Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data
Abstract
1. Introduction
1.1. Contributions
- Holistic, practical, and modular approach of reverse engineering of bus data via UDS protocol communication.
- Automatic reverse engineering pipeline consisting of signal discovery, signal and ground truth data capture, and signal identification to physical meaning.
- Cost-effective application using standardized test or sensor equipment and avoiding manipulation of the vehicle under study.
- Time optimization applying efficient methods and experiment design.
1.2. Layout
2. Materials and Methods
2.1. Vehicle Under Study
2.2. Pipeline for Signal Discovery
2.2.1. Physical Connection
2.2.2. Discover Logical Address
2.2.3. Discover Servers
2.2.4. Discover DIDs per Server
- None of the requested DID values are supported by the device.
- None of the requested DIDs are supported in the current session.
- The requested dynamic defined DID has not been assigned yet.
Algorithm 1 Sequential discovery of DIDs |
|
Algorithm 2 Parallel discovery of DIDs |
|
2.3. Experiments for Data Collection
2.3.1. Brake Pedal Experiment
2.3.2. Chassis Level Experiment
2.3.3. Steering Wheel Angle Experiment
2.3.4. Vehicle Speed Experiment
2.3.5. Gear Experiment
2.3.6. Accelerator Pedal Position Experiment
2.3.7. Charging Experiment
2.4. Data Identification
2.4.1. Regression Learning
- The byte order is unknown. For a given 16-bit value, it can be interpreted in either little-endian or big-endian format. Similarly, for 8-bit values, it is unknown if the most or least significant bit comes first.
- The correct encoding of the values is unknown. A given 16-bit value could, for example, be an unsigned integer, a signed integer, or an IEEE 754 float.
- The partition of the values is unknown. Manufacturers sometimes pack multiple values into a single DID value. A DID value with a total length of 48 bits could potentially encode four 8-bit values followed by a 16-bit value.
- 8-bit: u_int 8, int 8.
- 16-bit: u_int 16, int 16, float 16.
- 32-bit: u_int 32, int 32, float 32.
- 64-bit: u_int 64, int 64, float 64.
2.4.2. Machine Learning
- TP: Predicted P when true class is P.
- FP: Predicted P but true class is N, R, or D.
- FN: Predicted N, R, or D but true class is P.
- TN: Predicted N, R, or D and true class is N, R, or D.
3. Results, Evaluation, and Discussion
3.1. Results of Discovery
3.1.1. Connection and Communication Establishment
3.1.2. Logical Address Discovery Results
3.1.3. Server Discovery Results
- 0x0001 to 0x0DFF (3583 addresses).
- 0x1000 to 0x7FFF (28,672 addresses).
3.1.4. DID Discovery Results
- 0x0100 to 0xA5FF (42,240 parameters).
- 0xA800 to 0xACFF (1280 parameters).
- 0xB000 to 0xB1FF (512 parameters).
- 0xC000 to 0xC2FF (768 parameters).
- 0xCF00 to 0xEFFF (8448 parameters).
- 0xF010 to 0xF0FF (240 parameters).
3.2. Results of Linear Signals
3.2.1. Steering Wheel Angle Experiment Results
3.2.2. Vehicle Speed Experiment Results
3.2.3. Accelerator Pedal Position Experiment Results
3.2.4. Charging Experiment Results
3.3. Results of Categorical Signals
3.3.1. Brake Pedal Activation Results
3.3.2. Chassis Level Results
3.3.3. Gear Selection Results
4. Summary and Conclusions
- Discovery of potential addresses for signal identification.A total of 41 potential ECU addresses with reference to their spare part number and function were identified, and subsequently, 6280 responsive DID addresses were identified and analyzed. This process has been performed multiple times to guarantee reproducibility, which was successful for the 4-Batch approach.
- Regression learning for linear signals.The continuous signals representing physical values were identified with a linear regression-based learning approach, applying a slope and an offset to the signals to mirror the ground truth data captured during the experiments.
- Machine learning for categorical signals.Since categorical signals cannot be decoded linearly, we applied a machine learning approach to identify the respective categories for the signals of interest.
