Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects
Abstract
:1. Introduction
2. Multiple Sclerosis Epidemiology
3. Risk Factors
4. Pathophysiology
5. Presentation
6. Current Treatment of Multiple Sclerosis
6.1. Management of Relapses
6.2. Disease-Modifying Therapy (DMT)
6.2.1. DMTs: Self-Injected
6.2.2. DMTs: Oral
6.2.3. DMTs: Intravenous (IV)
6.3. Neuromodulation
7. Ozanimod Drug Information
8. Ozanimod Mechanism of Action
9. Pharmacokinetics
9.1. Absorption and Distribution
9.2. Metabolism
9.3. Elimination
10. Pharmacodynamics
11. Clinical Studies: Safety and Efficacy
11.1. Phase I Studies
11.2. Phase II Studies: RADIANCE Trial
11.3. Phase III Studies: RADIANCE Trial
11.4. Phase III Studies: SUNBEAM Trial
11.5. Additional Studies
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lassmann, H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9, 3116. [Google Scholar] [CrossRef]
- Lassmann, H.; Brück, W.; Lucchinetti, C.F. The Immunopathology of Multiple Sclerosis: An Overview. Brain Pathol. 2007, 17, 210–218. [Google Scholar] [CrossRef]
- Zephir, H. Progress in understanding the pathophysiology of multiple sclerosis. Rev. Neurol. 2018, 174, 358–363. [Google Scholar] [CrossRef]
- Huang, W.-J.; Chen, W.-W.; Zhang, X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017, 13, 3163–3166. [Google Scholar] [CrossRef] [Green Version]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology 2019, 92, e1029–e1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamm, C.P.; Uitdehaag, B.M.; Polman, C.H. Multiple Sclerosis: Current Knowledge and Future Outlook. Eur. Neurol. 2014, 72, 132–141. [Google Scholar] [CrossRef] [PubMed]
- De Sa, J.C.C.; Airas, L.; Bartholome, E.; Grigoriadis, N.; Mattle, H.; Oreja-Guevara, C.; O’Riordan, J.; Sellebjerg, F.; Stankoff, B.; Vass, K.; et al. Symptomatic therapy in multiple sclerosis: A review for a multimodal approach in clinical practice. Ther. Adv. Neurol. Disord. 2011, 4, 139–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omerhoca, S.; Akkas, S.Y.; Icen, N.K. Multiple sclerosis: Diagnosis and Differrential Diagnosis. Arch. Neuropsychiatry 2018, 55 (Suppl. S1), S1–S9. [Google Scholar] [CrossRef]
- Confavreux, C.; Vukusic, S. Natural history of multiple sclerosis: A unifying concept. Brain 2006, 129 Pt 3, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Leray, E.; Moreau, T.; Fromont, A.; Edan, G. Epidemiology of multiple sclerosis. Rev. Neurol. 2016, 172, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Handel, A.E.; Williamson, A.J.; Disanto, G.; Handunnetthi, L.; Giovannoni, G.; Ramagopalan, S.V. An Updated Meta-Analysis of Risk of Multiple Sclerosis following Infectious Mononucleosis. PLoS ONE 2010, 5, e12496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, H.L.; Jacobsen, H.; Ikemizu, S.; Andersson, C.; Harlos, K.; Madsen, L.; Hjorth, P.; Sondergaard, L.; Svejgaard, A.; Wucherpfennig, K.; et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 2002, 3, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Tracy, S.I.; Kakalacheva, K.; Lünemann, J.D.; Luzuriaga, K.; Middeldorp, J.; Thorley-Lawson, D.A. Persistence of Epstein-Barr Virus in Self-Reactive Memory B Cells. J. Virol. 2012, 86, 12330–12340. [Google Scholar] [CrossRef] [Green Version]
- Koch-Henriksen, N.; Thygesen, L.C.; Stenager, E.; Laursen, B.; Magyari, M. Incidence of MS has increased markedly over six decades in Denmark particularly with late onset and in women. Neurology 2018, 90, e1954–e1963. [Google Scholar] [CrossRef]
- Simpson, S.; Blizzard, L.; Otahal, P.; Van Der Mei, I.; Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1132–1141. [Google Scholar] [CrossRef]
- Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol. Ther. 2018, 7, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Tafti, D.; Ehsan, M.; Xixis, K.L. Multiple Sclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Gianfrancesco, M.A.; Stridh, P.; Rhead, B.; Shao, X.; Xu, E.; Graves, J.S.; Chitnis, T.; Waldman, A.; Loetze, T.; Schreiner, T.; et al. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology 2017, 88, 1623–1629. [Google Scholar] [CrossRef]
