Next Article in Journal
Communicating Arteries and Leptomeningeal Collaterals: A Synergistic but Independent Effect on Patient Outcomes after Stroke
Previous Article in Journal
Outcome after Intracerebral Haemorrhage and Decompressive Craniectomy in Older Adults
Previous Article in Special Issue
Monocyte to HDL and Neutrophil to HDL Ratios as Potential Ischemic Stroke Prognostic Biomarkers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke

by
Helen Shen
1,2,
Bella B. Huasen
3,4,
Murray C. Killingsworth
2,5,6,7 and
Sonu M. M. Bhaskar
1,2,5,6,8,*,†
1
Global Health Neurology Lab, Sydney, NSW 2150, Australia
2
South West Sydney Clinical Campuses, UNSW Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2170, Australia
3
Department of Interventional Neuroradiology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
4
Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4UX, UK
5
Ingham Institute for Applied Medical Research, Cell-Based Disease Intervention Group, Clinical Sciences Stream, Liverpool, NSW 2170, Australia
6
NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW 2170, Australia
7
Department of Anatomical Pathology, NSW Health Pathology, Correlative Microscopy Facility, Ingham Institute for Applied Medical Research and Western Sydney University, Liverpool, NSW 2170, Australia
8
Department of Neurology & Neurophysiology, Liverpool Hospital, South West Sydney Local Health District, Liverpool, NSW 2170, Australia
*
Author to whom correspondence should be addressed.
Current address: Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), 6-1 Kishibeshimmachi, Suita 564-8565, Osaka, Japan.
Neurol. Int. 2024, 16(3), 605-619; https://doi.org/10.3390/neurolint16030045
Submission received: 29 March 2024 / Revised: 22 May 2024 / Accepted: 28 May 2024 / Published: 30 May 2024
(This article belongs to the Collection Biomarkers in Stroke Prognosis)

Abstract

:
Objective: This study aims to develop and validate the Futile Recanalization Prediction Score (FRPS), a novel tool designed to predict the severity risk of FR and aid in pre- and post-EVT risk assessments. Methods: The FRPS was developed using a rigorous process involving the selection of predictor variables based on clinical relevance and potential impact. Initial equations were derived from previous meta-analyses and refined using various statistical techniques. We employed machine learning algorithms, specifically random forest regression, to capture nonlinear relationships and enhance model performance. Cross-validation with five folds was used to assess generalizability and model fit. Results: The final FRPS model included variables such as age, sex, atrial fibrillation (AF), hypertension (HTN), diabetes mellitus (DM), hyperlipidemia, cognitive impairment, pre-stroke modified Rankin Scale (mRS), systolic blood pressure (SBP), onset-to-puncture time, sICH, and NIHSS score. The random forest model achieved a mean R-squared value of approximately 0.992. Severity ranges for FRPS scores were defined as mild (FRPS < 66), moderate (FRPS 66–80), and severe (FRPS > 80). Conclusions: The FRPS provides valuable insights for treatment planning and patient management by predicting the severity risk of FR. This tool may improve the identification of candidates most likely to benefit from EVT and enhance prognostic accuracy post-EVT. Further clinical validation in diverse settings is warranted to assess its effectiveness and reliability.

1. Introduction

Acute ischemic stroke (AIS) poses an enormous burden across the world and ranks as the second leading cause of death [1]. The 2019 Global Burden of Disease (GBD) study indicated that there were 12.2 million stroke incidents, resulting in 143 disability-adjusted life years (DALYs) and 6.55 million deaths, with projections indicating an increase in these numbers [2]. In the era of reperfusion therapy, intravenous thrombolysis (IVT) and endovascular thrombectomy (EVT) are currently the mainstays of AIS treatment, recommended by the American Heart Association (AHA) and the American Stroke Association (ASA) [3]. However, the benefits are inconsistent across all AIS patients, with a small subgroup failing to derive therapeutic benefits [4]. An emerging area of clinical and research interest is futile recanalization (FR), defined as successful recanalization without therapeutic benefits [4]. However, the exact mechanism behind FR remains partially understood, and discrepancies persist across studies regarding its prevalence, predictors, and outcomes [5].
Understanding the risk and occurrence of FR and identifying associated factors is crucial for physicians to distinguish patients likely to benefit from EVT. This knowledge can reduce the number of futile interventions, elucidate underlying prognostic factors, and facilitate comprehensive management planning for patients undergoing EVT. A risk prediction score to mitigate harm among subgroups of patients at risk of FR is warranted. However, minimal studies have explored this area [6].
In this study, we introduce the Futile Recanalization Prediction Score (FRPS), a novel tool designed to predict the severity risk of FR after EVT. We provide details on its methodological development and discuss various case scenarios for its application in clinical studies. The FRPS aims to enhance treatment planning and patient management by offering a reliable means to predict FR risk, thereby improving outcomes for AIS patients.

2. Methodology

Supplemental Information S1 provides a detailed overview of the definitions, predictors, outcomes after FR, and various treatment considerations relevant to FR. Table 1 summarizes key findings published in the meta-analyses on the reported prevalence, predictors of FR, and association with outcomes. Based on the indicators associated with FR in previous literature [7,8,9] and analyzed here, we propose a novel score, the FRPS, which incorporates multiple factors to predict the risk severity of FR after EVT.

Development, Optimization, and Modeling Simulation for Risk Prediction Score for Predicting Futile Recanalization Risk Severity after Endovascular Thrombectomy

The FRPS was developed using a rigorous process as follows:
We selected predictor variables based on their clinical relevance and potential impact on the FRPS score. All mathematical modeling and simulation, including statistical analyses, were performed using Python. The initial equation for the FRPS was derived from Shen et al.’s meta-analysis [7]. Additionally, we explored other models incorporating clinically relevant variables. To determine the most effective model, we conducted various analyses, including calculating mean scores, plotting histograms of FRPS scores, evaluating statistical measures like R-squared, and performing cross-validation to assess generalizability.
Our initial modeling revealed negative R-squared values, suggesting linear regression might not be ideal. We explored nonlinear regression techniques and selected predictor variables with stronger linear relationships. Ultimately, we constructed a new model using a subset of predictor variables based on clinical relevance and statistical significance (Supplemental Information S2 Online for Python Code). We employed a machine learning algorithm (a random forest regression model) using the selected variables, which effectively captures nonlinear relationships. We also evaluated the model’s performance using cross-validation with five folds and computed the R-squared value across all folds to assess the model’s fit to the data.
The final equation for the FRPS model is
FRPS = β 1 × Age + β 2 × Sex + β 3 × AF + β 4 × HTN + β 5 × DM + β 6 × Hyperlipidemia + β 7 × Cognitive   Impairment + β 8 × Pre - Stroke   mRS + β 9 × SBP + β 10 × Onset - to - Puncture   Time + β 11 × sICH + β 12 × NIHSS   Score
where
β1, β2, …, β12 are the coefficients determined by the random forest model.
Age [10,11] is the age of the patient [10,11].
Sex is a binary variable representing the patient’s gender (e.g., male = 0, female = 1) [12].
Atrial fibrillation (AF) [11], hypertension (HTN), diabetes mellitus (DM) [11], hyperlipidemia [13,14], cognitive impairment [15,16], and symptomatic intracerebral hemorrhage (sICH) [17] are binary variables indicating each condition’s presence (1) or absence (0).
The pre-stroke mRS score represents the pre-stroke modified Rankin scale score [11].
SBP is the systolic blood pressure of the patient [17].
The onset-to-puncture time [10] is the interval from stroke onset to puncture during endovascular thrombectomy [10,11].
The NIHSS score is the National Institutes of Health Stroke Scale score [10,11].
As the random forest model automatically determines the coefficients during training, we do not have explicit coefficients as in linear regression. Instead, we used the random forest to calculate feature importance, which represents the contribution of each predictor variable to the prediction of the target variable (the FRPS score in this case). We extracted feature importance from the trained random forest model to determine the relative importance of each predictor variable (Supplemental Information S2 Online for Python code). The significance of these features provides insights into which variables have the most significant impact on FRPS score prediction.