- Optimization strategies for reduced computational effort.The primary process of our study is time-consuming. Thus, optimization strategies were applied to reduce computational time. The respective optimization techniques were described in the study, from the parallel discovery algorithm (see Algorithm 2) to pre-filtering constant signals in the capturing process to collecting multiple targeted signals in single experiments and ultimately restricting the process to servers and DID ranges specified in the norm. These helped reduce computational effort and thus testing time significantly.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Discovery Results
# | ECU Address | Name | Spare Part Number | DIDs | DID Discovery Time in hh:mm | |
---|---|---|---|---|---|---|
(Software Version) | Sequential | Parallel (4-Batch) | ||||
1 | 0x400b | Tire Pressure | 992907273D (0220) | 78 | 0:11 | 0:03 |
2 | 0x400c | Steering Column | 9J1953502M (0008) | 26 | 0:22 | 0:11 |
3 | 0x400e | Body Control | 971907063P (0728) | 349 | 0:25 | 0:12 |
4 | 0x4010 | Network Gateway | 9J1907468K (0708) | 463 | 0:05 | 0:04 |
5 | 0x4012 | Power Steering | 9J1907445K (0450) | 70 | 0:26 | 0:11 |
6 | 0x4013 | ABS Pump | 9J1614095S (0190) | 178 | 0:27 | 0:19 |
7 | 0x4014 | Instrumentation|Dashboard | 9J1920901AJ (0667) | - | - | - |
8 | 0x4015 | Safety|Airbag | 992959655D (3303) | 419 | 0:23 | 0:12 |
9 | 0x401c | Internal Engine Sound | 9J1035446H (0301) | 53 | 0:22 | 0:08 |
10 | 0x4023 | Tailgate | 8W2959107A (0335) | 94 | 0:11 | 0:03 |
11 | 0x4024 | Electric Spoiler | 992907483T (0170) | 61 | 0:12 | 0:03 |
12 | 0x403b | Brake Booster | 9J1907107G (0190) | 60 | 0:32 | 0:11 |
13 | 0x403e | Rear Driver Door | 4M0959795N (0390) | 60 | 3:18 | 1:15 |
14 | 0x403f | Rear Passenger Door | 4M0959795N (0390) | 61 | 3:18 | 1:14 |
15 | 0x4042 | Thermal Management | 4KE965429M (0325) | 280 | 0:12 | 0:04 |
16 | 0x4044 | HV Battery Charger | 9J1915681BT (1272) | 227 | 0:11 | 0:03 |
17 | 0x4046 | Air Conditioning | 9J1907040L (1410) | 154 | 0:11 | 0:03 |
18 | 0x404a | Front Driver Door | 4M0959793N (0390) | 87 | 0:11 | 0:03 |
19 | 0x404b | Front Passenger Door | 4M0959792N (0390) | 73 | 0:11 | 0:03 |
20 | 0x404c | Seat Control | 4M6959760 (0064) | 105 | 0:11 | 0:11 |
21 | 0x404e | Rear Right Radar | 4N0907566AM (0588) | 100 | 0:11 | 0:03 |
22 | 0x404f | Driver Assist | 4K4907117H (0371) | 277 | 0:27 | 0:12 |
23 | 0x4053 | Gear Selector | 9J1713033E (0300) | 35 | 0:11 | 0:03 |
24 | 0x4064 | External Engine Sound | 9J1035335J (0111) | 53 | 0:22 | 0:08 |
25 | 0x4067 | Emergency Call | 4N0035282C (0450) | 151 | 0:17 | 0:04 |
26 | 0x4073 | Multimedia System | 9J1035070BF (3882) | 195 | 0:21 | 0:05 |
27 | 0x4076 | Vehicle Control | 9J1909101DG (0021) | 389 | 0:26 | 0:12 |
28 | 0x407b | Battery Control | 9J1915234AS (1646) | 301 | 0:23 | 0:06 |
29 | 0x407c | Electric Drive Motor | 9J1907121BN (0023) | 67 | 0:32 | 0:08 |
30 | 0x4080 | Chassis level | 9J1907553R (1510) | 146 | 0:28 | 0:12 |
31 | 0x4086 | Online Services | 9J1907018AL (1810) | 170 | 0:13 | 0:04 |
32 | 0x408a | Rear Left Radar | 4N0907566AM (0588) | 77 | 0:11 | 0:03 |
33 | 0x408b | Body Control | 992907064DK (0604) | 473 | 0:15 | 0:11 |
34 | 0x4096 | Left LED Headlight | 992941572BA (9002) | 69 | 0:11 | 0:06 |
35 | 0x4097 | Right LED Headlight | 992941572BA (9002) | 69 | 0:11 | 0:06 |
36 | 0x40a5 | Coupling Antenna | 9J1035504B (0002) | 22 | 0:25 | 0:06 |
37 | 0x40b7 | DC-DC Converter | 9J1959663BG (1910) | 102 | 0:55 | 0:14 |
