Thwarting Alzheimer’s Disease through Healthy Lifestyle Habits: Hope for the Future
Abstract
:1. Introduction
2. Modifiable Risk Factors
2.1. Diet
2.1.1. Western Diet
2.1.2. Ketogenic Diet
2.1.3. Mediterranean Diet
2.1.4. Indian Diet
2.1.5. Mediterranean—DASH Diet
2.1.6. Flexitarian Diet (or) Ketoflex 12/3 Diet
2.1.7. Vegetarian Diet
2.1.8. Vitamins
2.2. Exercise
2.2.1 Relation between Alzheimer’s Disease and Exercise
In Humans
In Mice
2.3. Education
2.4. Social Life
2.5. Substance Abuse
2.5.1. Cocaine
2.5.2. Methamphetamine
2.5.3. Benzodiazepine
2.6. Smoking
2.7. Alcohol
2.8. Sleep
3. Improving Existing Conditions
3.1. Vascular Health
3.2. Cardiovascular Health
3.3. Hearing Loss
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, B.D.; Leurgans, S.E.; Hebert, L.E.; Scherr, P.A.; Yaffe, K.; Bennett, D.A. Contribution of Alzheimer disease to mortality in the United States. Neurology 2014, 82, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Karran, E.; De Strooper, B. The amyloid hypothesis in Alzheimer disease: New insights from new therapeutics. Nat. Rev. Drug Discov. 2022, 21, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.; Spina, S.; Miller, B.L. Frontotemporal dementia. Lancet 2015, 386, 1672–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388, 839–840. [Google Scholar] [CrossRef]
- Akhter, F.; Persaud, A.; Zaokari, Y.; Zhao, Z.; Zhu, D. Vascular Dementia and Underlying Sex Differences. Front. Aging Neurosci. 2021, 13, 720715. [Google Scholar] [CrossRef]
- Farfel, J.M.; Yu, L.; De Jager, P.L.; Schneider, J.A.; Bennett, D.A. Association of APOE with tau-tangle pathology with and without beta-amyloid. Neurobiol. Aging 2016, 37, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Abondio, P.; Sarno, S.; Giuliani, C.; Lagana, V.; Maletta, R.; Bernardi, L.; Bruno, F.; Colao, R.; Puccio, G.; Frangipane, F.; et al. Amyloid Precursor Protein A713T Mutation in Calabrian Patients with Alzheimer’s Disease: A Population Genomics Approach to Estimate Inheritance from a Common Ancestor. Biomedicines 2021, 10, 20. [Google Scholar] [CrossRef]
- Turner, R.S. Alzheimer’s disease in man and transgenic mice: Females at higher risk. Am. J. Pathol. 2001, 158, 797–801. [Google Scholar] [CrossRef]
- Edwards Iii, G.A.; Gamez, N.; Escobedo, G., Jr.; Calderon, O.; Moreno-Gonzalez, I. Modifiable Risk Factors for Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 146. [Google Scholar] [CrossRef]
- Croze, M.L.; Zimmer, L. Ozone Atmospheric Pollution and Alzheimer’s Disease: From Epidemiological Facts to Molecular Mechanisms. J. Alzheimer’s Dis. 2018, 62, 503–522. [Google Scholar] [CrossRef]
- van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease-A Review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, M.; Yamagishi, S. Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 2008, 14, 973–978. [Google Scholar] [CrossRef] [PubMed]
- McGrattan, A.M.; McGuinness, B.; McKinley, M.C.; Kee, F.; Passmore, P.; Woodside, J.V.; McEvoy, C.T. Diet and Inflammation in Cognitive Ageing and Alzheimer’s Disease. Curr. Nutr. Rep. 2019, 8, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Nissankara Rao, L.S.; Kilari, E.K.; Kola, P.K. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutr. Neurosci. 2021, 24, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Rusek, M.; Pluta, R.; Ulamek-Koziol, M.; Czuczwar, S.J. Ketogenic Diet in Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnard, N.D.; Bunner, A.E.; Agarwal, U. Saturated and trans fats and dementia: A systematic review. Neurobiol. Aging 2014, 35 (Suppl. S2), S65–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.K.; Swerdlow, R.H.; Burns, J.M.; Sullivan, D.K. An Experimental Ketogenic Diet for Alzheimer Disease Was Nutritionally Dense and Rich in Vegetables and Avocado. Curr. Dev. Nutr. 2019, 3, nzz003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, T.M.; Kanoski, S.E. Blood-brain barrier disruption: Mechanistic links between Western diet consumption and dementia. Front. Aging Neurosci. 2014, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Shakersain, B.; Santoni, G.; Larsson, S.C.; Faxen-Irving, G.; Fastbom, J.; Fratiglioni, L.; Xu, W. Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimer’s Dement. 2016, 12, 100–109. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Effectiveness of the Mediterranean diet: Can it help delay or prevent Alzheimer’s disease? J. Alzheimer’s Dis. 2010, 20, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Parsaik, A.K.; Mielke, M.M.; Erwin, P.J.; Knopman, D.S.; Petersen, R.C.; Roberts, R.O. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimer’s Dis. 2014, 39, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Brickman, A.M.; Stern, Y.; Habeck, C.G.; Razlighi, Q.R.; Luchsinger, J.A.; Manly, J.J.; Schupf, N.; Mayeux, R.; Scarmeas, N. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 2015, 85, 1744–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreu-Reinon, M.E.; Chirlaque, M.D.; Gavrila, D.; Amiano, P.; Mar, J.; Tainta, M.; Ardanaz, E.; Larumbe, R.; Colorado-Yohar, S.M.; Navarro-Mateu, F.; et al. Mediterranean Diet and Risk of Dementia and Alzheimer’s Disease in the EPIC-Spain Dementia Cohort Study. Nutrients 2021, 13, 700. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; et al. Protective Effects of Indian Spice Curcumin Against Amyloid-beta in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 61, 843–866. [Google Scholar] [CrossRef]
- Kang, J.H.; Ascherio, A.; Grodstein, F. Fruit and vegetable consumption and cognitive decline in aging women. Ann. Neurol. 2005, 57, 713–720. [Google Scholar] [CrossRef]
- Laitinen, M.H.; Ngandu, T.; Rovio, S.; Helkala, E.L.; Uusitalo, U.; Viitanen, M.; Nissinen, A.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study. Dement. Geriatr. Cogn. Disord. 2006, 22, 99–107. [Google Scholar] [CrossRef]
- Barzel, U.S.; Massey, L.K. Excess dietary protein can adversely affect bone. J. Nutr. 1998, 128, 1051–1053. [Google Scholar] [CrossRef] [Green Version]