3. Results

Based on the feature importance obtained from the modeling, the final equation for the FRPS model is
FRPS = ( 0.769 × Onset - to - Puncture   Time ) + ( 0.140 × SBP ) + ( 0.086 × Age ) + ( 0.002 × NIHSS   Score ) + ( 0.001 × Pre - Stroke   mRS ) + ( 0.001 × DM ) + ( 0.0005 × Hyperlipidemia ) + ( 0.0005 × AF ) + ( 0.0004 × Cognitive Impairment ) + ( 0.0004 × HTN ) + ( 0.0003 × Sex ) + ( 0.0003 × sICH )
The random forest model achieved a mean R-squared value of approximately 0.992, indicating a strong relationship between the predictor variables and FRPS scores. We simulated FRPS scores for 1000 hypothetical patients and defined severity ranges based on percentiles. The ranges were classified as follows: mild (FRPS score < 66), moderate (FRPS score ≥ 66 and <81), and severe (FRPS score ≥ 81).
The FRPS can be applied in two settings (see Figure 1 for various case studies for illustrative purposes): to understand the risk of FR before EVT administration and to predict FR risk post-EVT. Future validation and refinement are necessary to ensure generalizability to diverse patient populations. Notably, for pre-EVT risk prediction, the anticipated time from symptom onset to puncture was presumed to be the current time since stroke onset at the risk calculation instance.
Figure 1 shows an example of the integration of this score within a clinical setting.

4. Discussion

In this study, we propose a novel risk prediction score called the FRPS and demonstrate its high prognostic accuracy. We also discuss case studies for illustrative purposes (Figure 2).

4.1. Implications of Futile Recanalization and Clinical Need for Risk Prediction

The implications of FR and the need for risk prediction in clinical practice are significant for advancing personalized stroke care, particularly in the context of EVT. Understanding and predicting FR can yield multiple benefits:
Recanalization Selection for EVT: Identifying patients at high risk of FR can aid clinicians in making more informed decisions about the suitability of EVT versus alternative treatments.
Tailoring Postprocedural Care: Patients who undergo EVT may require tailored postprocedural management strategies based on their FR risk. For example, high-risk patients may benefit from more intensive monitoring, early rehabilitation interventions, or aggressive secondary prevention measures, ultimately optimizing patient outcomes.
Long-Term Treatment Planning: Predicting FR likelihood informs the development of long-term treatment plans and helps manage expectations for therapeutic effects. Patients unlikely to achieve meaningful recanalization may necessitate ongoing surveillance, medication regimen adjustments, or exploration of alternative treatment options to prevent recurrent strokes and manage long-term disability.
Overall, the ability to understand and predict FR not only optimizes patient selection for EVT but also guides postprocedural care and long-term treatment strategies. This personalized approach has the potential to enhance clinical outcomes, optimize resource allocation, and improve the quality of life for patients with acute ischemic stroke and other vascular conditions.

4.2. Rationale and Development of a Futile Recanalization Risk Score

While EVT has shown effectiveness in improving outcomes for AIS patients, a significant portion does not benefit due to inadequate patient selection (Table 1) [10]. Despite successful recanalization, approximately 48.7% to 51% of patients fail to achieve favorable clinical outcomes. This shortfall may stem from relying solely on imaging criteria, such as identifying large vessel occlusion, without considering other prognostic factors. Therefore, a more comprehensive approach to patient selection is imperative, integrating imaging parameters and clinical variables such as age, comorbidities, and stroke severity (Figure 2).
Additionally, treatment processes, timing, and post-stroke physiological and systemic factors play vital roles [18,19,20]. This suggests the importance of incorporating advanced imaging modalities, such as perfusion imaging, to identify individuals likely to benefit from EVT. The FRPS provides a robust framework for predicting the risk of FR, potentially enhancing personalized treatment strategies and improving outcomes for AIS patients undergoing EVT.
Enhancing patient selection for EVT is critical to mitigating FR occurrence and improving outcomes for AIS patients [11]. FR is a pivotal aspect of AIS care, and prioritizing EVT for patients with the most significant potential benefit is essential, especially given the limited availability of this treatment. The efficacy of EVT varies among different AIS patient subgroups, with specific clinical and imaging characteristics potentially predisposing individuals to higher postprocedure FR rates [4,11,12,21]. Understanding the incidence, predictors, and consequences of FR in acute stroke patients is vital for assessing the appropriateness of interventions and facilitating tailored medical approaches, which are essential for optimizing results and minimizing complications in acute stroke management. This personalized approach not only aids in effectively managing AIS patients but also facilitates informed discussions regarding the risks and benefits of EVT procedures with patients and their families.
With advanced EVT devices, such as stent retrievers and aspiration catheters equipped with radio force adaptation, enhanced flexibility, and larger diameters, outcomes have vastly improved [22]. However, translating these advancements into routine clinical settings remains challenging due to substantial EVT procedure risks. The complexity of clot locations within intricate cerebral vasculature regions, such as the M2/3 arteries [23], increases the risk of complications and mortality rates, especially for patients with vulnerable atherosclerotic plaques [24]. This complexity heightens the risk of perforation, frequently resulting in postprocedural complications and increased mortality rates [24]. Moreover, patients with anatomical anomalies, such as an incomplete circle of Willis (CoW), face elevated mortality risks following EVT compared to those with a complete CoW [25]. Tandem occlusions, characterized by large vessel occlusions accompanied by significant stenosis exceeding 90%, further exacerbate the challenges encountered during EVT procedures for individuals affected by such pathologies [26].
In recent years, there has been a growing debate surrounding the baseline infarct volume thresholds predisposing individuals to FR following AIS and whether IVT offers protective benefits [27]. The volume of infarcted tissue holds significant importance in AIS management, as it directly correlates with the size of the penumbra, representing salvageable brain tissue at risk of infarction. Various studies have yielded conflicting results: some have indicated that IVT is a predictor of FR [8,28,29], while others have suggested that IVT may have protective effects [9,30,31,32]. Furthermore, some studies have reported the minimal impact of thrombolytic therapy on the development of FR [33,34,35,36,37]. Conflicting study results highlight the need for further comprehensive investigations to provide crucial evidence in this pivotal area of research.
Several recent RCTs examining EVT effectiveness for large core infarcts have shown improved functional outcomes and lower mortality rates compared to medical therapy alone [38,39,40,41,42,43]. However, patients experienced more intracranial hemorrhages [41], particularly those with lower ASPECTS scores of 3 or less [41]. Outcomes following FR require further elucidation, as FR is significantly associated with increased odds of adverse outcomes such as sICH, HT, and 90-day mortality. Anatomical anomalies, such as complex aortic arch and carotid artery anatomy, could also be potentially associated with procedural complications, thereby increasing the risk of adverse outcomes following FR [44]. Device or procedural complications may also contribute to this risk [45,46,47]. The impact of sICH on outcomes after FR is also an important consideration. Available evidence suggests that patients who experience FR after EVT during a stroke may be at an increased risk for sICH [48]. However, the relationship between FR and sICH may be complex, and other factors may also play a role in predicting sICH.
Efforts to minimize sICH risk should be prioritized in EVT management for stroke patients. Understanding the complexities surrounding EVT outcomes and associated risks is crucial for optimizing stroke care and patient outcomes. Further research, refining patient selection criteria, and mitigating postprocedure complications are imperative for advancing stroke treatment and enhancing patient care. Other mitigation strategies could include refining patient selection using advanced imaging, employing more efficient thrombectomy devices, and providing intensive postprocedural care. Exploring interventions and rehabilitation strategies is crucial for effectively addressing FR. Given its complexity, continued research into FR mechanisms and the development of innovative prevention and management strategies are warranted. Prioritizing these efforts is essential for advancing stroke care and improving functional outcomes in AIS patients undergoing EVT.