38 | 0x40c7 | HV Booster | 9J1915539DE (1910) | 132 | 0:55 | 0:14 |
39 | 0x40f1 | Safety|Airbag | 992959655D (3303) | 419 | 0:24 | 0:12 |
40 | 0x4767 | Left LED Headlight | 992941572BA (9002) | 66 | 0:12 | 0:08 |
41 | 0x4768 | Right LED Headlight | 992941572BA (9002) | 66 | 0:12 | 0:08 |
Total | 6280 | 19:04 | 7:17 |
References
- International Energy Agency. Global EV Outlook 2024. Available online: https://www.iea.org/reports/global-ev-outlook-2024 (accessed on 23 August 2024).
- European Union Council. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending REGULATIONS (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Available online: http://data.europa.eu/eli/reg/2021/1119/oj (accessed on 23 August 2024).
- Ministry of Ecology and Environment of the People’s Republic of China. China’s Policies and Actions for Addressing Climate Change. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://english.mee.gov.cn/Resources/Reports/reports/202211/P020221110605466439270.pdf&ved=2ahUKEwj1k_y21YqIAxVR3QIHHTsFAa8QFnoECBgQAQ&usg=AOvVaw3WeiSi_sDkHB7h_55p_I56 (accessed on 23 August 2024).
- Environmental Protection Agency. Multi-Pollutant Emissions Standards for Model Years 2027 and Later LightDuty and Medium-Duty Vehicles. Available online: https://www.govinfo.gov/content/pkg/FR-2024-04-18/pdf/2024-06214.pdf (accessed on 23 August 2024).
- Rapson, D.; Muehlegger, E. The Economics of Electric Vehicles. Rev. Environ. Econ. Policy 2023, 17, 274–294. [Google Scholar] [CrossRef]
- Lienert, P.R. Exclusive: Automakers to Double Spending on EVs, Batteries to $1.2 Trillion by 2030. 2022. Available online: https://www.reuters.com/technology/exclusive-automakers-double-spending-evs-batteries-12-trillion-by-2030-2022-10-21/ (accessed on 27 March 2025).
- European Alternative Fuels Observatory (EAFO). Electric Vehicle Model Statistics. 2024. Available online: https://alternative-fuels-observatory.ec.europa.eu/policymakers-and-public-authorities/electric-vehicle-model-statistics (accessed on 22 April 2025).
- Rosenberger, N.; Fundel, M.; Bogdan, S.; Köning, L.; Kragt, P.; Kühberger, M.; Lienkamp, M. Scientific benchmarking: Engineering quality evaluation of electric vehicle concepts. e-Prime-Adv. Electr. Eng. Electron. Energy 2024, 9, 100746. [Google Scholar] [CrossRef]
- Zairi, M. Benchmarking for Best Practice: Continuous Learning Through Sustainable Innovation; Routledge: London, UK, 1998. [Google Scholar]
- Camp, R. Benchmarking: The Search for Industry Best Practices that Lead to Superior Performance; Productivity Press: New York, NY, USA, 2006. [Google Scholar]
- Bhadani, R.; Bunting, M.; Nice, M.; Tran, N.M.; Elmadani, S.; Work, D.; Sprinkle, J. Strym: A Python Package for Real-time CAN Data Logging, Analysis and Visualization to Work with USB-CAN Interface. In Proceedings of the 2022 2nd Workshop on Data-Driven and Intelligent Cyber-Physical Systems for Smart Cities Workshop (DI-CPS), Milan, Italy, 3–6 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 14–23. [Google Scholar] [CrossRef]
- Buscemi, A. Automation of Controller Area Network Reverse Engineering: Approaches, Opportunities and Security Threats. Ph.D Thesis, University of Luxembourg, Luxembourg, 2022. [Google Scholar]
- North IT Group GmbH. IT in the Automotive Industry: Transformation & Trends 2024. 2024. Available online: https://northitgroup.com/en/knowledge/148-it-in-der-automobilindustrie-transformation-trends-2024 (accessed on 27 August 2024).