- Mokry, L.E.; Ross, S.; Ahmad, O.S.; Forgetta, V.; Smith, G.D.; Goltzman, D.; Leong, A.; Greenwood, C.M.T.; Thanassoulis, G.; Richards, J.B. Correction: Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med. 2016, 13, e1001981. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.M.; Byrne, S.N.; Correale, J.; Ilschner, S.; Hart, P.H. Ultraviolet radiation, vitamin D and multiple sclerosis. Neurodegener. Dis. Manag. 2015, 5, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Van Der Mei, I.; Ponsonby, A.-L.; Dwyer, T.; Blizzard, C.; Simmons, R.; Taylor, B.V.; Butzkueven, H.; Kilpatrick, T. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: Case-control study. BMJ 2003, 327, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhaes, S.; Pugliatti, M.; Riise, T.; Myhr, K.-M.; Ciampi, A.; Bjornevik, K.; Wolfson, C. Shedding light on the link between early life sun exposure and risk of multiple sclerosis: Results from the EnvIMS Study. Int. J. Epidemiol. 2019, 48, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Olsson, T.; Kockum, I.; Hillert, J.; Alfredsson, L. Low sun exposure increases multiple sclerosis risk both directly and indirectly. J. Neurol. 2020, 267, 1045–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartosik-Psujek, H.; Psujek, M. Vitamin D as an immune modulator in multiple sclerosis. Neurol. Neurochir. Pol. 2019, 53, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Harirchian, M.H.; Fatehi, F.; Sarraf, P.; Honarvar, N.M.; Bitarafan, S. Worldwide prevalence of familial multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2018, 20, 43–47. [Google Scholar] [CrossRef]
- Alcina, A.; Abad-Grau, M.D.M.; Fedetz, M.; Izquierdo, G.; Lucas, M.; Fernández, Ó.; Ndagire, D.; Catalá-Rabasa, A.; Ruiz, A.; Gayán, J.; et al. Multiple Sclerosis Risk Variant HLA-DRB1*1501 Associates with High Expression of DRB1 Gene in Different Human Populations. PLoS ONE 2012, 7, e29819. [Google Scholar] [CrossRef] [Green Version]
- De Silvestri, A.; Capittini, C.; Mallucci, G.; Bergamaschi, R.; Rebuffi, C.; Pasi, A.; Martinetti, M.; Tinelli, C. The Involvement of HLA Class II Alleles in Multiple Sclerosis: A Systematic Review with Meta-analysis. Dis. Mark. 2019, 2019, 1409069. [Google Scholar] [CrossRef]
- Qiu, W.; James, I.; Carroll, W.M.; Mastaglia, F.L.; Kermode, A. HLA-DR allele polymorphism and multiple sclerosis in Chinese populations: A meta-analysis. Mult. Scler. J. 2011, 17, 382–388. [Google Scholar] [CrossRef]
- Rojas, O.-L.; Rojas-Villarraga, A.; Cruz-Tapias, P.; Sánchez, J.L.; Suárez, J.C.; Patarroyo, M.A.; Anaya, J.-M. HLA class II polymorphism in Latin American patients with multiple sclerosis. Autoimmun. Rev. 2010, 9, 407–413. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, C.-Y.; Dong, Q.; Wang, J.; Wang, W. Relationship between HLA-DRB1 polymorphism and susceptibility or resistance to multiple sclerosis in Caucasians: A meta-analysis of non-family-based studies. Autoimmun. Rev. 2011, 10, 474–481. [Google Scholar] [CrossRef]
- Mohajer, B.; Abbasi, N.; Pishgar, F.; Abdolalizadeh, A.; Ebrahimi, H.; Razaviyoun, T.; Mohebbi, F.; Eskandarieh, S.; Sahraian, M.A. HLA-DRB1 polymorphism and susceptibility to multiple sclerosis in the Middle East North Africa region: A systematic review and meta-analysis. J. Neuroimmunol. 2018, 321, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Xiong, Y.; Larsson, S.C. An atlas on risk factors for multiple sclerosis: A Mendelian randomization study. J. Neurol. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Paul, F. Ozanimod for the treatment of relapsing remitting multiple sclerosis. Expert Opin. Pharmacother. 2018, 19, 2073–2086. [Google Scholar] [CrossRef] [PubMed]
- Leddy, S.; Dobson, R. Multiple sclerosis. Medicine 2020, 48, 588–594. [Google Scholar] [CrossRef]