5. Conclusions

In conclusion, we have developed a novel Futile Recanalization Prediction Score (FRPS) to predict the severity risk of FR in patients eligible for or treated with EVT. Our detailed proposal includes mathematical modeling and simulations, which can help estimate FR risk pre- and post-EVT and assess procedural efficacy. However, further studies are needed to validate our scoring system and its applicability in diverse clinical settings. FR following EVT for AIS patients poses a significant challenge, potentially impacting patient outcomes and recovery trajectories even after a technically successful procedure. FR is associated with adverse effects such as sICH and reduced functional independence, substantially affecting the quality of life of stroke survivors. Strategies to address FR include refined patient selection through advanced imaging techniques, the utilization of more efficient thrombectomy devices to optimize clot removal, and rigorous postprocedural care to minimize complications. The introduction of the FRPS offers significant potential for advancing personalized medicine approaches to stroke care by improving prognostic accuracy and optimizing treatment planning. This tool represents a step forward in mitigating the risks associated with FR and enhancing overall outcomes for AIS patients.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/neurolint16030045/s1, Supplemental Information S1 Background on Futile Recanalization: Definition, Prevalence, Predictors, and Outcomes after Futile Recanalization; Supplementary Information S2: Python Code. References [49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120] are cited in the Supplementary Materials.

Author Contributions

S.M.M.B. conceived and conceptualized the study, developed the futile recanalization prediction score (FRPS) proposed in this study, and contributed to the planning, drafting, and revision of the manuscript, as well as the supervision of the students. S.M.M.B. encouraged H.S. to investigate and supervised the findings of this work. S.M.M.B. wrote the Python code for computer-based modeling and simulations for the development and optimization of FRPS. H.S. and S.M.M.B. wrote the first draft of this paper. All authors (H.S., B.B.H., M.C.K. and S.M.M.B.) contributed to the overall validation and revision of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

No funding was received for organizing and conducting this study.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in this study, including the Python codes to generate the model for the futile recanalization prediction score, are included in the study, as well as the online Supplementary Information. Further inquiries can be directed to the corresponding author.

Acknowledgments

S.M.M.B. acknowledges the financial support received from the Grant-in-Aid for Scientific Research (KAKENHI) (PI: SB) by the Japan Society for the Promotion of Science (JSPS), Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT). Additionally, we extend our gratitude for the JSPS International Fellowship, supported by MEXT and the Australian Academy of Science, awarded to S.M.M.B. for the period 2023–25. S.M.M.B. reports leadership or fiduciary roles in the board, society, committee, or advocacy groups, paid or unpaid, with Rotary District 9675 as the District Chair, Diversity, Equity, and Inclusion; the Global Health and Migration Hub Community, Global Health Hub Germany (Berlin, Germany), as the Chair and Manager; PLOS One, BMC Neurology, Frontiers in Neurology, Frontiers in Stroke, Frontiers in Public Health, and BMC Medical Research Methodology as an Editorial Board Member; and the College of Reviewers, Canadian Institutes of Health Research (CIHR), Government of Canada, as a Member outside the submitted work. The funding body had no role in the study design, data collection, analysis, interpretation of findings, or manuscript preparation. The content is solely the authors’ responsibility and does not necessarily represent the official views of the affiliated/funding organization/s.

Conflicts of Interest

The authors declare no conflict of interest. The authors have no relevant financial or nonfinancial interests to disclose.

Abbreviations

AbbreviationDefinition
AFAtrial Fibrillation
AHAAmerican Heart Association
ASAAmerican Stroke Association
ASPECTSAlberta Stroke Program Early CT Score
BAOBasilar Artery Occlusion
BBBBlood–Brain Barrier
CMRClinically Meaningful Recanalization
CTComputed Tomography
DALYsDisability-Adjusted Life Years
DMDiabetes Mellitus
EVTEndovascular Thrombectomy
FRFutile Recanalization
FRPSFutile Recanalization Prediction Score
GAGeneral Anesthesia
GBDGlobal Burden of Disease
HDMCAHyperdense Middle Cerebral Artery Sign
HLHyperlipidemia
HTHemorrhagic Transformation
ICUIntensive Care Unit
IV-rtPAIntravenous Recombinant Tissue Plasminogen Activator
IVTIntravenous Thrombolysis
LVOLarge Vessel Occlusion
MCAMiddle Cerebral Artery
mRSModified Rankin Score
mTICIThrombolysis in Cerebral Infarction
NLRNeutrophil-to-Lymphocyte Ratio
NIHSSNational Institutes of Health Stroke Severity Score
NNTNumber Needed to Treat
OTTOnset-to-Treatment Time
OTROnset-to-Reperfusion Time
pc-ASPECTSPosterior Circulation Alberta Stroke Program Early CT Score
PS/TIAPrevious Stroke/Transient Ischemic Attack
RCTRandomized Control Trial
SMMStandard Medical Management
sICHSymptomatic Intracranial Hemorrhage
VHFVascular Hyperintensities on FLAIR Imaging