- Rosenberger, N.; Rosner, P.; Bilfinger, P.; Schöberl, J.; Teichert, O.; Schneider, J.; Gamra, K.A.; Allgäuer, C.; Dietermann, B.; Schreiber, M.; et al. Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Tesla Model 3 on the Vehicle Level. World Electr. Veh. J. 2024, 15, 268. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Steinsträter, M.; Schreiber, M.; Rosner, P.; Nicoletti, L.; Schmid, F.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider, J.; et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID.3. eTransportation 2022, 12, 100167. [Google Scholar] [CrossRef]
- Rosenberger, N.; Deininger, S.; Koloch, J.; Lienkamp, M. Holistic Electric Powertrain Component Design for Battery Electric Vehicles in an Early Development Phase. World Electr. Veh. J. 2025, 16, 61. [Google Scholar] [CrossRef]
- Oh, G.; Leblanc, D.J.; Peng, H. Vehicle Energy Dataset (VED), A Large-Scale Dataset for Vehicle Energy Consumption Research. IEEE Trans. Intell. Transp. Syst. 2022, 23, 3302–3312. [Google Scholar] [CrossRef]
- Grunditz, E.A.; Thiringer, T. Performance analysis of current BEVs based on a comprehensive review of specifications. IEEE Trans. Transp. Electrif. 2016, 2, 270–289. [Google Scholar] [CrossRef]
- Buscemi, A.; Turcanu, I.; Castignani, G.; Crunelle, R.; Engel, T. Poster: A Methodology for Semi-Automated CAN Bus Reverse Engineering. In Proceedings of the 2021 IEEE Vehicular Networking Conference (VNC), Ulm, Germany, 10–12 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 125–126. [Google Scholar] [CrossRef]
- Marchetti, M.; Stabili, D. READ: Reverse Engineering of Automotive Data Frames. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1083–1097. [Google Scholar] [CrossRef]
- Nolan, B.C.; Graham, S.; Mullins, B.; Kabban, C.S. Unsupervised Time Series Extraction from Controller Area Network Payloads. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ezeobi, U.; Olufowobi, H.; Young, C.; Zambreno, J.; Bloom, G. Reverse Engineering Controller Area Network Messages Using Unsupervised Machine Learning. IEEE Consum. Electron. Mag. 2022, 11, 50–56. [Google Scholar] [CrossRef]
- Buscemi, A.; Turcanu, I.; Castignani, G.; Crunelle, R.; Engel, T. CANMatch: A Fully Automated Tool for CAN Bus Reverse Engineering Based on Frame Matching. IEEE Trans. Veh. Technol. 2021, 70, 12358–12373. [Google Scholar] [CrossRef]
- Verma, M.E.; Bridges, R.A.; Sosnowski, J.J.; Hollifield, S.C.; Iannacone, M.D. CAN-D: A Modular Four-Step Pipeline for Comprehensively Decoding Controller Area Network Data. IEEE Trans. Veh. Technol. 2021, 70, 9685–9700. [Google Scholar] [CrossRef]
- Verma, M.E.; Bridges, R.A.; Hollifield, S.C. ACTT: Automotive CAN Tokenization and Translation. In Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 13–15 December 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 14, pp. 278–283. [Google Scholar] [CrossRef]
- Norm ISO 14229-1; Road Vehicles—Unified Diagnostic Services (UDS). Part 1: Application Layer. International Standard: Geneva, Switzerland, 2020.
- Rosenberger, N.; Wagner, N.; Fredl, A.; Riederle, L.; Lienkamp, M. Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Two-Speed Transmission and 800 V Technology of the Porsche Taycan. World Electr. Veh. J. 2025, 16, 296. [Google Scholar] [CrossRef]
- Norm ISO 13400-4:2016; Road Vehicles—Diagnostic Communication over Internet Protocol (DoIP). Part 4: Ethernet-Based High Speed Data Link Connector. International Standard: Geneva, Switzerland, 2016.
