we manage biases in artificial intelligence systems—A systematic literature review. Int. J. Inf. Manag. Data Insights 2023, 3, 100165. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Hussain, M.Z.; Umair, S.; Waqas, U. Role of Human Capital in the Supply Chain Management. In Human Perspectives of Industry 4.0 Organizations, 1st ed.; CRC Press: New York, NY, USA, 2024; pp. 131–154. ISBN 978-1-032-61681-0. [Google Scholar] [CrossRef]
- Rharoubi, I.; Talmenssour, K.; Abderrahman, H.A. Exploring the Use of AI in Supply Chain Management: Insights From Moroccan Cases. In Advances in Logistics, Operations, and Management Science; Bentalha, B., Hmioui, A., Alla, L., Eds.; IGI Global: Hershey, PA, USA, 2023; pp. 87–105. ISBN 979-8-3693-0225-5. [Google Scholar]
- Sheikh, H.; Mitchell, P.; Foth, M. More-than-human smart urban governance: A research agenda. Digit. Geogr. Soc. 2023, 4, 100045. [Google Scholar] [CrossRef]
- Martins, L.D.C.; Tordecilla, R.D.; Castaneda, J.; Juan, A.A.; Faulin, J. Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation. Energies 2021, 14, 5131. [Google Scholar] [CrossRef]
- Javadnejad, F.; Jahanbakh, M.; Pinto, C.A.; Saeidi, A. Analyzing incentives and barriers to electric vehicle adoption in the United States. Environ. Syst. Decis. 2024, 44, 575–606. [Google Scholar] [CrossRef]
- He, C.; Peng, J.; Jiang, W.; Wang, J.; Du, L.; Zhang, J. Vehicle-To-Grid (V2G) Charging and Discharging Strategies of an Integrated Supply–Demand Mechanism and User Behavior: A Recurrent Proximal Policy Optimization Approach. World Electr. Veh. J. 2024, 15, 514. [Google Scholar] [CrossRef]
- Tumpa, T.J.; Ali, S.M.; Rahman, M.H.; Paul, S.K.; Chowdhury, P.; Rehman Khan, S.A. Barriers to green supply chain management: An emerging economy context. J. Clean. Prod. 2019, 236, 117617. [Google Scholar] [CrossRef]
- Susitha, E.; Jayarathna, A.; Herath, H.M.R.P. Supply chain competitiveness through agility and digital technology: A bibliometric analysis. Supply Chain Anal. 2024, 7, 100073. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.C.; Esperança, M. Enhancing Sustainable Last-Mile Delivery: The Impact of Electric Vehicles and AI Optimization on Urban Logistics. World Electr. Veh. J. 2025, 16, 242. https://doi.org/10.3390/wevj16050242
Ferreira JC, Esperança M. Enhancing Sustainable Last-Mile Delivery: The Impact of Electric Vehicles and AI Optimization on Urban Logistics. World Electric Vehicle Journal. 2025; 16(5):242. https://doi.org/10.3390/wevj16050242
Chicago/Turabian StyleFerreira, Joao C., and Marco Esperança. 2025. "Enhancing Sustainable Last-Mile Delivery: The Impact of Electric Vehicles and AI Optimization on Urban Logistics" World Electric Vehicle Journal 16, no. 5: 242. https://doi.org/10.3390/wevj16050242
APA StyleFerreira, J. C., & Esperança, M. (2025). Enhancing Sustainable Last-Mile Delivery: The Impact of Electric Vehicles and AI Optimization on Urban Logistics. World Electric Vehicle Journal, 16(5), 242. https://doi.org/10.3390/wevj16050242