References

  1. Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
  2. Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
  3. Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef] [PubMed]
  4. Ni, H.; Wang, B.; Hang, Y.; Liu, S.; Jia, Z.-Y.; Shi, H.-B.; Zhao, L.-B. Predictors of Futile Recanalization in Patients with Intracranial Atherosclerosis-Related Stroke Undergoing Endovascular Treatment. World Neurosurg. 2023, 171, e752–e759. [Google Scholar] [CrossRef] [PubMed]
  5. Pan, H.; Lin, C.; Chen, L.; Qiao, Y.; Huang, P.; Liu, B.; Zhu, Y.; Su, J.; Liu, J. Multiple-Factor Analyses of Futile Recanalization in Acute Ischemic Stroke Patients Treated with Mechanical Thrombectomy. Front. Neurol. 2021, 12, 704088. [Google Scholar] [CrossRef] [PubMed]
  6. Lin, X.; Zheng, X.; Zhang, J.; Cui, X.; Zou, D.; Zhao, Z.; Pan, X.; Jie, Q.; Wu, Y.; Qiu, R.; et al. Machine learning to predict futile recanalization of large vessel occlusion before and after endovascular thrombectomy. Front. Neurol. 2022, 13, 909403. [Google Scholar] [CrossRef] [PubMed]
  7. Shen, H.; Killingsworth, M.C.; Bhaskar, S.M.M. Futile Recanalization after Endovascular Thrombectomy for Acute Ischemic Stroke: A Comprehensive Meta-Analysis of Prevalence, Predictive Markers, and Clinical Outcomes. Life 2023, 13, 1965. [Google Scholar] [CrossRef] [PubMed]
  8. Shahid, A.H.; Abbasi, M.; Larco, J.L.A.; Madhani, S.I.; Liu, Y.; Brinjikji, W.; Savastano, L.E. Risk Factors of Futile Recanalization Following Endovascular Treatment in Patients with Large-Vessel Occlusion: Systematic Review and Meta-Analysis. Stroke Vasc. Interv. Neurol. 2022, 2, e000257. [Google Scholar] [CrossRef]
  9. Deng, G.; Xiao, J.; Yu, H.; Chen, M.; Shang, K.; Qin, C.; Tian, D.-S. Predictors of futile recanalization after endovascular treatment in acute ischemic stroke: A meta-analysis. J. NeuroInterv. Surg. 2022, 14, 881. [Google Scholar] [CrossRef] [PubMed]
  10. Xu, H.; Jia, B.; Huo, X.; Mo, D.; Ma, N.; Gao, F.; Yang, M.; Miao, Z. Predictors of Futile Recanalization after Endovascular Treatment in Patients with Acute Ischemic Stroke in a Multicenter Registry Study. J. Stroke Cerebrovasc. Dis. 2020, 29, 105067. [Google Scholar] [CrossRef] [PubMed]
  11. Dhillon, P.S.; Butt, W.; Marei, O.; Podlasek, A.; McConachie, N.; Lenthall, R.; Nair, S.; Malik, L.; Bhogal, P.; Makalanda, H.L.D.; et al. Incidence and predictors of poor functional outcome despite complete recanalisation following endovascular thrombectomy for acute ischaemic stroke. J. Stroke Cerebrovasc. Dis. 2023, 32, 107083. [Google Scholar] [CrossRef] [PubMed]
  12. Ni, H.; Liu, X.; Hang, Y.; Jia, Z.; Cao, Y.; Shi, H.; Liu, S.; Zhao, L. Predictors of futile recanalization in patients with acute ischemic stroke undergoing mechanical thrombectomy in late time windows. Front. Neurol. 2022, 13, 958236. [Google Scholar] [CrossRef]
  13. Gilberti, N.; Gamba, M.; Premi, E.; Costa, A.; Vergani, V.; Delrio, I.; Spezi, R.; Dikran, M.; Frigerio, M.; Gasparotti, R.; et al. Leukoaraiosis is a predictor of futile recanalization in acute ischemic stroke. J. Neurol. 2017, 264, 448–452. [Google Scholar] [CrossRef]
  14. Ouyang, K.; Kang, Z.; Liu, Z.; Hou, B.; Fang, J.; Xie, Y.; Liu, Y. Posterior Circulation ASPECTS on CT Angiography Predicts Futile Recanalization of Endovascular Thrombectomy for Acute Basilar Artery Occlusion. Front. Neurol. 2022, 13, 831386. [Google Scholar] [CrossRef] [PubMed]
  15. Shi, Z.-S.; Loh, Y.; Walker, G.; Duckwiler, G.R. Clinical outcomes in middle cerebral artery trunk occlusions versus secondary division occlusions after mechanical thrombectomy: Pooled analysis of the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) and Multi MERCI trials. Stroke 2010, 41, 953–960. [Google Scholar] [CrossRef] [PubMed]
  16. Pedraza, M.I.; de Lera, M.; Bos, D.; Calleja, A.I.; Cortijo, E.; Gómez-Vicente, B.; Reyes, J.; Coco-Martín, M.B.; Calonge, T.; Agulla, J.; et al. Brain Atrophy and the Risk of Futile Endovascular Reperfusion in Acute Ischemic Stroke. Stroke 2020, 51, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
  17. Zhou, T.; Yi, T.; Li, T.; Zhu, L.; Li, Y.; Li, Z.; Wang, M.; Li, Q.; He, Y.; Yang, P.; et al. Predictors of futile recanalization in patients undergoing endovascular treatment in the DIRECT-MT trial. J. NeuroInterv. Surg. 2022, 14, 752. [Google Scholar] [CrossRef] [PubMed]
  18. Baskar, P.S.; Chowdhury, S.Z.; Bhaskar, S.M.M. In-hospital systems interventions in acute stroke reperfusion therapy: A meta-analysis. Acta Neurol. Scand. 2021, 144, 418–432. [Google Scholar] [CrossRef]
  19. Venkat, A.; Cappelen-Smith, C.; Askar, S.; Thomas, P.R.; Bhaskar, S.; Tam, A.; McDougall, A.J.; Hodgkinson, S.J.; Cordato, D.J. Factors Associated with Stroke Misdiagnosis in the Emergency Department: A Retrospective Case-Control Study. Neuroepidemiology 2018, 51, 123–127. [Google Scholar] [CrossRef] [PubMed]
  20. Santana Baskar, P.; Cordato, D.; Wardman, D.; Bhaskar, S. In-hospital acute stroke workflow in acute stroke—Systems-based approaches. Acta Neurol. Scand. 2021, 143, 111–120. [Google Scholar] [CrossRef] [PubMed]
  21. Vatan, M.B.; Acar, B.A.; Acar, T.; Aras, Y.G. The CHA2DS2-VASc risk score predicts futile recanalization after endovascular treatment in patients with acute ischemic stroke. Neurol. Asia 2023, 28, 89–97. [Google Scholar] [CrossRef]
  22. Widimsky, P.; Snyder, K.; Sulzenko, J.; Hopkins, L.N.; Stetkarova, I. Acute ischaemic stroke: Recent advances in reperfusion treatment. Eur. Heart J. 2023, 44, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
  23. Wan, Y.; Yang, I.H.; Orru, E.; Krings, T.; Tsang, A.C.O. Endovascular Thrombectomy for Distal Occlusion Using a Semi-Deployed Stentriever: Report of 2 Cases and Technical Note. Neurointervention 2019, 14, 137–141. [Google Scholar] [CrossRef] [PubMed]
  24. Pilgram-Pastor, S.M.; Piechowiak, E.I.; Dobrocky, T.; Kaesmacher, J.; Den Hollander, J.; Gralla, J.; Mordasini, P. Stroke thrombectomy complication management. J. NeuroInterv. Surg. 2021, 13, 912–917. [Google Scholar] [CrossRef] [PubMed]
  25. Westphal, L.P.; Lohaus, N.; Winklhofer, S.; Manzolini, C.; Held, U.; Steigmiller, K.; Hamann, J.M.; El Amki, M.; Dobrocky, T.; Panos, L.D.; et al. Circle of Willis variants and their association with outcome in patients with middle cerebral artery-M1-occlusion stroke. Eur. J. Neurol. 2021, 28, 3682–3691. [Google Scholar] [CrossRef] [PubMed]