- Norm SAE J1962; SAE J1962 Diagnostic Connector. Society of Automotive Engineers: Warrendale, PA, USA, 2016.
- Norm IEC 60603-7-2; Connectors for Electronic Equipment–Part 7-2: Detail Specification for 8-Way, Unshielded, Free and Fixed Connectors, for Data Transmissions with Frequencies up to 100 MH. International Electrotechnical Commission: Geneva, Switzerland, 2010.
- Norm ANSI/TIA-568.0-E; Generic Telecommunications Cabling for Customer Premises. American National Standards: Washington, DC, USA, 2020.
- Norm ISO 13400-3:2016; Road Vehicles—Diagnostic Communication over Internet Protocol (DoIP). Part 3: Wired Vehicle Interface Based on IEEE 802.3. International Standard: Geneva, Switzerland, 2016.
- Norm ISO 13400-2:2019; Road Vehicles—Diagnostic Communication over Internet Protocol (DoIP). Part 2: Transport Protocol and Network Layer Services. International Standard: Geneva, Switzerland, 2019.
- Ye, W.; Zheng, G.; Cao, X.; Ma, Y.; Zhang, A. Spurious correlations in machine learning: A survey. arXiv 2024, arXiv:2402.12715. [Google Scholar]
- Rosenberger, N.; Lienkamp, M. Vehicle Parameter and Electric Powertrain Efficiency Analysis Using Real-Driving Data. Int. J. Electr. Electron. Eng. Telecommun. (IJEETC) 2024, 13, 494–502. [Google Scholar] [CrossRef]
- GmbH, P. Betriebsanleitung EV EasyCharge, 3rd ed.; Pulsares Shop: Nienstädt, Germany, 2023. [Google Scholar]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar]
- Poslavskaya, E.; Korolev, A. Encoding categorical data: Is there yet anything’hotter’than one-hot encoding? arXiv 2023, arXiv:2312.16930. [Google Scholar]
- Naidu, G.; Zuva, T.; Sibanda, E.M. A review of evaluation metrics in machine learning algorithms. In Artificial Intelligence Application in Networks and Systems, Proceedings of the 12th Computer Science Online Conference, Online, 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 15–25. [Google Scholar]
Byte | Parameter Name | Byte Value |
---|---|---|
#1 | ReadDataByIdentifier Request SID | 2216 |
#2 | dataIdentifier[]#1 = [ | 0016 to FF16 |
byte#1 (MSB) | ||
#3 | byte#2 ] | 0016 to FF16 |
⋮ | ⋮ | ⋮ |
#n − 1 | dataIdentifier[]#m = [ | 0016 to FF16 |
byte#1 (MSB) | ||
#n | byte#2 ] | 0016 to FF16 |
Byte | Parameter Name | Byte Value |
---|---|---|
#1 | ReadDataByIdentifier Response SID | 6216 |
#2 | dataIdentifier[]#1 = [ | 0016 to FF16 |
byte#1 (MSB) | ||
#3 | byte#2 ] | 0016 to FF16 |
#4 | dataRecord[]#1 = [ | 0016 to FF16 |
data#1… | ||
#(k − 1) + 4 | data#k ] | 0016 to FF16 |
⋮ | ⋮ | ⋮ |
#n-(o-1)-2 | dataIdentifier[]#m = [ | 0016 to FF16 |
byte#1 (MSB) | ||
#n-(o-1)-1 | byte#2 ] | 0016 to FF16 |
#n-(o-1) | dataRecord[]#m = [ | 0016 to FF16 |
data#1… | ||
#n | data#o ] | 0016 to FF16 |
Gear | Time Step | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
P | 1 | 3 | 4 | |||||||||
R | 1 | 3 | 4 | |||||||||
N | 1 | 3 | 4 | |||||||||
D | 1 | 3 | 4 |
Actual | Predicted | |
---|---|---|
Positive | Negative | |
Positive | True Positive (TP) | False Negative (FN) |
Negative | False Positive (FP) | True Negativee (TN) |
Target Logical Address | Source Logical Address |
---|---|
0x4010 | 0x0E80 |
0x4010 | 0x0E81 |
0x4010 | 0x0E82 |
0x4010 | 0x0E83 |
0x4010 | 0x0E84 |
# | GT_Lift | GT_Normal | GT_Lowered | GT_Low | Byte_0 | Byte_1 | Byte_2 | Byte_3 | Byte_4 |
---|---|---|---|---|---|---|---|---|---|