- Tintoré, M.; Rovira, A.; Brieva, L.; Grivé, E.; Jardí, R.; Borrás, C.; Montalban, X. Isolated demyelinating syndromes: Comparison of CSF oligoclonal bands and different MR imaging criteria to predict conversion to CDMS. Mult. Scler. J. 2001, 7, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Cameron, E.M.; Spencer, S.M.; Lazarini, J.; Harp, C.T.; Ward, E.S.; Burgoon, M.; Owens, G.P.; Racke, M.K.; Bennett, J.L.; Frohman, E.M.; et al. Potential of a unique antibody gene signature to predict conversion to clinically definite multiple sclerosis. J. Neuroimmunol. 2009, 213, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Rahmanzadeh, R.; Weber, M.S.; Brück, W.; Navardi, S.; Sahraian, M.A. B cells in multiple sclerosis therapy—A comprehensive review. Acta Neurol. Scand. 2018, 137, 544–556. [Google Scholar] [CrossRef]
- Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; et al. B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis. N. Engl. J. Med. 2008, 358, 676–688. [Google Scholar] [CrossRef] [Green Version]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Charo, I.F.; Ransohoff, R.M. The Many Roles of Chemokines and Chemokine Receptors in Inflammation. N. Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Scalfari, A.; Lederer, C.; Daumer, M.; Nicholas, R.; Ebers, G.C.; Muraro, P.A. The relationship of age with the clinical phenotype in multiple sclerosis. Mult. Scler. J. 2016, 22, 1750–1758. [Google Scholar] [CrossRef]
- Zeydan, B.; Kantarci, O.H. Progressive Forms of Multiple Sclerosis: Distinct Entity or Age-Dependent Phenomena. Neurol. Clin. 2018, 36, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Hart, F.M.; Bainbridge, J.L. Current and emerging treatment of multiple sclerosis. Am. J. Manag. Care 2016, 22, S159–S170. [Google Scholar] [PubMed]
- Doshi, A.; Chataway, J. Multiple sclerosis, a treatable disease. Clin. Med. 2017, 17, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Frohman, E.M.; Shah, A.; Eggenberger, E.; Metz, L.; Zivadinov, R.; Stüve, O. Corticosteroids for multiple sclerosis: I. Application for treating exacerbations. Neurotherapeutics 2007, 4, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Frohman, E.M.; Racke, M.K.; Raine, C.S. Multiple Sclerosis—The Plaque and Its Pathogenesis. N. Engl. J. Med. 2006, 354, 942–955. [Google Scholar] [CrossRef]
- Gajofatto, A.; Benedetti, M.D. Treatment strategies for multiple sclerosis: When to start, when to change, when to stop? World J. Clin. Cases 2015, 3, 545–555. [Google Scholar] [CrossRef]
- Giovannoni, G. Disease-modifying treatments for early and advanced multiple sclerosis: A new treatment paradigm. Curr. Opin. Neurol. 2018, 31, 233–243. [Google Scholar] [CrossRef]
- Dhib-Jalbut, S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002, 58, S3–S9. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Carter, J. Multiple Sclerosis: Current and Emerging Disease-Modifying Therapies and Treatment Strategies. Mayo Clin. Proc. 2014, 89, 225–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buc, M. New biological agents in the treatment of multiple sclerosis. Bratisl. Lek. Listy 2018, 119, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Marziniak, M.; Meuth, D.R.N.S. Current Perspectives on Interferon Beta-1b for the Treatment of Multiple Sclerosis. Adv. Ther. 2014, 31, 915–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faissner, S.; Gold, R. Oral Therapies for Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9, a032011. [Google Scholar] [CrossRef] [PubMed]
- Strassburger-Krogias, K.; Ellrichmann, G.; Krogias, C.; Altmeyer, P.; Chan, A.; Gold, R. Fumarate treatment in progressive forms of multiple sclerosis: First results of a single-center observational study. Ther. Adv. Neurol. Disord. 2014, 7, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.A.; Chun, J. Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann. Neurol. 2011, 69, 759–777. [Google Scholar] [CrossRef]
- Cinamon, G.; Matloubian, M.; Lesneski, M.J.; Xu, Y.; Low, C.; Lu, T.; Proia, R.L.; Cyster, J.G. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol. 2004, 5, 713–720. [Google Scholar] [CrossRef]
- Subei, A.M.; Cohen, J.A. Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis. CNS Drugs 2015, 29, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W. Oral Fingolimod (FTY720) for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2006, 355, 1124–1140. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, B.Z.; Cohen, J.A.; Conway, D.S. Sphingosine 1-Phosphate Receptor Modulators for the Treatment of Multiple Sclerosis. Neurotherapeutics 2017, 14, 859–873. [Google Scholar] [CrossRef]