  26. Vu-Dang, L.; Nguyen, Q.A.; Nguyen-Thi-Thu, T.; Tran, A.T.; Le-Chi, C.; Le-Hoang, K.; Nguyen-Tat, T.; Nguyen-Huu, A.; Pham-Minh, T.; Chu-Dinh, T.; et al. Endovascular Treatment for Acute Tandem Occlusion Stroke: Results from Case Series of 17 Patients. Ann. Indian Acad. Neurol. 2020, 23, 78–83. [Google Scholar] [CrossRef] [PubMed]
  27. Compagne, K.C.J.; Boers, A.M.M.; Marquering, H.A.; Berkhemer, O.A.; Yoo, A.J.; Beenen, L.F.M.; van Oostenbrugge, R.J.; van Zwam, W.H.; Roos, Y.; Majoie, C.B.; et al. Follow-up infarct volume as a mediator of endovascular treatment effect on functional outcome in ischaemic stroke. Eur. Radiol. 2019, 29, 736–744. [Google Scholar] [CrossRef] [PubMed]
  28. Bani-Sadr, A.; Escande, R.; Mechtouff, L.; Pavie, D.; Hermier, M.; Derex, L.; Choc, T.-H.; Eker, O.F.; Nighoghossian, N.; Berthezène, Y. Vascular hyperintensities on baseline FLAIR images are associated with functional outcome in stroke patients with successful recanalization after mechanical thrombectomy. Diagn. Interv. Imaging 2023, 104, 337–342. [Google Scholar] [CrossRef] [PubMed]
  29. Chen, J.H.; Hong, C.T.; Chung, C.C.; Kuan, Y.C.; Chan, L. Safety and efficacy of endovascular thrombectomy in acute ischemic stroke treated with anticoagulants: A systematic review and meta-analysis. Thromb. J. 2022, 20, 35. [Google Scholar] [CrossRef] [PubMed]
  30. Linfante, I.; Starosciak, A.K.; Walker, G.R.; Dabus, G.; Castonguay, A.C.; Gupta, R.; Sun, C.H.; Martin, C.; Holloway, W.E.; Mueller-Kronast, N.; et al. Predictors of poor outcome despite recanalization: A multiple regression analysis of the NASA registry. J. NeuroInterv. Surg. 2016, 8, 224–229. [Google Scholar] [CrossRef] [PubMed]
  31. Li, S.; Liu, D.D.; Lu, G.; Liu, Y.; Zhou, J.S.; Deng, Q.W.; Yan, F.L. Endovascular Treatment with and without Intravenous Thrombolysis in Large Vessel Occlusions Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 697478. [Google Scholar] [CrossRef] [PubMed]
  32. Wang, X.; Ye, Z.; Busse, J.W.; Hill, M.D.; Smith, E.E.; Guyatt, G.H.; Prasad, K.; Lindsay, M.P.; Yang, H.; Zhang, Y.; et al. Endovascular thrombectomy with or without intravenous alteplase for acute ischemic stroke due to large vessel occlusion: A systematic review and meta-analysis of randomized trials. Stroke Vasc. Neurol. 2022, 7, 510–517. [Google Scholar] [CrossRef] [PubMed]
  33. Coutinho, J.M.; Zuurbier, S.M.; Bousser, M.G.; Ji, X.; Canhão, P.; Roos, Y.B.; Crassard, I.; Nunes, A.P.; Uyttenboogaart, M.; Chen, J.; et al. Effect of Endovascular Treatment with Medical Management vs Standard Care on Severe Cerebral Venous Thrombosis: The TO-ACT Randomized Clinical Trial. JAMA Neurol. 2020, 77, 966–973. [Google Scholar] [CrossRef] [PubMed]
  34. Collette, S.L.; Bokkers, R.P.H.; Mazuri, A.; Lycklama À Nijeholt, G.J.; van Oostenbrugge, R.J.; LeCouffe, N.E.; Benali, F.; Majoie, C.; de Groot, J.C.; Luijckx, G.J.R.; et al. Intra-arterial thrombolytics during endovascular thrombectomy for acute ischaemic stroke in the MR CLEAN Registry. Stroke Vasc. Neurol. 2023, 8, 17–25. [Google Scholar] [CrossRef] [PubMed]
  35. Kaesmacher, J.; Meinel, T.R.; Kurmann, C.; Zaidat, O.O.; Castonguay, A.C.; Zaidi, S.F.; Mueller-Kronast, N.; Kappelhof, M.; Dippel, D.W.J.; Soudant, M.; et al. Safety and efficacy of intra-arterial fibrinolytics as adjunct to mechanical thrombectomy: A systematic review and meta-analysis of observational data. J. NeuroInterv. Surg. 2021, 13, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
  36. van der Steen, W.; van der Sluijs, P.M.; van de Graaf, R.A.; Su, R.; Wolff, L.; van Voorst, H.; den Hertog, H.M.; van Doormaal, P.J.; van Es, A.; Staals, J.; et al. Safety and efficacy of periprocedural antithrombotics in patients with successful reperfusion after endovascular stroke treatment. J. Stroke Cerebrovasc. Dis. 2022, 31, 106726. [Google Scholar] [CrossRef] [PubMed]
  37. Nie, X.; Wang, D.; Pu, Y.; Wei, Y.; Lu, Q.; Yan, H.; Liu, X.; Zheng, L.; Liu, J.; Yang, X.; et al. Endovascular treatment with or without intravenous alteplase for acute ischaemic stroke due to basilar artery occlusion. Stroke Vasc. Neurol. 2022, 7, 190–199. [Google Scholar] [CrossRef] [PubMed]
  38. Zaidat, O.O.; Kasab, S.A.; Sheth, S.; Ortega-Gutierrez, S.; Rai, A.T.; Given, C.A.; Grandhi, R.; Mokin, M.; Katz, J.M.; Maud, A.; et al. TESLA Trial: Rationale, Protocol, and Design. Stroke Vasc. Interv. Neurol. 2023, 3, e000787. [Google Scholar] [CrossRef]
  39. Bendszus, M.; Fiehler, J.; Subtil, F.; Bonekamp, S.; Aamodt, A.H.; Fuentes, B.; Gizewski, E.R.; Hill, M.D.; Krajina, A.; Pierot, L.; et al. Endovascular thrombectomy for acute ischaemic stroke with established large infarct: Multicentre, open-label, randomised trial. Lancet 2023, 402, 1753–1763. [Google Scholar] [CrossRef]
  40. Uchida, K.; Shindo, S.; Yoshimura, S.; Toyoda, K.; Sakai, N.; Yamagami, H.; Matsumaru, Y.; Matsumoto, Y.; Kimura, K.; Ishikura, R.; et al. Association Between Alberta Stroke Program Early Computed Tomography Score and Efficacy and Safety Outcomes with Endovascular Therapy in Patients with Stroke from Large-Vessel Occlusion: A Secondary Analysis of the Recovery by Endovascular Salvage for Cerebral Ultra-acute Embolism—Japan Large Ischemic Core Trial (RESCUE-Japan LIMIT). JAMA Neurol. 2022, 79, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
  41. Huo, X.; Ma, G.; Tong, X.; Zhang, X.; Pan, Y.; Nguyen Thanh, N.; Yuan, G.; Han, H.; Chen, W.; Wei, M.; et al. Trial of Endovascular Therapy for Acute Ischemic Stroke with Large Infarct. N. Engl. J. Med. 2023, 388, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
  42. Yoshimura, S.; Sakai, N.; Yamagami, H.; Uchida, K.; Beppu, M.; Toyoda, K.; Matsumaru, Y.; Matsumoto, Y.; Kimura, K.; Takeuchi, M.; et al. Endovascular Therapy for Acute Stroke with a Large Ischemic Region. N. Engl. J. Med. 2022, 386, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
  43. Costalat, V.; Lapergue, B.; Albucher, J.F.; Labreuche, J.; Henon, H.; Gory, B.; Sibon, I.; Boulouis, G.; Cognard, C.; Nouri, N.; et al. Evaluation of acute mechanical revascularization in large stroke (ASPECTS ≤ 5) and large vessel occlusion within 7 h of last-seen-well: The LASTE multicenter, randomized, clinical trial protocol. Int. J. Stroke 2024, 19, 114–119. [Google Scholar] [CrossRef] [PubMed]