- Fuhrman, J. The Hidden Dangers of Fast and Processed Food. Am. J. Lifestyle Med. 2018, 12, 375–381. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F.; Frisardi, V.; Seripa, D.; Logroscino, G.; Imbimbo, B.P.; Pilotto, A. Diet and Alzheimer’s disease risk factors or prevention: The current evidence. Expert Rev. Neurother. 2011, 11, 677–708. [Google Scholar] [CrossRef]
- Simons, M.; Keller, P.; Dichgans, J.; Schulz, J.B. Cholesterol and Alzheimer’s disease: Is there a link? Neurology 2001, 57, 1089–1093. [Google Scholar] [CrossRef] [Green Version]
- Sjogren, M.; Blennow, K. The link between cholesterol and Alzheimer’s disease. World J. Biol. Psychiatry 2005, 6, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019, 47, 529–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, P.; Dhana, K.; Barnes, L.L.; Holland, T.M.; Zhang, Y.; Evans, D.A.; Morris, M.C. Unhealthy foods may attenuate the beneficial relation of a Mediterranean diet to cognitive decline. Alzheimer’s Dement. 2021, 17, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Fu, Q.; Sterrett, J.; Hillard, C.J.; Lane, R.H.; Majnik, A. Adverse maternal environment and western diet impairs cognitive function and alters hippocampal glucocorticoid receptor promoter methylation in male mice. Physiol. Rep. 2020, 8, e14407. [Google Scholar] [CrossRef] [PubMed]
- Scarmeas, N.; Stern, Y.; Tang, M.X.; Mayeux, R.; Luchsinger, J.A. Mediterranean diet and risk for Alzheimer’s disease. Ann. Neurol. 2006, 59, 912–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braak, H.; Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 1995, 16, 271–278; discussion 278–284. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.; Corley, J.; Cox, S.R.; Valdes Hernandez, M.C.; Craig, L.C.; Dickie, D.A.; Karama, S.; McNeill, G.M.; Bastin, M.E.; Wardlaw, J.M.; et al. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology 2017, 88, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Ballarini, T.; Melo van Lent, D.; Brunner, J.; Schroder, A.; Wolfsgruber, S.; Altenstein, S.; Brosseron, F.; Buerger, K.; Dechent, P.; Dobisch, L.; et al. Mediterranean Diet, Alzheimer Disease Biomarkers and Brain Atrophy in Old Age. Neurology 2021, 96, e2920–e2932. [Google Scholar] [CrossRef]
- Tangney, C.C. DASH and Mediterranean-type Dietary Patterns to Maintain Cognitive Health. Curr. Nutr. Rep. 2014, 3, 51–61. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Smith, P.J.; Mabe, S.; Hinderliter, A.; Lin, P.H.; Liao, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Kraus, W.E.; Doraiswamy, P.M.; et al. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology 2019, 92, e212–e223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, M.; Jensen, M.K. Association of the MIND diet with cognition and risk of Alzheimer’s disease. Curr. Opin. Lipidol. 2016, 27, 303–304. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimer’s Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Devore, E.E.; Kang, J.H.; Breteler, M.M.; Grodstein, F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann. Neurol. 2012, 72, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvado, J.; San Julian, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.A. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef] [Green Version]
- Urpi-Sarda, M.; Casas, R.; Chiva-Blanch, G.; Romero-Mamani, E.S.; Valderas-Martinez, P.; Arranz, S.; Andres-Lacueva, C.; Llorach, R.; Medina-Remon, A.; Lamuela-Raventos, R.M.; et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomakers related to atherosclerosis. Pharmacol. Res. 2012, 65, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Hicks, T.M.; Knowles, S.O.; Farouk, M.M. Global Provisioning of Red Meat for Flexitarian Diets. Front. Nutr. 2018, 5, 50. [Google Scholar] [CrossRef]
- Pilla, R. Clinical applications of ketogenic diet-induced ketosis in neurodegenerative and metabolism-related pathologies. Proceedings 2020, 61, 29. [Google Scholar]
- Barnard, N.D.; Bush, A.I.; Ceccarelli, A.; Cooper, J.; de Jager, C.A.; Erickson, K.I.; Fraser, G.; Kesler, S.; Levin, S.M.; Lucey, B.; et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol. Aging 2014, 35 (Suppl. S2), S74–S78. [Google Scholar] [CrossRef] [Green Version]
- Giem, P.; Beeson, W.L.; Fraser, G.E. The incidence of dementia and intake of animal products: Preliminary findings from the Adventist Health Study. Neuroepidemiology 1993, 12, 28–36. [Google Scholar] [CrossRef]
- Guillemin, G.J.; Essa, M.M.; Song, B.J.; Manivasagam, T. Dietary Supplements/Antioxidants: Impact on Redox Status in Brain Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 5048432. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Schneider, J.A.; Li, H.; Tangney, C.C.; Nag, S.; Bennett, D.A.; Honer, W.G.; Barnes, L.L. Brain tocopherols related to Alzheimer’s disease neuropathology in humans. Alzheimer’s Dement. 2015, 11, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devore, E.E.; Grodstein, F.; van Rooij, F.J.; Hofman, A.; Stampfer, M.J.; Witteman, J.C.; Breteler, M.M. Dietary antioxidants and long-term risk of dementia. Arch. Neurol. 2010, 67, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilla, R. Vitamin, Mineral, and Multivitamin Supplementation to Prevent Cardiovascular Disease and Cancer. Am. Fam. Physician 2022, 106, 565–566. [Google Scholar]
- Yuan, C.; Fondell, E.; Ascherio, A.; Okereke, O.I.; Grodstein, F.; Hofman, A.; Willett, W.C. Long-Term Intake of Dietary Carotenoids Is Positively Associated with Late-Life Subjective Cognitive Function in a Prospective Study in US Women. J. Nutr. 2020, 150, 1871–1879. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.F. Associations between Homocysteine, Folic Acid, Vitamin B12 and Alzheimer’s Disease: Insights from Meta-Analyses. J. Alzheimer’s Dis. 2015, 46, 777–790. [Google Scholar] [CrossRef]