- Aktas, O.; Küry, P.; Kieseier, B.; Hartung, H.-P. Fingolimod is a potential novel therapy for multiple sclerosis. Nat. Rev. Neurol. 2010, 6, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Hartung, H.-P. Mechanism of Action of Oral Fingolimod (FTY720) in Multiple Sclerosis. Clin. Neuropharmacol. 2010, 33, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zécri, F.J. From Natural Product to the First Oral Treatment for Multiple Sclerosis: The Discovery of FTY720 (Gilenya™)? Curr. Opin. Chem. Biol. 2016, 32, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, J.; Delohery, T.; Zhang, N.; Arendt, C.; Jones, C. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J. Neuroimmunol. 2013, 265, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Claussen, M.C.; Korn, T. Immune mechanisms of new therapeutic strategies in MS—Teriflunomide. Clin. Immunol. 2012, 142, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Alcorn, N.; Saunders, S.; Madhok, R. Benefit-Risk Assessment of Leflunomide: An appraisal of leflunomide in rheumatoid arthritis 10 years after licensing. Drug Saf. 2009, 32, 1123–1134. [Google Scholar] [CrossRef]
- Gergely, P.; Nuesslein-Hildesheim, B.; Guerini, D.; Brinkmann, V.; Traebert, M.; Bruns, C.; Pan, S.; Gray, N.S.; Hinterding, K.; Cooke, N.G.; et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br. J. Pharmacol. 2012, 167, 1035–1047. [Google Scholar] [CrossRef]
- Selmaj, K.W.; Li, D.K.B.; Hartung, H.-P.; Hemmer, B.; Kappos, L.; Freedman, M.S.; Stüve, O.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): An adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013, 12, 756–767. [Google Scholar] [CrossRef]
- Kappos, L.; Li, D.K.B.; Stüve, O.; Hartung, H.-P.; Freedman, M.S.; Hemmer, B.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; Hunter, B.; et al. Safety and Efficacy of Siponimod (BAF312) in Patients With Relapsing-Remitting Multiple Sclerosis: Dose-Blinded, Randomized Extension of the Phase 2 BOLD Study. JAMA Neurol. 2016, 73, 1089–1098. [Google Scholar] [CrossRef]
- Kappos, L.; Bar-Or, A.; Cree, B.A.C.; Fox, R.J.; Giovannoni, G.; Gold, R.; Vermersch, P.; Arnold, D.L.; Arnould, S.; Scherz, T.; et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet 2018, 391, 1263–1273. [Google Scholar] [CrossRef]
- Giovannoni, G.; Comi, G.; Cook, S.; Rammohan, K.; Rieckmann, P.; Sørensen, P.S.; Vermersch, P.; Chang, P.; Hamlett, A.; Musch, B.; et al. A Placebo-Controlled Trial of Oral Cladribine for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2010, 362, 416–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afolabi, D.; Albor, C.; Zalewski, L.; Altmann, D.R.; Baker, D.; Schmierer, K. Positive impact of cladribine on quality of life in people with relapsing multiple sclerosis. Mult. Scler. J. 2017, 24, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Sorensen, P.S.; Cook, S.; Rammohan, K.; Rieckmann, P.; Comi, G.; Dangond, F.; Adeniji, A.K.; Vermersch, P. Safety and efficacy of cladribine tablets in patients with relapsing–remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study. Mult. Scler. J. 2018, 24, 1594–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannoni, G.; Sorensen, P.S.; Cook, S.; Rammohan, K.W.; Rieckmann, P.; Comi, G.; Dangond, F.; Hicking, C.; Vermersch, P. Efficacy of Cladribine Tablets in high disease activity subgroups of patients with relapsing multiple sclerosis: A post hoc analysis of the CLARITY study. Mult. Scler. J. 2019, 25, 819–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coles, A.J.; Wing, M.; Smith, S.; Coraddu, F.; Greer, S.; Taylor, C.; Weetman, A.; Hale, G.; Chatterjee, V.K.; Waldmann, H.; et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 1999, 354, 1691–1695. [Google Scholar] [CrossRef]
- Thompson, S.A.J.; Jones, J.L.; Cox, A.L.; Compston, D.A.S.; Coles, A.J. B-Cell Reconstitution and BAFF After Alemtuzumab (Campath-1H) Treatment of Multiple Sclerosis. J. Clin. Immunol. 2009, 30, 99–105. [Google Scholar] [CrossRef]