  44. Alverne, F.; Lima, F.O.; Rocha, F.A.; Bandeira, D.A.; Lucena, A.F.; Silva, H.C.; Lee, J.S.; Nogueira, R.G. Unfavorable Vascular Anatomy during Endovascular Treatment of Stroke: Challenges and Bailout Strategies. J. Stroke 2020, 22, 185–202. [Google Scholar] [CrossRef] [PubMed]
  45. Hussein, H.M.; Saleem, M.A.; Qureshi, A.I. Rates and predictors of futile recanalization in patients undergoing endovascular treatment in a multicenter clinical trial. Neuroradiology 2018, 60, 557–563. [Google Scholar] [CrossRef] [PubMed]
  46. Shi, Z.S.; Liebeskind, D.S.; Xiang, B.; Ge, S.G.; Feng, L.; Albers, G.W.; Budzik, R.; Devlin, T.; Gupta, R.; Jansen, O.; et al. Predictors of functional dependence despite successful revascularization in large-vessel occlusion strokes. Stroke 2014, 45, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
  47. Dong, A.; Maier, B.; Guillon, B.; Preterre, C.; De Gaalon, S.; Gory, B.; Richard, S.; Kaminsky, A.L.; Tracol, C.; Eugene, F.; et al. TICI-RANKIN mismatch: Poor clinical outcome despite complete endovascular reperfusion in the ETIS Registry. Rev. Neurol. 2023, 179, 230–237. [Google Scholar] [CrossRef] [PubMed]
  48. Ribo, M.; Molina, C.A.; Cobo, E.; Cerdà, N.; Tomasello, A.; Quesada, H.; De Miquel, M.A.; Millan, M.; Castaño, C.; Urra, X.; et al. Association between Time to Reperfusion and Outcome Is Primarily Driven by the Time from Imaging to Reperfusion. Stroke 2016, 47, 999–1004. [Google Scholar] [CrossRef] [PubMed]
  49. Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
  50. Berkhemer, O.A.; Fransen, P.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [PubMed]
  51. Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
  52. Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
  53. Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [PubMed]
  54. Saver, J.L.; Goyal, M.; van der Lugt, A.; Menon, B.K.; Majoie, C.B.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A.; et al. Time to Treatment With Endovascular Thrombectomy and Outcomes From Ischemic Stroke: A Meta-analysis. JAMA 2016, 316, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
  55. Wassélius, J.; Arnberg, F.; von Euler, M.; Wester, P.; Ullberg, T. Endovascular thrombectomy for acute ischemic stroke. J. Intern. Med. 2022, 291, 303–316. [Google Scholar] [CrossRef] [PubMed]
  56. Lina, P.; Amrou, S.; Apostolos, S.; Georgios, M.; Robin, L.; Else Charlotte, S.; Guillaume, T.; Marios, P.; Georgios, T. Endovascular treatment for large-core ischaemic stroke: A meta-analysis of randomised controlled clinical trials. J. Neurol. Neurosurg. Psychiatry 2023, 94, 781. [Google Scholar] [CrossRef]
  57. Smith, W.S.; Sung, G.; Starkman, S.; Saver, J.L.; Kidwell, C.S.; Gobin, Y.P.; Lutsep, H.L.; Nesbit, G.M.; Grobelny, T.; Rymer, M.M.; et al. Safety and Efficacy of Mechanical Embolectomy in Acute Ischemic Stroke. Stroke 2005, 36, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
  58. Bathla, G.; Ajmera, P.; Mehta, P.M.; Benson, J.C.; Derdeyn, C.P.; Lanzino, G.; Agarwal, A.; Brinjikji, W. Advances in Acute Ischemic Stroke Treatment: Current Status and Future Directions. AJNR Am. J. Neuroradiol. 2023, 44, 750–758. [Google Scholar] [CrossRef] [PubMed]
  59. Chartrain, A.G.; Awad, A.J.; Mascitelli, J.R.; Shoirah, H.; Oxley, T.J.; Feng, R.; Gallitto, M.; De Leacy, R.; Fifi, J.T.; Kellner, C.P. Novel and emerging technologies for endovascular thrombectomy. Neurosurg. Focus. 2017, 42, E12. [Google Scholar] [CrossRef] [PubMed]
  60. Fugate, J.E.; Klunder, A.M.; Kallmes, D.F. What is meant by “TICI”? Am. J. Neuroradiol. 2013, 34, 1792–1797. [Google Scholar] [CrossRef]
  61. Adcock, A.K.; Schwamm, L.H.; Smith, E.E.; Fonarow, G.C.; Reeves, M.J.; Xu, H.; Matsouaka, R.A.; Xian, Y.; Saver, J.L. Trends in Use, Outcomes, and Disparities in Endovascular Thrombectomy in US Patients With Stroke Aged 80 Years and Older Compared With Younger Patients. JAMA Netw. Open 2022, 5, e2215869. [Google Scholar] [CrossRef] [PubMed]
  62. Sohn, J.-H.; Kim, C.; Lee, M.; Kim, Y.; Jung Mo, H.; Yu, K.-H.; Lee, S.-H. Effects of prior antiplatelet use on futile reperfusion in patients with acute ischemic stroke receiving endovascular treatment. Eur. Stroke J. 2022, 23969873221144814. [Google Scholar] [CrossRef] [PubMed]
  63. Brinjikji, W.; Lanzino, G. Regarding: “Localized Marked Elongation of the Distal Internal Carotid Artery with or without PHACE Syndrome: Segmental Dolichoectasia of the Distal Internal Carotid Artery”. Am. J. Neuroradiol. 2018, 39, E95. [Google Scholar] [CrossRef]
  64. Broeg-Morvay, A.; Mordasini, P.; Bernasconi, C.; Bühlmann, M.; Pult, F.; Arnold, M.; Schroth, G.; Jung, S.; Mattle, H.P.; Gralla, J.; et al. Direct Mechanical Intervention Versus Combined Intravenous and Mechanical Intervention in Large Artery Anterior Circulation Stroke. Stroke 2016, 47, 1037–1044. [Google Scholar] [CrossRef]
  65. Froehler, M.T.; Saver, J.L.; Zaidat, O.O.; Jahan, R.; Aziz-Sultan, M.A.; Klucznik, R.P.; Haussen, D.C.; Hellinger, F.R., Jr.; Yavagal, D.R.; Yao, T.L.; et al. Interhospital Transfer Before Thrombectomy Is Associated With Delayed Treatment and Worse Outcome in the STRATIS Registry (Systematic Evaluation of Patients Treated With Neurothrombectomy Devices for Acute Ischemic Stroke). Circulation 2017, 136, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
  66. Kim, J.-M.; Bae, J.-H.; Park, K.-Y.; Lee, W.J.; Byun, J.S.; Ahn, S.-W.; Shin, H.-W.; Han, S.-H.; Yoo, I.-H. Incidence and mechanism of early neurological deterioration after endovascular thrombectomy. J. Neurol. 2019, 266, 609–615. [Google Scholar] [CrossRef] [PubMed]
  67. Lattanzi, S.; Norata, D.; Divani, A.A.; Di Napoli, M.; Broggi, S.; Rocchi, C.; Ortega-Gutierrez, S.; Mansueto, G.; Silvestrini, M. Systemic Inflammatory Response Index and Futile Recanalization in Patients with Ischemic Stroke Undergoing Endovascular Treatment. Brain Sci. 2021, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