- Feart, C.; Helmer, C.; Merle, B.; Herrmann, F.R.; Annweiler, C.; Dartigues, J.F.; Delcourt, C.; Samieri, C. Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer’s disease in older adults. Alzheimer’s Dement. 2017, 13, 1207–1216. [Google Scholar] [CrossRef]
- Adalier, N.; Parker, H. Vitamin E, Turmeric and Saffron in Treatment of Alzheimer’s Disease. Antioxidants 2016, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Boccardi, V.; Baroni, M.; Mangialasche, F.; Mecocci, P. Vitamin E family: Role in the pathogenesis and treatment of Alzheimer’s disease. Alzheimer’s Dement. 2016, 2, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, A.; Wang, B.J.; Hsu, W.M.; Chang, M.Y.; Liang, S.M.; Liao, Y.F. Retinoic acid-elicited RARalpha/RXRalpha signaling attenuates Abeta production by directly inhibiting gamma-secretase-mediated cleavage of amyloid precursor protein. ACS Chem. Neurosci. 2013, 4, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- de Jager, C.A.; Oulhaj, A.; Jacoby, R.; Refsum, H.; Smith, A.D. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: A randomized controlled trial. Int. J. Geriatr. Psychiatry 2012, 27, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, D.J.; Lang, I.A.; Langa, K.M.; Muniz-Terrera, G.; Phillips, C.L.; Cherubini, A.; Ferrucci, L.; Melzer, D. Vitamin D and risk of cognitive decline in elderly persons. Arch. Intern. Med. 2010, 170, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Cass, S.P. Alzheimer’s Disease and Exercise: A Literature Review. Curr. Sport. Med. Rep. 2017, 16, 19–22. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; Garcia-Lucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A.G.; et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport Health Sci. 2020, 9, 394–404. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Castillo-Garcia, A.; Morales, J.S.; de la Villa, P.; Hampel, H.; Emanuele, E.; Lista, S.; Lucia, A. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res. Rev. 2020, 62, 101108. [Google Scholar] [CrossRef]
- Hoffmann, K.; Sobol, N.A.; Frederiksen, K.S.; Beyer, N.; Vogel, A.; Vestergaard, K.; Braendgaard, H.; Gottrup, H.; Lolk, A.; Wermuth, L.; et al. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer’s Disease: A Randomized Controlled Trial. J. Alzheimer’s Dis. 2016, 50, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Fiatarone Singh, M.A.; Gates, N.; Saigal, N.; Wilson, G.C.; Meiklejohn, J.; Brodaty, H.; Wen, W.; Singh, N.; Baune, B.T.; Suo, C.; et al. The Study of Mental and Resistance Training (SMART) study-resistance training and/or cognitive training in mild cognitive impairment: A randomized, double-blind, double-sham controlled trial. J. Am. Med. Dir. Assoc. 2014, 15, 873–880. [Google Scholar] [CrossRef]
- van Gelder, B.M.; Tijhuis, M.A.; Kalmijn, S.; Giampaoli, S.; Nissinen, A.; Kromhout, D. Physical activity in relation to cognitive decline in elderly men: The FINE Study. Neurology 2004, 63, 2316–2321. [Google Scholar] [CrossRef]
- Stillman, C.M.; Lopez, O.L.; Becker, J.T.; Kuller, L.H.; Mehta, P.D.; Tracy, R.P.; Erickson, K.I. Physical activity predicts reduced plasma beta amyloid in the Cardiovascular Health Study. Ann. Clin. Transl. Neurol. 2017, 4, 284–291. [Google Scholar] [CrossRef]
- Sattler, C.; Erickson, K.I.; Toro, P.; Schroder, J. Physical fitness as a protective factor for cognitive impairment in a prospective population-based study in Germany. J. Alzheimer’s Dis. 2011, 26, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Teri, L.; Gibbons, L.E.; McCurry, S.M.; Logsdon, R.G.; Buchner, D.M.; Barlow, W.E.; Kukull, W.A.; LaCroix, A.Z.; McCormick, W.; Larson, E.B. Exercise plus behavioral management in patients with Alzheimer disease: A randomized controlled trial. JAMA 2003, 290, 2015–2022. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Pillard, F.; Klapouszczak, A.; Reynish, E.; Thomas, D.; Andrieu, S.; Riviere, D.; Vellas, B. Exercise program for nursing home residents with Alzheimer’s disease: A 1-year randomized, controlled trial. J. Am. Geriatr. Soc. 2007, 55, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.H.; Kang, E.B.; Oh, Y.S.; Yang, D.S.; Cho, J.Y. Treadmill exercise decreases amyloid-beta burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp. Neurol. 2017, 288, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.P.; Hoppe, J.B.; Saccomori, A.B.; Dos Santos, B.G.; Sagini, J.P.; Crestani, M.S.; August, P.M.; Hozer, R.M.; Grings, M.; Parmeggiani, B.; et al. Physical Exercise During Pregnancy Prevents Cognitive Impairment Induced by Amyloid-beta in Adult Offspring Rats. Mol. Neurobiol. 2019, 56, 2022–2038. [Google Scholar] [CrossRef]
- Um, H.S.; Kang, E.B.; Koo, J.H.; Kim, H.T.; Jin, L.; Kim, E.J.; Yang, C.H.; An, G.Y.; Cho, I.H.; Cho, J.Y. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci. Res. 2011, 69, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mesa, Y.; Lopez-Ramos, J.C.; Gimenez-Llort, L.; Revilla, S.; Guerra, R.; Gruart, A.; Laferla, F.M.; Cristofol, R.; Delgado-Garcia, J.M.; Sanfeliu, C. Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J. Alzheimer’s Dis. 2011, 24, 421–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, M.; Chida, Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol. Med. 2009, 39, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Lin, M.S.; Tzeng, I.S. Relationship Between Exercise and Alzheimer’s Disease: A Narrative Literature Review. Front. Neurosci. 2020, 14, 131. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.L.; Ma, X.T.; Wang, J.J.; Liu, H.; Chen, Y.F.; Yang, Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res. 2017, 317, 332–339. [Google Scholar] [CrossRef]
- Rosa, J.M.; Camargo, A.; Wolin, I.A.V.; Kaster, M.P.; Rodrigues, A.L.S. Physical exercise prevents amyloid beta1-40-induced disturbances in NLRP3 inflammasome pathway in the hippocampus of mice. Metab. Brain Dis. 2021, 36, 351–359. [Google Scholar] [CrossRef]