- Elices, M.J.; Osborn, L.; Takada, Y.; Crouse, C.; Luhowskyj, S.; Hemler, M.E.; Lobb, R.R. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/Fibronectin binding site. Cell 1990, 60, 577–584. [Google Scholar] [CrossRef]
- Thompson, A. A much-needed focus on progression in multiple sclerosis. Lancet Neurol. 2015, 14, 133–135. [Google Scholar] [CrossRef]
- Bittner, S.; Ruck, T.; Wiendl, H.; Grauer, O.M.; Meuth, S.G. Targeting B cells in relapsing–remitting multiple sclerosis: From pathophysiology to optimal clinical management. Ther. Adv. Neurol. Disord. 2017, 10, 51–66. [Google Scholar] [CrossRef]
- Olyaei, A.; Thi, K.; DeMattos, A.; Bennett, W. Use of basiliximab and daclizumab in kidney transplantation. Prog. Transplant. 2001, 11, 33–39. [Google Scholar] [CrossRef]
- Abboud, H.; Hill, E.; Siddiqui, J.; Serra, A.; Walter, B. Neuromodulation in multiple sclerosis. Mult. Scler. J. 2017, 23, 1663–1676. [Google Scholar] [CrossRef]
- Penn, R.D.; Savoy, S.M.; Corcos, D.; Latash, M.; Gottlieb, G.; Parke, B.; Kroin, J.S. Intrathecal Baclofen for Severe Spinal Spasticity. N. Engl. J. Med. 1989, 320, 1517–1521. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.A.; Hadjimichael, O.C.; Preiningerova, J.; Vollmer, T.L. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult. Scler. J. 2004, 10, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.H.; Galvez-Jimenez, N.; Machado, A.G.; Deogaonkar, M.; Cooper, S. Deep brain stimulation for movement disorders: Patient selection and technical options. Clevel. Clin. J. Med. 2012, 79 (Suppl. S2), S19–S24. [Google Scholar] [CrossRef]
- Centonze, D.; Koch, G.; Versace, V.; Mori, F.; Rossi, S.; Brusa, L.; Grossi, K.; Torelli, F.; Prosperetti, C.; Cervellino, A.; et al. Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology 2007, 68, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Mori, F.; Codecà, C.; Kusayanagi, H.; Monteleone, F.; Boffa, L.; Rimano, A.; Bernardi, G.; Koch, G.; Centonze, D. Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis. Eur. J. Neurol. 2010, 17, 295–300. [Google Scholar] [CrossRef]
- Mori, F.; Ljoka, C.; Magni, E.; Codecà, C.; Kusayanagi, H.; Monteleone, F.; Sancesario, A.; Bernardi, G.; Koch, G.; Foti, C.; et al. Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis. J. Neurol. 2011, 258, 1281–1287. [Google Scholar] [CrossRef]
- Song, J.J.; Popescu, A.; Bell, R.L. Present and potential use of spinal cord stimulation to control chronic pain. Pain Phys. 2014, 17, 235–246. [Google Scholar]
- Nagel, S.J.; Wilson, S.; Johnson, M.D.; Machado, A.; Frizon, L.; Chardon, M.K.; Reddy, C.G.; Gillies, G.T.; Howard, M.A. Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions. Neuromodul. Technol. Neural Interface 2017, 20, 307–321. [Google Scholar] [CrossRef]
- Zecca, C.; Digesu, G.; Robshaw, P.; Singh, A.; Elneil, S.; Gobbi, C. Maintenance Percutaneous Posterior Nerve Stimulation for Refractory Lower Urinary Tract Symptoms in Patients with Multiple Sclerosis: An Open Label, Multicenter, Prospective Study. J. Urol. 2014, 191, 697–702. [Google Scholar] [CrossRef]
- Engeler, D.S.; Meyer, D.; Abt, D.; Müller, S.; Schmid, H.-P. Sacral neuromodulation for the treatment of neurogenic lower urinary tract dysfunction caused by multiple sclerosis: A single-centre prospective series. BMC Urol. 2015, 15, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sèze, M.; Raibaut, P.; Gallien, P.; Even-Schneider, A.; Denys, P.; Bonniaud, V.; Gamé, X.; Amarenco, G. Transcutaneous posterior tibial nerve stimulation for treatment of the overactive bladder syndrome in multiple sclerosis: Results of a multicenter prospective study. Neurourol. Urodyn. 2011, 30, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Ozanimod: First Approval. Drugs 2020, 80, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Bristol Myers Squibb. US Food and Drug Administration Approves Bristol Myers Squibb’s ZEPOSIA® (Ozanimod); A New Oral Treatment for Relapsing Forms of Multiple Sclerosis. Available online: https://www.chemdiv.com/u-s-food-and-drug-administration-approves-bristol-myers-squibbs-zeposia-ozanimod-a-new-oral-treatment-for-relapsing-forms-of-multiple-sclerosis/ (accessed on 2 December 2020).