  68. Ritvonen, J.; Sairanen, T.; Silvennoinen, H.; Virtanen, P.; Salonen, O.; Lindsberg, P.J.; Strbian, D. Comatose With Basilar Artery Occlusion: Still Odds of Favorable Outcome With Recanalization Therapy. Front. Neurol. 2021, 12, 665317. [Google Scholar] [CrossRef] [PubMed]
  69. Malhotra, A.; Wu, X.; Payabvash, S.; Matouk, C.C.; Forman, H.P.; Gandhi, D.; Sanelli, P.; Schindler, J. Comparative Effectiveness of Endovascular Thrombectomy in Elderly Stroke Patients. Stroke 2019, 50, 963–969. [Google Scholar] [CrossRef]
  70. Hilditch, C.A.; Nicholson, P.; Murad, M.H.; Rabinstein, A.; Schaafsma, J.; Pikula, A.; Krings, T.; Pereira, V.M.; Agid, R.; Brinjikji, W. Endovascular Management of Acute Stroke in the Elderly: A Systematic Review and Meta-Analysis. Am. J. Neuroradiol. 2018, 39, 887–891. [Google Scholar] [CrossRef] [PubMed]
  71. McDonough, R.V.; Ospel, J.M.; Campbell, B.C.V.; Hill, M.D.; Saver, J.L.; Dippel, D.W.J.; Demchuk, A.M.; Majoie, C.; Brown, S.B.; Mitchell, P.J.; et al. Functional Outcomes of Patients ≥85 Years With Acute Ischemic Stroke Following EVT: A HERMES Substudy. Stroke 2022, 53, 2220–2226. [Google Scholar] [CrossRef] [PubMed]
  72. Lee, S.-H.; Kim, B.J.; Han, M.-K.; Park, T.H.; Lee, K.B.; Lee, B.-C.; Yu, K.-H.; Oh, M.S.; Cha, J.K.; Kim, D.-H.; et al. Futile reperfusion and predicted therapeutic benefits after successful endovascular treatment according to initial stroke severity. BMC Neurol. 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed]
  73. Chalos, V.; de Ridder, I.R.; Lingsma, H.F.; Brown, S.; van Oostenbrugge, R.J.; Goyal, M.; Campbell, B.C.V.; Muir, K.W.; Guillemin, F.; Bracard, S.; et al. Does Sex Modify the Effect of Endovascular Treatment for Ischemic Stroke? Stroke 2019, 50, 2413–2419. [Google Scholar] [CrossRef] [PubMed]
  74. Bradley, S.A.; Smokovski, I.; Bhaskar, S.M.M. Impact of diabetes on clinical and safety outcomes in acute ischemic stroke patients receiving reperfusion therapy: A meta-analysis. Adv. Clin. Exp. Med. 2022, 31, 583–596. [Google Scholar] [CrossRef] [PubMed]
  75. Nam, H.S.; Kim, B.M. Advance of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. J. Clin. Med. 2023, 12, 720. [Google Scholar] [CrossRef] [PubMed]
  76. Wang, R.; Xie, Z.; Li, B.; Zhang, P. Renal impairment and the prognosis of endovascular thrombectomy: A meta-analysis and systematic review. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221083620. [Google Scholar] [CrossRef] [PubMed]
  77. Maheshwari, R.; Cordato, D.J.; Wardman, D.; Thomas, P.; Bhaskar, S.M.M. Clinical outcomes following reperfusion therapy in acute ischemic stroke patients with infective endocarditis: A systematic review. J. Cent. Nerv. Syst. Dis. 2022, 14, 11795735221081597. [Google Scholar] [CrossRef]
  78. Brott, T.; Adams, H.P., Jr.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V.; et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [PubMed]
  79. Zhang, Y.; Zhang, L.; Zhang, Y.; Li, Z.; Zhang, Y.; Xing, P.; Chen, W.; Wang, S.; Li, T.; Yang, P.; et al. Endovascular Recanalization for Acute Internal Carotid Artery Terminus Occlusion: A Subgroup Analysis From the Direct-MT Trial. Neurosurgery 2022, 91, 596–603. [Google Scholar] [CrossRef] [PubMed]
  80. Zang, N.; Lin, Z.; Huang, K.; Pan, Y.; Wu, Y.; Wu, Y.; Wang, S.; Wang, D.; Ji, Z.; Pan, S. Biomarkers of Unfavorable Outcome in Acute Ischemic Stroke Patients with Successful Recanalization by Endovascular Thrombectomy. Cerebrovasc. Dis. 2020, 49, 583–592. [Google Scholar] [CrossRef] [PubMed]
  81. Su, M.; Zhou, Y.; Chen, Z.; Pu, M.; Li, Z.; Du, H.; Xu, G. Cystatin C predicts futile recanalization in patients with acute ischemic stroke after endovascular treatment. J. Neurol. 2022, 269, 966–972. [Google Scholar] [CrossRef] [PubMed]
  82. Hervella, P.; Sampedro-Viana, A.; Rodríguez-Yáñez, M.; López-Dequidt, I.; Pumar, J.M.; Mosqueira, A.J.; Fernández-Rodicio, S.; Bazarra-Barreiros, M.; Serena, J.; Silva-Blas, Y.; et al. Systemic biomarker associated with poor outcome after futile reperfusion. Eur. J. Clin. Investig. 2024, 54, e14181. [Google Scholar] [CrossRef] [PubMed]
  83. Liao, J.s.; Guo, C.; Zhang, B.; Yang, J.; Zi, W.; Li, J.l. Low neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict favorable outcomes after endovascular treatment in acute basilar artery occlusion: Subgroup analysis of the BASILAR registry. BMC Neurol. 2023, 23, 113. [Google Scholar] [CrossRef] [PubMed]
  84. Yeh, S.-J.; Chen, C.-H.; Lin, Y.-H.; Tsai, L.-K.; Lee, C.-W.; Tang, S.-C.; Jeng, J.-S. Serum amyloid A predicts poor functional outcome in patients with ischemic stroke receiving endovascular thrombectomy: A case control study. J. NeuroInterv. Surg. 2023, 15, 75. [Google Scholar] [CrossRef] [PubMed]
  85. Ryu, C.W.; Shin, H.S.; Park, S.; Suh, S.H.; Koh, J.S.; Choi, H.Y. Alberta Stroke Program Early CT Score in the Prognostication after Endovascular Treatment for Ischemic Stroke: A Meta-analysis. Neurointervention 2017, 12, 20–30. [Google Scholar] [CrossRef] [PubMed]
  86. Liu, D.; Scalzo, F.; Rao, N.M.; Hinman, J.D.; Kim, D.; Ali, L.K.; Saver, J.L.; Sun, W.; Dai, Q.; Liu, X.; et al. Fluid-Attenuated Inversion Recovery Vascular Hyperintensity Topography, Novel Imaging Marker for Revascularization in Middle Cerebral Artery Occlusion. Stroke 2016, 47, 2763–2769. [Google Scholar] [CrossRef] [PubMed]
  87. Pfaff, J.; Herweh, C.; Schieber, S.; Schönenberger, S.; Bösel, J.; Ringleb, P.A.; Möhlenbruch, M.; Bendszus, M.; Nagel, S. e-ASPECTS Correlates with and Is Predictive of Outcome after Mechanical Thrombectomy. Am. J. Neuroradiol. 2017, 38, 1594–1599. [Google Scholar] [CrossRef] [PubMed]
  88. Lu, W.Z.; Lin, H.A.; Bai, C.H.; Lin, S.F. Posterior circulation acute stroke prognosis early CT scores in predicting functional outcomes: A meta-analysis. PLoS ONE 2021, 16, e0246906. [Google Scholar] [CrossRef]
  89. Karatzetzou, S.; Tsiptsios, D.; Sousanidou, A.; Christidi, F.; Psatha, E.A.; Chatzaki, M.; Kitmeridou, S.; Giannakou, E.; Karavasilis, E.; Kokkotis, C.; et al. Elucidating the Role of Baseline Leukoaraiosis on Forecasting Clinical Outcome of Acute Ischemic Stroke Patients Undergoing Reperfusion Therapy. Neurol. Int. 2022, 14, 923–942. [Google Scholar] [CrossRef] [PubMed]
  90. Diprose, W.K.; Diprose, J.P.; Wang, M.T.M.; Tarr, G.P.; McFetridge, A.; Barber, P.A. Automated Measurement of Cerebral Atrophy and Outcome in Endovascular Thrombectomy. Stroke 2019, 50, 3636–3638. [Google Scholar] [CrossRef] [PubMed]