- Stern, Y.; Gurland, B.; Tatemichi, T.K.; Tang, M.X.; Wilder, D.; Mayeux, R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA 1994, 271, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Letenneur, L.; Gilleron, V.; Commenges, D.; Helmer, C.; Orgogozo, J.M.; Dartigues, J.F. Are sex and educational level independent predictors of dementia and Alzheimer’s disease? Incidence data from the PAQUID project. J. Neurol. Neurosurg. Psychiatry 1999, 66, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Karp, A.; Kareholt, I.; Qiu, C.; Bellander, T.; Winblad, B.; Fratiglioni, L. Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. Am. J. Epidemiol. 2004, 159, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, C.M.; Kokmen, E.; Offord, K.P.; Kurland, L.T. Lack of association between Alzheimer’s disease and education, occupation, marital status, or living arrangement. Neurology 1992, 42, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Thow, M.E.; Summers, M.J.; Saunders, N.L.; Summers, J.J.; Ritchie, K.; Vickers, J.C. Further education improves cognitive reserve and triggers improvement in selective cognitive functions in older adults: The Tasmanian Healthy Brain Project. Alzheimer’s Dement. 2018, 10, 22–30. [Google Scholar] [CrossRef]
- Wilson, R.S.; Mendes De Leon, C.F.; Barnes, L.L.; Schneider, J.A.; Bienias, J.L.; Evans, D.A.; Bennett, D.A. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 2002, 287, 742–748. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [Google Scholar] [CrossRef]
- Kontos, P.C.; Naglie, G. Bridging theory and practice:Imagination, the body, and person-centred dementia care. Dementia 2007, 6, 549–569. [Google Scholar] [CrossRef]
- Logsdon, R.G.; Gibbons, L.E.; McCurry, S.M.; Teri, L. Assessing quality of life in older adults with cognitive impairment. Psychosom. Med. 2002, 64, 510–519. [Google Scholar] [CrossRef]
- Van der Mussele, S.; Bekelaar, K.; Le Bastard, N.; Vermeiren, Y.; Saerens, J.; Somers, N.; Marien, P.; Goeman, J.; De Deyn, P.P.; Engelborghs, S. Prevalence and associated behavioral symptoms of depression in mild cognitive impairment and dementia due to Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2013, 28, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.; Garrett, C.; Machado, J.C.; Vilaca, M.; Pereira, M.G. Quality of life in patients with mild Alzheimer disease: The mediator role of mindfulness and spirituality. Aging Ment. Health 2020, 24, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Torralva, T.; Dorrego, F.; Sabe, L.; Chemerinski, E.; Starkstein, S.E. Impairments of social cognition and decision making in Alzheimer’s disease. Int. Psychogeriatr. 2000, 12, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Arkin, S. Language-enriched exercise plus socialization slows cognitive decline in Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dement. 2007, 22, 62–77. [Google Scholar] [CrossRef]
- Miller, V.; Palermo, T.M.; Grewe, S.D. Quality of life in pediatric epilepsy: Demographic and disease-related predictors and comparison with healthy controls. Epilepsy Behav. 2003, 4, 36–42. [Google Scholar] [CrossRef]
- Zhang, X.X.; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, J.T. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimer’s Dis. 2021, 8, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Kuerbis, A.; Sacco, P.; Blazer, D.G.; Moore, A.A. Substance abuse among older adults. Clin. Geriatr. Med. 2014, 30, 629–654. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.J.; Fang, Z.Y.; Yang, Y.; Deng, H.M.; Wang, J.Z. Alzheimer-like phosphorylation of tau and neurofilament induced by cocaine in vivo. Acta Pharmacol. Sin. 2003, 24, 512–518. [Google Scholar]
- Alabed, S.; Zhou, H.; Sariyer, I.K.; Chang, S.L. Meta-Analysis of Methamphetamine Modulation on Amyloid Precursor Protein through HMGB1 in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 4781. [Google Scholar] [CrossRef]
- Tapiainen, V.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Hartikainen, S.; Tolppanen, A.M. The risk of Alzheimer’s disease associated with benzodiazepines and related drugs: A nested case-control study. Acta Psychiatr. Scand. 2018, 138, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Doll, R.; Peto, R.; Boreham, J.; Sutherland, I. Smoking and dementia in male British doctors: Prospective study. BMJ 2000, 320, 1097–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, D.; Zhou, D.H.; Li, J.; Wang, J.Y.; Gao, C.; Chen, M. A 2-year follow-up study of cigarette smoking and risk of dementia. Eur. J. Neurol. 2004, 11, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Moffat, S.D.; Zonderman, A.B.; Metter, E.J.; Kawas, C.; Blackman, M.R.; Harman, S.M.; Resnick, S.M. Free testosterone and risk for Alzheimer disease in older men. Neurology 2004, 62, 188–193. [Google Scholar] [CrossRef]
- Luchsinger, J.A.; Reitz, C.; Honig, L.S.; Tang, M.X.; Shea, S.; Mayeux, R. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 2005, 65, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, N.T.; Bienias, J.L.; Bennett, D.A.; Wilson, R.S.; Morris, M.C.; Schneider, J.A.; Shah, R.C.; Evans, D.A. The relation of cigarette smoking to incident Alzheimer’s disease in a biracial urban community population. Neuroepidemiology 2006, 26, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C.; den Heijer, T.; van Duijn, C.; Hofman, A.; Breteler, M.M. Relation between smoking and risk of dementia and Alzheimer disease: The Rotterdam Study. Neurology 2007, 69, 998–1005. [Google Scholar] [CrossRef]
- Rusanen, M.; Rovio, S.; Ngandu, T.; Nissinen, A.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife smoking, apolipoprotein E and risk of dementia and Alzheimer’s disease: A population-based cardiovascular risk factors, aging and dementia study. Dement. Geriatr. Cogn. Disord. 2010, 30, 277–284. [Google Scholar] [CrossRef]
- Nooyens, A.C.; van Gelder, B.M.; Verschuren, W.M. Smoking and cognitive decline among middle-aged men and women: The Doetinchem Cohort Study. Am. J. Public Health 2008, 98, 2244–2250. [Google Scholar] [CrossRef]