- Celgene Corporation. ZEPOSIA® (Ozanimod) Capsules: US Prescribing Information; FDA: Summit, NJ, USA, 2020. [Google Scholar]
- Comi, G.; Kappos, L.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.-P.; Montalban, X.; Havrdová, E.K.; Cree, B.A.C.; et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019, 18, 1009–1020. [Google Scholar] [CrossRef]
- Cohen, J.A.; Comi, G.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.-P.; Montalban, X.; Havrdová, E.K.; Cree, B.A.C.; et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019, 18, 1021–1033. [Google Scholar] [CrossRef]
- Cohen, J.A.; Comi, G.; Arnold, D.L.; Bar-Or, A.; Selmaj, K.W.; Steinman, L.; Havrdová, E.K.; Cree, B.A.C.; Montalbán, X.; Hartung, H.-P.; et al. Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Mult. Scler. J. 2019, 25, 1255–1262. [Google Scholar] [CrossRef]
- Meno-Tetang, G.M.L.; Li, H.; Mis, S.; Pyszczynski, N.; Heining, P.; Lowe, P.; Jusko, W.J. Physiologically Based Pharmacokinetic Modeling of FTY720 (2-Amino-2[2-(-4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) in Rats After Oral and Intravenous Doses. Drug Metab. Dispos. 2006, 34, 1480–1487. [Google Scholar] [CrossRef] [Green Version]
- Obinata, H.; Hla, T. Sphingosine 1-phosphate and inflammation. Int. Immunol. 2019, 31, 617–625. [Google Scholar] [CrossRef]
- Schwab, S.R.; Pereira, J.P.; Matloubian, M.; Xu, Y.; Huang, Y.; Cyster, J.G. Lymphocyte Sequestration Through S1P Lyase Inhibition and Disruption of S1P Gradients. Science 2005, 309, 1735–1739. [Google Scholar] [CrossRef]
- Matloubian, M.; Lo, C.G.; Cinamon, G.; Lesneski, M.J.; Xu, Y.; Brinkmann, V.; Allende, M.L.; Proia, R.L.; Cyster, J.G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004, 427, 355–360. [Google Scholar] [CrossRef]
- Eilken, H.M.; Adams, R.H. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 2010, 22, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Galvani, S.; Sanson, M.; Blaho, V.A.; Swendeman, S.L.; Obinata, H.; Conger, H.; Dahlbäck, B.; Kono, M.; Proia, R.L.; Smith, J.D.; et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1to limit vascular inflammation. Sci. Signal. 2015, 8, ra79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, N.; Sato, K.; Kon, J.; Tomura, H.; Yanagita, M.; Kuwabara, A.; Ui, M.; Okajima, F. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 2000, 352 Pt 3, 809–815. [Google Scholar] [CrossRef]
- Prüfer, N.; Kleuser, B.; Van Der Giet, M. The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality. Biol. Chem. 2015, 396, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Peng, H.; Liu, D.; Ji, L.; Niu, C.; Ren, J.; Pan, B.; Hu, J.; Zheng, L.; Huang, Y. High-density lipoprotein of patients with Type 2 Diabetes Mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: Relationship with HDL-associated sphingosine-1-phosphate. Cardiovasc. Diabetol. 2013, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Lv, P.; Mathew, A.V.; Liu, D.; Niu, C.; Wang, Y.; Ji, L.; Li, J.; Fu, Z.; Pan, B.; et al. The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. Cardiovasc. Diabetol. 2014, 13, 82. [Google Scholar] [CrossRef] [Green Version]
- Sattler, K.J.E.; Elbasan, S.; Keul, P.; Elter-Schulz, M.; Bode, C.; Gräler, M.H.; Bröcker-Preuss, M.; Budde, T.; Erbel, R.; Heusch, G.; et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res. Cardiol. 2010, 105, 821–832. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 52938427, Ozanimod. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ozanimod (accessed on 2 December 2020).