1 | True | False | False | False | 106 | 219 | 54 | 201 | 175 |
2 | True | False | False | False | 106 | 155 | 54 | 205 | 175 |
3 | True | False | False | False | 106 | 155 | 54 | 205 | 175 |
4 | True | False | False | False | 106 | 155 | 54 | 205 | 175 |
5 | True | False | False | False | 106 | 219 | 54 | 201 | 175 |
6 | True | False | False | False | 106 | 155 | 54 | 205 | 175 |
7 | True | False | False | False | 106 | 155 | 54 | 205 | 175 |
8 | True | False | False | False | 106 | 219 | 54 | 201 | 175 |
9 | False | True | False | False | 101 | 217 | 230 | 137 | 157 |
10 | False | True | False | False | 101 | 218 | 6 | 141 | 158 |
11 | False | True | False | False | 101 | 217 | 230 | 137 | 157 |
12 | False | True | False | False | 101 | 217 | 230 | 137 | 154 |
13 | False | True | False | False | 101 | 217 | 230 | 137 | 154 |
14 | False | True | False | False | 101 | 217 | 230 | 137 | 155 |
15 | False | True | False | False | 101 | 217 | 230 | 137 | 155 |
16 | False | True | False | False | 101 | 217 | 230 | 137 | 157 |
17 | False | False | True | False | 98 | 217 | 102 | 89 | 149 |
18 | False | False | True | False | 99 | 89 | 86 | 97 | 147 |
19 | False | False | True | False | 98 | 217 | 102 | 89 | 149 |
20 | False | False | True | False | 98 | 217 | 102 | 89 | 149 |
21 | False | False | True | False | 98 | 217 | 102 | 89 | 149 |
22 | False | False | True | False | 99 | 89 | 86 | 97 | 147 |
23 | False | False | True | False | 98 | 217 | 102 | 89 | 149 |
24 | False | False | True | False | 99 | 89 | 86 | 97 | 147 |
25 | False | False | False | True | 96 | 216 | 150 | 53 | 136 |
26 | False | False | False | True | 96 | 216 | 150 | 53 | 136 |
27 | False | False | False | True | 97 | 152 | 230 | 49 | 138 |
28 | False | False | False | True | 97 | 152 | 230 | 49 | 138 |
29 | False | False | False | True | 96 | 216 | 150 | 53 | 136 |
30 | False | False | False | True | 96 | 216 | 150 | 53 | 136 |
31 | False | False | False | True | 96 | 216 | 150 | 53 | 136 |
32 | False | False | False | True | 97 | 152 | 230 | 49 | 138 |
# | GT_Lift | GT_Normal | GT_Lowered | GT_Low | Byte_0 |
---|---|---|---|---|---|
1 | True | False | False | False | 80 |
2 | False | True | False | False | 64 |
3 | False | False | True | False | 48 |
4 | False | False | False | True | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberger, N.; Hoffmann, N.; Mitscherlich, A.; Lienkamp, M. Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data. World Electr. Veh. J. 2025, 16, 384. https://doi.org/10.3390/wevj16070384
Rosenberger N, Hoffmann N, Mitscherlich A, Lienkamp M. Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data. World Electric Vehicle Journal. 2025; 16(7):384. https://doi.org/10.3390/wevj16070384
Chicago/Turabian StyleRosenberger, Nico, Nikolai Hoffmann, Alexander Mitscherlich, and Markus Lienkamp. 2025. "Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data" World Electric Vehicle Journal 16, no. 7: 384. https://doi.org/10.3390/wevj16070384
APA StyleRosenberger, N., Hoffmann, N., Mitscherlich, A., & Lienkamp, M. (2025). Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data. World Electric Vehicle Journal, 16(7), 384. https://doi.org/10.3390/wevj16070384