- Choi, D.; Choi, S.; Park, S.M. Effect of smoking cessation on the risk of dementia: A longitudinal study. Ann. Clin. Transl. Neurol. 2018, 5, 1192–1199. [Google Scholar] [CrossRef]
- Andrews, S.J.; Goate, A.; Anstey, K.J. Association between alcohol consumption and Alzheimer’s disease: A Mendelian randomization study. Alzheimer’s Dement. 2020, 16, 345–353. [Google Scholar] [CrossRef]
- Firbank, M.J.; O’Brien, J.T.; Ritchie, K.; Wells, K.; Williams, G.; Su, L.; Ritchie, C.W. Midlife alcohol consumption and longitudinal brain atrophy: The PREVENT-Dementia study. J. Neurol. 2020, 267, 3282–3286. [Google Scholar] [CrossRef] [PubMed]
- Toda, A.; Tagata, Y.; Nakada, T.; Komatsu, M.; Shibata, N.; Arai, H. Changes in Mini-Mental State Examination score in Alzheimer’s disease patients after stopping habitual drinking. Psychogeriatrics 2013, 13, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Feng, Y. Alcohol consumption and risk of Alzheimer’s disease: A dose-response meta-analysis. Geriatr. Gerontol. Int. 2022, 22, 278–285. [Google Scholar] [CrossRef]
- Koch, M.; Fitzpatrick, A.L.; Rapp, S.R.; Nahin, R.L.; Williamson, J.D.; Lopez, O.L.; DeKosky, S.T.; Kuller, L.H.; Mackey, R.H.; Mukamal, K.J.; et al. Alcohol Consumption and Risk of Dementia and Cognitive Decline Among Older Adults With or Without Mild Cognitive Impairment. JAMA Netw. Open 2019, 2, e1910319. [Google Scholar] [CrossRef] [Green Version]
- Kish, S.J. Pharmacologic mechanisms of crystal meth. CMAJ 2008, 178, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruickshank, C.C.; Dyer, K.R. A review of the clinical pharmacology of methamphetamine. Addiction 2009, 104, 1085–1099. [Google Scholar] [CrossRef]
- Graves, A.B.; van Duijn, C.M.; Chandra, V.; Fratiglioni, L.; Heyman, A.; Jorm, A.F.; Kokmen, E.; Kondo, K.; Mortimer, J.A.; Rocca, W.A.; et al. Alcohol and tobacco consumption as risk factors for Alzheimer’s disease: A collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int. J. Epidemiol. 1991, 20 (Suppl. S2), S48–S57. [Google Scholar] [CrossRef] [Green Version]
- Swan, G.E.; Lessov-Schlaggar, C.N. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol. Rev. 2007, 17, 259–273. [Google Scholar] [CrossRef]
- Brody, A.L. Functional brain imaging of tobacco use and dependence. J. Psychiatr. Res. 2006, 40, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, T.C.; Meyerhoff, D.J.; Yoder, K.K. Cigarette smoking is associated with cortical thinning in anterior frontal regions, insula and regions showing atrophy in early Alzheimer’s Disease. Drug Alcohol. Depend. 2018, 192, 277–284. [Google Scholar] [CrossRef]
- Toda, N.; Okamura, T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer’s disease. J. Pharmacol. Sci. 2016, 131, 223–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, T.C.; Korecka, M.; Trojanowski, J.Q.; Weiner, M.W.; O’Hara, R.; Ashford, J.W.; Shaw, L.M.; Alzheimer’s Disease Neuroimaging, I. Active Cigarette Smoking in Cognitively-Normal Elders and Probable Alzheimer’s Disease is Associated with Elevated Cerebrospinal Fluid Oxidative Stress Biomarkers. J. Alzheimer’s Dis. 2016, 54, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroz-Baez, R.; Rojas, E.; Arias, C. Oxidative stress promotes JNK-dependent amyloidogenic processing of normally expressed human APP by differential modification of alpha-, beta- and gamma-secretase expression. Neurochem. Int. 2009, 55, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Sayre, L.M.; Perry, G.; Harris, P.L.; Liu, Y.; Schubert, K.A.; Smith, M.A. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J. Neurochem. 2000, 74, 270–279. [Google Scholar] [CrossRef]
- Mezzaroba, L.; Alfieri, D.F.; Colado Simao, A.N.; Vissoci Reiche, E.M. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019, 74, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Zhang, J. Iron Metabolism, Ferroptosis, and the Links With Alzheimer’s Disease. Front. Neurosci. 2019, 13, 1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, M.; Takagi, H.; Hattori, H.; Matsuzaki, T. Localization of manganese superoxide dismutase in the cerebral cortex and hippocampus of Alzheimer-type senile dementia. Osaka City Med. J. 1997, 43, 1–5. [Google Scholar]
- Cataldo, J.K.; Prochaska, J.J.; Glantz, S.A. Cigarette smoking is a risk factor for Alzheimer’s Disease: An analysis controlling for tobacco industry affiliation. J. Alzheimer’s Dis. 2010, 19, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Collaborators, G.B.D.A. Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Virtaa, J.J.; Jarvenpaa, T.; Heikkila, K.; Perola, M.; Koskenvuo, M.; Raiha, I.; Rinne, J.O.; Kaprio, J. Midlife alcohol consumption and later risk of cognitive impairment: A twin follow-up study. J. Alzheimer’s Dis. 2010, 22, 939–948. [Google Scholar] [CrossRef]
- Truelsen, T.; Thudium, D.; Gronbaek, M.; Copenhagen City Heart, S. Amount and type of alcohol and risk of dementia: The Copenhagen City Heart Study. Neurology 2002, 59, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Ruitenberg, A.; van Swieten, J.C.; Witteman, J.C.; Mehta, K.M.; van Duijn, C.M.; Hofman, A.; Breteler, M.M. Alcohol consumption and risk of dementia: The Rotterdam Study. Lancet 2002, 359, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.; Stern, Y.; Cosentino, S.; Tatarina-Nulman, O.; Dorrejo, J.N.; Gu, Y. The Association Between Alcohol Use and the Progression of Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 1356–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinin, S.; Gonzalez-Prieto, M.; Scheiblich, H.; Lisi, L.; Kusumo, H.; Heneka, M.T.; Madrigal, J.L.M.; Pandey, S.C.; Feinstein, D.L. Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis. J. Neuroinflamm. 2018, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Mason, G.M.; Lokhandwala, S.; Riggins, T.; Spencer, R.M.C. Sleep and human cognitive development. Sleep Med. Rev. 2021, 57, 101472. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tan, C.C.; Zou, J.J.; Cao, X.P.; Tan, L.; Alzheimer’s Disease Neuroimaging, I. Insomnia Moderates the Relationship Between Amyloid-beta and Cognitive Decline in Late-Life Adults without Dementia. J. Alzheimer’s Dis. 2021, 81, 1701–1710. [Google Scholar] [CrossRef]