- Tran, J.Q.; Hartung, J.P.; Peach, R.J.; Boehm, M.F.; Rosen, H.; Smith, H.; Brooks, J.L.; Ms, G.A.T.; Olson, A.D.; Gujrathi, S.; et al. Results from the First-in-Human Study With Ozanimod, a Novel, Selective Sphingosine-1-Phosphate Receptor Modulator. J. Clin. Pharmacol. 2017, 57, 988–996. [Google Scholar] [CrossRef]
- Tran, J.Q.; Hartung, J.P.; Tompkins, C.-A.; Frohna, P.A. Effects of High- and Low-Fat Meals on the Pharmacokinetics of Ozanimod, a Novel Sphingosine-1-Phosphate Receptor Modulator. Clin. Pharmacol. Drug Dev. 2018, 7, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Tran, J.Q.; Hartung, J.P.; Olson, A.D.; Mendzelevski, B.; Timony, G.A.; Boehm, M.F.; Peach, R.J.; Gujrathi, S.; Frohna, P.A. Cardiac Safety of Ozanimod, a Novel Sphingosine-1-Phosphate Receptor Modulator: Results of a Thorough QT/QTc Study. Clin. Pharmacol. Drug Dev. 2018, 7, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.A.; Arnold, D.L.; Comi, G.; Bar-Or, A.; Gujrathi, S.; Hartung, J.P.; Cravets, M.; Olson, A.; Frohna, P.A.; Selmaj, K.W. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): A randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016, 15, 373–381. [Google Scholar] [CrossRef]
- Swallow, E.; Patterson-Lomba, O.; Yin, L.; Mehta, R.; Pelletier, C.; Kao, D.; Sheffield, J.K.; Stonehouse, T.; Signorovitch, J. Comparative safety and efficacy of ozanimod versus fingolimod for relapsing multiple sclerosis. J. Comp. Eff. Res. 2020, 9, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campagnolo, D.; Montero-Embalsado, C.; Meier-Davis, S.; Minton, N. Pregnancy Outcomes in the Ozanimod Nonclinical and Clinical Development Program. Neurology 2018, 90, 4363. [Google Scholar]
Author (Year) | Groups Studied and Intervention | Results and Findings | Conclusions |
---|---|---|---|
Tran J. et al. (2017) [112] | Phase 1 single-center, randomized, double-blind, placebo-controlled study comparing single-ascending doses of ozanimod 0.3, 1, 2, or 3 mg; 7-day multiple ascending-doses of ozanimod 0.3, 1, or 2 mg; 28-day multiple ascending-doses of ozanimod of 0.3, 1, or 1.5 mg; a dose-escalation protocol up to ozanimod 2 mg; and placebo in 88 healthy subjects. | A dose-dependent negative chronotropic effect occurred on day 1 with ozanimod. This effect was mitigated in the dose-escalation cohort. | The dose escalation protocol appears to be a safer approach to dosing and has been carried forward into subsequent clinical trials. |
Tran J. et al. (2018) [114] | Phase 1 single-center, randomized, double-blind, placebo-controlled, positive-controlled, parallel-group thorough QT/QTc study comparing ozanimod 0.25, 0.5, 1, and 2 mg to placebo in healthy subjects. | One ozanimod-treated subject and one placebo-treated subject had a QTcF > 450 ms; no subjects had a QTcF > 480 ms. There were no clinically significant effects on the PR or QRS intervals. The incidence of adverse effects was similar between ozanimod-treated and placebo-treated groups. | Ozanimod does not prolong the QTc interval at therapeutic or supratherapeutic doses. There were no safety issues discovered during this study. |
Cohen J. et al. (2016) [115] | Phase 2 multi-center, randomized, double-blind, placebo-controlled clinical trial (RADIANCE) comparing ozanimod 0.5 and 1 mg with placebo in subjects with relapsing multiple sclerosis over 24 weeks. | The mean cumulative number of gadolinium-enhancing lesions on MRI was reduced with both doses of ozanimod: 1.5 with ozanimod 0.5 mg and 1.5 with ozanimod 1 mg versus 11.1 with placebo. The most common TEAEs were nasopharyngitis and headache. There were no serious infectious or cardiac adverse events and no cases of macular edema. | Ozanimod was effective in reducing MRI lesion activity and was well tolerated in participants with RRMS. |
Cohen J. et al. (2019) [99] | Dose-blinded 2-year extension of the RADIANCE phase 2 study; participants previously assigned ozanimod continued at the same dose and participants previously assigned placebo were randomized to ozanimod 0.5 or 1 mg. | The number of gadolinium-enhancing lesions and new or enlarging T2 lesions were low in all treatment groups throughout the study period. The TEAEs reported in this study were consistent with those seen during the 24-week RADIANCE phase 2 study. There were no clinically significant cardiac TEAEs. There were four cases of increased ALT that led to study discontinuation; all recovered after drug cessation. | Ozanimod demonstrated continued efficacy in participants previously assigned ozanimod and reached similar efficacy in participants who were previously assigned placebo. Ozanimod continued to be well tolerated with no safety issues discovered. The incidence of TEAEs did not appear to increase over time and was similar between the two doses. |