- Chen, D.W.; Wang, J.; Zhang, L.L.; Wang, Y.J.; Gao, C.Y. Cerebrospinal Fluid Amyloid-beta Levels are Increased in Patients with Insomnia. J. Alzheimer’s Dis. 2018, 61, 645–651. [Google Scholar] [CrossRef]
- Diaz-Roman, M.; Pulopulos, M.M.; Baquero, M.; Salvador, A.; Cuevas, A.; Ferrer, I.; Ciopat, O.; Gomez, E. Obstructive sleep apnea and Alzheimer’s disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep 2021, 44, zsaa133. [Google Scholar] [CrossRef]
- Sanchez-Espinosa, M.P.; Atienza, M.; Cantero, J.L. Sleep deficits in mild cognitive impairment are related to increased levels of plasma amyloid-beta and cortical thinning. Neuroimage 2014, 98, 395–404. [Google Scholar] [CrossRef]
- Yamadera, H.; Ito, T.; Suzuki, H.; Asayama, K.; Ito, R.; Endo, S. Effects of bright light on cognitive and sleep-wake (circadian) rhythm disturbances in Alzheimer-type dementia. Psychiatry Clin. Neurosci. 2000, 54, 352–353. [Google Scholar] [CrossRef]
- Wulff, K.; Gatti, S.; Wettstein, J.G.; Foster, R.G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 2010, 11, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Holtzman, D.M. Bidirectional relationship between sleep and Alzheimer’s disease: Role of amyloid, tau, and other factors. Neuropsychopharmacology 2020, 45, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Blennow, K.; Zetterberg, H.; Cedernaes, J. Effects of acute sleep loss on diurnal plasma dynamics of CNS health biomarkers in young men. Neurology 2020, 94, e1181–e1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cauter, E.; Leproult, R.; Plat, L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000, 284, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Sabia, S.; Fayosse, A.; Dumurgier, J.; van Hees, V.T.; Paquet, C.; Sommerlad, A.; Kivimaki, M.; Dugravot, A.; Singh-Manoux, A. Association of sleep duration in middle and old age with incidence of dementia. Nat. Commun. 2021, 12, 2289. [Google Scholar] [CrossRef]
- Drake, C.; Roehrs, T.; Shambroom, J.; Roth, T. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J. Clin. Sleep Med. 2013, 9, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Hale, L.; Guan, S. Screen time and sleep among school-aged children and adolescents: A systematic literature review. Sleep Med. Rev. 2015, 21, 50–58. [Google Scholar] [CrossRef] [Green Version]
- de Toledo Ferraz Alves, T.C.; Ferreira, L.K.; Wajngarten, M.; Busatto, G.F. Cardiac disorders as risk factors for Alzheimer’s disease. J. Alzheimer’s Dis. 2010, 20, 749–763. [Google Scholar] [CrossRef]
- Hu, F.B. Diet and cardiovascular disease prevention the need for a paradigm shift. J. Am. Coll. Cardiol. 2007, 50, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Roman, G.C.; Jackson, R.E.; Gadhia, R.; Roman, A.N.; Reis, J. Mediterranean diet: The role of long-chain omega-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divani, A.A.; Liu, X.; Di Napoli, M.; Lattanzi, S.; Ziai, W.; James, M.L.; Jafarli, A.; Jafari, M.; Saver, J.L.; Hemphill, J.C.; et al. Blood Pressure Variability Predicts Poor In-Hospital Outcome in Spontaneous Intracerebral Hemorrhage. Stroke 2019, 50, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Li, Y.; Li, J.; Zhou, C.; Li, F.; Yang, X. Physical activity can improve cognition in patients with Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Clin. Interv. Aging 2018, 13, 1593–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panza, F.; Solfrizzi, V.; Logroscino, G. Age-related hearing impairment-a risk factor and frailty marker for dementia and AD. Nat. Rev. Neurol. 2015, 11, 166–175. [Google Scholar] [CrossRef]
- Adrait, A.; Perrot, X.; Nguyen, M.F.; Gueugnon, M.; Petitot, C.; Collet, L.; Roux, A.; Bonnefoy, M.; ADPHA Study Group. Do Hearing Aids Influence Behavioral and Psychological Symptoms of Dementia and Quality of Life in Hearing Impaired Alzheimer’s Disease Patients and Their Caregivers? J. Alzheimer’s Dis. 2017, 58, 109–121. [Google Scholar] [CrossRef]
- Lin, F.R.; Yaffe, K.; Xia, J.; Xue, Q.L.; Harris, T.B.; Purchase-Helzner, E.; Satterfield, S.; Ayonayon, H.N.; Ferrucci, L.; Simonsick, E.M.; et al. Hearing loss and cognitive decline in older adults. JAMA Intern. Med. 2013, 173, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, E.; Basu, T.; Langa, K.; McKee, M.M.; Zazove, P.; Alexander, N.; Kamdar, N. Can Hearing Aids Delay Time to Diagnosis of Dementia, Depression, or Falls in Older Adults? J. Am. Geriatr. Soc. 2019, 67, 2362–2369. [Google Scholar] [CrossRef]
- Ralli, M.; Gilardi, A.; Stadio, A.D.; Severini, C.; Salzano, F.A.; Greco, A.; Vincentiis, M. Hearing loss and Alzheimer’s disease: A Review. Int. Tinnitus J. 2019, 23, 79–85. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levalahti, E.; Ahtiluoto, S.; Antikainen, R.; Backman, L.; Hanninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
Diet | Variables Included | Food Items Enlisted in Diet | Results | Ref |
---|---|---|---|---|
Western diet | Age, sex, education, adherence to diet plans | Saturated fatty acids, refined carbohydrates, refined grains, high fat dairy products and sugars. | Adherence to western diet is associated with more cognitive decline and onset of AD. | [15] |
Flexitarian diet (or) Ketoflex 12/3 diet | Age, sex, reducing insulin resistance. | High quality fish, meat, cooked and uncooked vegetables, fruits, nuts, avocado, olive oil, no/less gluten, and dairy products | Ketoflex diet achieved blood chemistry and ketosis which are required for anticipation of AD | [16] |
Ketogenic diet | Age, sex, education, APOE proteins, cardiovascular risk factors. Age, sex, food habits | Saturated and trans fatty acids, 70% fats, 20% proteins, <10% carbohydrates | risk of cognitive problems Adherence to KD reduced symptoms of AD | [17,18] |
Dietary approaches to stop hypertension (DASH) (or) Mediterranean—DASH diet (MIND) | Age, sex, physical activity, diabetes, strokes, obesity, education, low BMI, hypertension | High intake of vegetables, fruits, nuts, whole grains, low fat dairy products, | The DASH diet can lessen the symptoms of AD and MIND diet is a better safeguard against AD. | [19,20,21] |
Mediterranean diet | Age, sex, caloric intake, smoking, ethnicity, BMI index, exercise, comorbidity index, hypertension, diabetes, heart disorders, diet, and cognitive assessment. | Whole grains, fruits, vegetables, seeds, nuts, omega-3 polyunsaturated fats like olive oil, fish and moderate intake alcohol and red wine | Higher adherence to MD is associated with reduced risk of AD | [22,23,24] |
Indian diet | Age, sex, food habits | Daily diet which entails turmeric, garlic, zingiber, cinnamon, pepper, cardamom, saffron, clove, cumin etc., | Dietary supplementation with these spices aid in prevention and delay of onset AD. | [20,25] |
Vegetarian diet | Age, sex, locality, vegan, ovo-lacto-vegetarian, education, smoking, drinking, marriage, and exercise. | Vegetables, fruits, cereals grains, seeds, nuts, mushrooms, including/excluding dairy products | Adherence to vegetarian diet is associated with reduced risk of AD | [26] |
Diet | Variables Included | Food Items Enlisted in Diet | Results | Ref |
---|---|---|---|---|
Vitamin-A | Age, sex, dietary pattern, subjective cognitive function (SCF) assessment | Leafy vegetables, cereals, dairy products, sand foods rich in β-carotenoids | Ameliorates cognitive function, inhibits Aβ aggregation | [55] |
Vitamin-B: vitamin-B6 and B12, folic acid | Age, sex, education, drinking and smoking habits, drug use, marital status, and medical history | Leafy vegetables, fruits, peas, meat, fish, dairy products | Suppresses the homocysteine level and oxidative damage, concealing cognitive decline | [56] |
Vitamin-D | Age, lifestyle, medical history, drug use, and anthropometric data | Fish, cod liver oil, beef liver, eggs, fortified cereals, dairy, and plant milk products | Reduces neuroinflammation, mitigates Aβ plaques, regulates Calcium homeostasis, and ameliorates cognition in mild AD patients | [57] |
Vitamin-E: Tocopherol and Tocotrienol | Age, mild AD patients, vitamin-E serum levels, cognitive performance | Vegetable oils, nuts, seeds, avocado and food rich in unsaturated fatty acids | Dietary supplementation with these spices aid in prevention and delay of onset AD. | [58,59] |
Number of Patients/Volunteers and Age Group | Suffering From | Variables Included | Exercises Performed | Time Period | Observations | Ref |
---|---|---|---|---|---|---|
Number: 200 Age: 50–90 | Mild Alzheimer’s | Included MSME score > 19, age, Excluded presence of cardiac disease, severe psychiatric disease, alcohol abuse, participants with regular physical activity | Aerobic: Moderate-to-High Intensity | 16 weeks (4 weeks—strength building, 12 weeks—aerobics) | No benefits on cognitive performance but improved neuropsychiatric symptoms | [63,66] |
Number: 100 Age: 55–86 | Mild Cognitive Impairment | N/A | Aerobic and Resistance Training | 6 months of PRT and 18 of combined CT and PRT | 6 months of PRT and Aerobics improved memory, attention, and executive functions | [64,67] |
Number: 295 Age:—(Born between 1900–1920) | Decreased cognitive function. (MMSE score > 18) | MMSE score > 18 | Walking and Games (including billiards, volleyball gymnastics, swimming) | Approximately more than 60 min a day. | Improved cognitive functions | [68,69] |
Number: 381 Age: 74 (avg.) | Mild Cognitive Impairment and Alzheimer’s | MSME score, Subtests such as Memory, Visuospatial functioning, Verbal comprehension, Abstract thinking, Speed, Attention Neurological, mobility and Parkinson’s disease excluded. Dropouts also excluded | Physical fitness including exercises for muscle strength & endurance, flexibility, cardio—respirator | 12-year follow up | Improved neuropsychiatric symptoms | [70] |
Number: 153 Age: 55–93 | Alzheimer’s Disease | MSME score 16.8, suffering from dementia for an average of 4.3 years | Aerobic, Strength training, balance, and flexibility | 30 min a day—24 months | Increased physical health and function, decrease in depression rates | [71] |
Number: 134 Age: 62–103 | Mild to severe Alzheimer’s Disease | MMSE score, behavior changes, physical performance scores Age, sex, current medication, cholinesterase inhibitors, psychotropic treatments | Aerobic (including strength, flexibility, and balance training) | 1 h, twice a week with a gap of at least 2 days for 12 months | Slower decline in ADL in patients following continuous exercise | [72] |
Species | Growth Conditions | Variables Included | Type of Exercise | Observations | Ref |
---|---|---|---|---|---|
Transgenic Mice, NSE/APPsw Male |
| Mice expressing human APP mutant under NSE and maintained in genetic background of C57BL/6 X DBA/2 mice | Treadmill exercise
| Reduced Aβ levels, improved spatial learning and memory, reduced Aβ-induced cell apoptosis | [73] |
Wistar rats—Rattus norvegicus albinus Female—220–260 Male—300–350 |
| N/A | Swimming—5 days/week for 30 min each day. | Infants born with lesser cognitive defects. Improved brain metabolism of offsprings | [74] |
Transgenic Mice, Tg-NSE/hPS2m |
| Mice expressing human PS2 mutant under NSE and maintained in genetic background of C57BL/6 X DBA/2 mice | Treadmill exercise
| Reduced Aβ-42 deposition, reduced tau phosphorylation levels | [75] |
3xTg-AD mice Male and Female |
| Mice possessing familial AD mutations PS1/M146V, AβPPSwe, tauP301L | Running wheel
| Improved muscle strength and coordination, improved exploratory behavior, reduced anxiety levels | [76] |
Substance Abuse | Age | % Or Duration of Intake | Effects of Substance Abuse | Ref. |
---|---|---|---|---|
Drugs | ||||