Author (Year) | Groups Studied and Intervention | Results and Findings | Conclusions |
---|---|---|---|
Cohen J. et al. (2019) [98] | Phase 3 multi-center, double-blind, double-dummy, active-controlled, parallel-group clinical trial (RADIANCE) comparing ozanimod 0.5 and 1 mg with interferon beta-1a 30 μg in subjects with relapsing multiple sclerosis over 24 months. | The adjusted annualized relapse rate at 24 months was 0.17 with ozanimod 1 mg, 0.22 with ozanimod 0.5 mg, and 0.28 with interferon beta-1a. Ozanimod was also associated with significantly lower numbers of gadolinium-enhancing lesions and new or enlarging T2 lesions than interferon beta-1a. The incidence of TEAEs was higher in the interferon beta-1a group than in either ozanimod group. There were no clinically significant cardiac TEAEs, and the incidence of infection was similar across treatment groups. | Both doses of ozanimod were more effective than interferon beta-1a in clinically meaningful measures of disease activity. The ozanimod 1 mg dose showed numerically greater efficacy than the 0.5 mg dose. Ozanimod was well tolerated in this study. |
Comi G. et al. (2019) [97] | Phase 3 multi-center, double-blind, double-dummy, active-controlled, parallel-group clinical trial (SUNBEAM) comparing ozanimod 0.5 and 1 mg with interferon beta-1a 30 μg in subjects with relapsing multiple sclerosis over 12 months. | The adjusted annualized relapse rate at 12 months was 0.18 with ozanimod 1 mg, 0.24 with ozanimod 0.5 mg, and 0.35 with interferon beta-1a. There were significantly lower numbers of gadolinium-enhancing lesions and new or enlarging T2 lesions with ozanimod than with interferon beta-1a. The incidence of TEAEs was higher in the interferon beta-1a group than in either ozanimod group. There were no clinically significant cardiac TEAEs, and the incidence of infection was similar across treatment groups. | Both doses of ozanimod were more effective than interferon beta-1a in reducing active disease. The ozanimod 1 mg dose showed numerically greater efficacy than the 0.5 mg dose. Ozanimod was well tolerated in this study. |
Swallow E. et al. (2020) [116] | Comparative review using published data from the phase 3 clinical trials RADIANCE, SUNBEAM, TRANSFORMS, FREEDOMS, and FREEDOMS II to compare the safety and efficacy of ozanimod with fingolimod 0.5 mg. | There was no significant difference in annualized relapse rate or proportions of participants free of confirmed disability progression at 3 and 6 months between ozanimod and fingolimod. Ozanimod showed favorable safety outcomes when compared to fingolimod, including a significantly lower risk of any adverse event. | Efficacy outcomes were similar between ozanimod and fingolimod. Ozanimod was associated with a more favorable benefit-risk profile than fingolimod. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lassiter, G.; Melancon, C.; Rooney, T.; Murat, A.-M.; Kaye, J.S.; Kaye, A.M.; Kaye, R.J.; Cornett, E.M.; Kaye, A.D.; Shah, R.J.; et al. Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Neurol. Int. 2020, 12, 89-108. https://doi.org/10.3390/neurolint12030016
Lassiter G, Melancon C, Rooney T, Murat A-M, Kaye JS, Kaye AM, Kaye RJ, Cornett EM, Kaye AD, Shah RJ, et al. Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Neurology International. 2020; 12(3):89-108. https://doi.org/10.3390/neurolint12030016
Chicago/Turabian StyleLassiter, Grace, Carlie Melancon, Tyler Rooney, Anne-Marie Murat, Jessica S. Kaye, Adam M. Kaye, Rachel J. Kaye, Elyse M. Cornett, Alan D. Kaye, Rutvij J. Shah, and et al. 2020. "Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects" Neurology International 12, no. 3: 89-108. https://doi.org/10.3390/neurolint12030016
APA StyleLassiter, G., Melancon, C., Rooney, T., Murat, A.-M., Kaye, J. S., Kaye, A. M., Kaye, R. J., Cornett, E. M., Kaye, A. D., Shah, R. J., Viswanath, O., & Urits, I. (2020). Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Neurology International, 12(3), 89-108. https://doi.org/10.3390/neurolint12030016