Cocaine | Adults (15–64) | Cocaine: 3.5 mil. 1.2% | Induce hyperphosphorylation of tau proteins due to inhibition of PP1 on overexpression of CDK5 | [98] |
Young adults (15–34) | Cocaine: 2.2 mil. 2.1% Worldwide *2021 | |||
Methamphetamine | Adults (15–64) | Methamphetamine: 2.0 mil. 0.7% Worldwide *2021 | Increased production of APP due to unregulated HMGB1 expression, resulting in accumulation of Amyloid β plaques | [99] |
Young adults (15–34) | Methamphetamine: 1.4 mil. 1.4% Worldwide *2021 | |||
Benzodiazepine | Adults (50–64) | Benzodiazepine 30.6 mil. 12.9% (USA)*2019 | Predisposition or onset due to GABAA-benzodiazepine chloride ionophore activity in susceptible individuals. | [100] |
Smoking | ||||
Mean age of 81 years | Never, Ever, Continuing | Persistent smoking increased the onset rate of dementia | [101] | |
60 years | Never and Current | Smoking amount and status have been associated with dementia and AD. | [102] | |
32–87 years | Ever | Smoking was associated with increased risk of AD. | [103] | |
Mean age 76.2 years | Current, never | Current smoking was the strongest risk factor associated with an increased risk of AD. | [104] | |
≥65 years | Current | In comparison with never smokers, current smokers are more likely to develop AD | [105] | |
≥55 years | Never, Past, Current | Current smoking has increased the risk of AD in persons without APOE ε4 allele. | [106] | |
65–79 years. | Mid-life smokers | Smoking in midlife was shown to increase the risk of dementia, and AD. This association was limited to APOE ε4 carriers. | [107] | |
43 to 70 years | persistent nonsmoker, ex-smoker, persistent smoker, recent quitter | Interventions to prevent or stop people from smoking may postpone cognitive decline in middle-aged persons | [108] | |
≥60 years | continual smokers, short-term (less than 4 years) quitters, long-term (4 years or more) quitters, and never smokers | Smoking was associated with increased risk of dementia and long-term quitters had a reduced risk of dementia. | [109] | |
Alcohol | ||||
Mean age = 77.49 years | Age, sex, habit of alcohol consumption, genetics/ancestry, dependence symptoms due to alcohol consumption | The correlation of alcohol consumption and alcohol dependence was found with earlier and delayed AD Age of Onset Survival, respectively. | [110] | |
Age = 40–59 years | Age at baseline, sex, drinking status, smoking status, total and HDL cholesterol, systolic BP, and BP medication status. | The correlation between alcohol consumption and change of brain volume was found to be non-significant. | [111] | |
Mean age = 60.0 ± 11.1 years | Age, sex, duration illness year and drugs | Abstinence was found to be useful in slowing cognitive deterioration in AD patients who had a history of binge drinking. | [112] | |
Mean age = 58.1 ± 8.3 years | Type of alcohol, alcohol intake dose, ethnicity, study design and sex | Drinkers had a decreased risk of AD than non-drinkers, with wine observed to lower its risk, furthermore. A non-linear and insignificant relation was observed between the alcohol dose and risk of AD. | [113] | |
Age = 76–80 years | Age, sex, APOE E4 carrier status, Mild Cognitive Impairment at baseline, and alcohol consumption | Both total abstinence and over-drinking were linked to decreased cognitive performance. | [114] |
Sleep Disruption | Sample | Variables Included | AD Associated Results | Ref |
---|---|---|---|---|
Insomnia | Mean age = 73 years, 385 cases 46–67 years, 23 cases | Age, gender, education, APOE E4 status, clinical diagnosis, number of prior exposures to cognitive test, sleep medication use, hypertension, diabetes, hyperlipidemia, stroke history, hearing loss, depression, anxiety, coronary heart disease, and current smoking status. Age, sex, educational level, occupation, CSF levels of Aβ and tau | Insomnia in non-demented elders was found to influence the correlation between cognitive decline and Aβ. Greater levels of Aβ42 were observed in insomnia patients, which was found to increase with duration of the condition. | [136,137] |
Obstructive Sleep Apnea (OSA) | Mean age = 66.19 years, 57 MCI (mild cognitive impairment) cases | Age, sex, body mass index, sleep medication, smoking, hypertension, and heart disease | Cases with severe OSA were observed to have higher phosphorylated tau and total tau levels. | [138] |
Changes in Slow Wave Sleep (SWS) | Mean age = 69.8 ± 6.4 years, 21 cases | Age, gender, education, sleep, Plasma Aβ values, and cortical thickness | Significant correlation between disturbed SWS and Aβ42, and shorter rapid eye movement (REM) sleep and reduced thickness in certain AD associated brain regions was observed. | [139] |
Changes in circadian rhythm or sleep-wake cycle | Mean age = 79.9 years, 27 cases | Age, gender, any physical problems in past/present and sleep timings | Circadian rhythms and cognition had improved through bright light exposure, without any changes in AD-associated dementia. 3 | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govindugari, V.L.; Golla, S.; Reddy, S.D.M.; Chunduri, A.; Nunna, L.S.V.; Madasu, J.; Shamshabad, V.; Bandela, M.; Suryadevara, V. Thwarting Alzheimer’s Disease through Healthy Lifestyle Habits: Hope for the Future. Neurol. Int. 2023, 15, 162-187. https://doi.org/10.3390/neurolint15010013
Govindugari VL, Golla S, Reddy SDM, Chunduri A, Nunna LSV, Madasu J, Shamshabad V, Bandela M, Suryadevara V. Thwarting Alzheimer’s Disease through Healthy Lifestyle Habits: Hope for the Future. Neurology International. 2023; 15(1):162-187. https://doi.org/10.3390/neurolint15010013
Chicago/Turabian StyleGovindugari, Vijaya Laxmi, Sowmya Golla, S. Deepak Mohan Reddy, Alisha Chunduri, Lakshmayya S. V. Nunna, Jahanavi Madasu, Vishwanutha Shamshabad, Mounica Bandela, and Vidyani Suryadevara. 2023. "Thwarting Alzheimer’s Disease through Healthy Lifestyle Habits: Hope for the Future" Neurology International 15, no. 1: 162-187. https://doi.org/10.3390/neurolint15010013