  91. Xu, T.; Wang, Y.; Yuan, J.; Chen, Y.; Luo, H. Small Vessel Disease Burden and Outcomes of Mechanical Thrombectomy in Ischemic Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 602037. [Google Scholar] [CrossRef] [PubMed]
  92. Protto, S.; Pienimäki, J.-P.; Seppänen, J.; Numminen, H.; Sillanpää, N. Low Cerebral Blood Volume Identifies Poor Outcome in Stent Retriever Thrombectomy. CardioVasc. Interv. Radiol. 2017, 40, 502–509. [Google Scholar] [CrossRef] [PubMed]
  93. Zaidat, O.O.; Castonguay, A.C.; Linfante, I.; Gupta, R.; Martin, C.O.; Holloway, W.E.; Mueller-Kronast, N.; English, J.D.; Dabus, G.; Malisch, T.W.; et al. First Pass Effect: A New Measure for Stroke Thrombectomy Devices. Stroke 2018, 49, 660–666. [Google Scholar] [CrossRef]
  94. Brinjikji, W.; Robert, M.S.; Murad, M.H.; David, F.; Vitor, M.P.; Mayank, G.; David, F.K. Impact of balloon guide catheter on technical and clinical outcomes: A systematic review and meta-analysis. J. NeuroInterv. Surg. 2018, 10, 335. [Google Scholar] [CrossRef] [PubMed]
  95. van Horn, N.; Kniep, H.; Leischner, H.; McDonough, R.; Deb-Chatterji, M.; Broocks, G.; Thomalla, G.; Brekenfeld, C.; Fiehler, J.; Hanning, U.; et al. Predictors of poor clinical outcome despite complete reperfusion in acute ischemic stroke patients. J. NeuroInterv. Surg. 2021, 13, 14. [Google Scholar] [CrossRef] [PubMed]
  96. Uniken Venema, S.M.; Wolff, L.; van den Berg, S.A.; Reinink, H.; Luijten, S.P.R.; Lingsma, H.F.; Marquering, H.A.; Boers, A.M.M.; Bot, J.; Hammer, S.; et al. Time Since Stroke Onset, Quantitative Collateral Score, and Functional Outcome After Endovascular Treatment for Acute Ischemic Stroke. Neurology 2022, 99, e1609–e1618. [Google Scholar] [CrossRef] [PubMed]
  97. Binder, N.F.; El Amki, M.; Glück, C.; Middleham, W.; Reuss, A.M.; Bertolo, A.; Thurner, P.; Deffieux, T.; Lambride, C.; Epp, R.; et al. Leptomeningeal collaterals regulate reperfusion in ischemic stroke and rescue the brain from futile recanalization. Neuron 2024, 112, 1456–1472.e1456. [Google Scholar] [CrossRef] [PubMed]
  98. Ravindran, A.V.; Killingsworth, M.C.; Bhaskar, S. Cerebral collaterals in acute ischaemia: Implications for acute ischaemic stroke patients receiving reperfusion therapy. Eur. J. Neurosci. 2021, 53, 1238–1261. [Google Scholar] [CrossRef] [PubMed]
  99. Baek, J.H.; Kim, B.M.; Heo, J.H.; Nam, H.S.; Kim, Y.D.; Park, H.; Bang, O.Y.; Yoo, J.; Kim, D.J.; Jeon, P.; et al. Number of Stent Retriever Passes Associated With Futile Recanalization in Acute Stroke. Stroke 2018, 49, 2088–2095. [Google Scholar] [CrossRef]
  100. Kitano, T.; Todo, K.; Yoshimura, S.; Uchida, K.; Yamagami, H.; Sakai, N.; Sakaguchi, M.; Nakamura, H.; Kishima, H.; Mochizuki, H.; et al. Futile complete recanalization: Patients characteristics and its time course. Sci. Rep. 2020, 10, 4973. [Google Scholar] [CrossRef] [PubMed]
  101. Jahan, R.; Saver, J.L.; Schwamm, L.H.; Fonarow, G.C.; Liang, L.; Matsouaka, R.A.; Xian, Y.; Holmes, D.N.; Peterson, E.D.; Yavagal, D.; et al. Association Between Time to Treatment With Endovascular Reperfusion Therapy and Outcomes in Patients With Acute Ischemic Stroke Treated in Clinical Practice. JAMA 2019, 322, 252–263. [Google Scholar] [CrossRef] [PubMed]
  102. Meinel, T.R.; Kaesmacher, J.; Chaloulos-Iakovidis, P.; Panos, L.; Mordasini, P.; Mosimann, P.J.; Michel, P.; Hajdu, S.; Ribo, M.; Requena, M.; et al. Mechanical thrombectomy for basilar artery occlusion: Efficacy, outcomes, and futile recanalization in comparison with the anterior circulation. J. NeuroInterv. Surg. 2019, 11, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
  103. Wang, D.; Shu, H.; Meng, Y.; Zhang, H.; Wang, H.; He, S. Factors Promoting Futile Recanalization After Stent Retriever Thrombectomy for Stroke Affecting the Anterior Circulation: A Retrospective Analysis. World Neurosurg. 2020, 133, e576–e582. [Google Scholar] [CrossRef] [PubMed]
  104. Kharouba, R.; Gavriliuc, P.; Yaghmour, N.E.; Gomori, J.M.; Cohen, J.E.; Leker, R.R. Number of stentriever passes and outcome after thrombectomy in stroke. J. Neuroradiol. 2019, 46, 327–330. [Google Scholar] [CrossRef] [PubMed]
  105. Garcia-Tornel Garcia-Camba, A.; Requena, M.; Rubiera, M.; Muchada, M.; Pagola, J.; Rodriguez-Luna, D.; Deck, M.; Juega, J.; Rodríguez-Villatoro, N.; Boned Riera, S.; et al. When to Stop: Detrimental Effect of Device Passes in Acute Ischemic Stroke Secondary to Large Vessel Occlusion. Stroke 2019, 50, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
  106. Abbasi, M.; Liu, Y.; Fitzgerald, S.; Mereuta, O.M.; Arturo Larco, J.L.; Rizvi, A.; Kadirvel, R.; Savastano, L.; Brinjikji, W.; Kallmes, D.F. Systematic review and meta-analysis of current rates of first pass effect by thrombectomy technique and associations with clinical outcomes. J. NeuroInterv. Surg. 2021, 13, 212–216. [Google Scholar] [CrossRef] [PubMed]
  107. Flottmann, F.; Leischner, H.; Broocks, G.; Nawabi, J.; Bernhardt, M.; Faizy, T.D.; Deb-Chatterji, M.; Thomalla, G.; Fiehler, J.; Brekenfeld, C. Recanalization Rate per Retrieval Attempt in Mechanical Thrombectomy for Acute Ischemic Stroke. Stroke 2018, 49, 2523–2525. [Google Scholar] [CrossRef] [PubMed]
  108. Wang, Z.; Fan, L. Does stress hyperglycemia in diabetic and non-diabetic acute ischemic stroke patients predict unfavorable outcomes following endovascular treatment? Neurol. Sci. 2023, 44, 1695–1702. [Google Scholar] [CrossRef] [PubMed]
  109. Filioglo, A.; Cohen, J.E.; Honig, A.; Simaan, N.; Gomori, J.M.; Leker, R.R. More than five stentriever passes: Real benefit or futile recanalization? Neuroradiology 2020, 62, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
  110. Zhang, M.; Xing, P.; Tang, J.; Shi, L.; Yang, P.; Zhang, Y.; Zhang, L.; Peng, Y.; Liu, S.; Zhang, L.; et al. Predictors and outcome of early neurological deterioration after endovascular thrombectomy: A secondary analysis of the DIRECT-MT trial. J. NeuroInterv. Surg. 2022, 15, e9–e16. [Google Scholar] [CrossRef] [PubMed]
  111. Heitkamp, C.; Winkelmeier, L.; Heit, J.J.; Albers, G.W.; Lansberg, M.G.; Wintermark, M.; Broocks, G.; van Horn, N.; Kniep, H.C.; Sporns, P.B.; et al. Unfavorable cerebral venous outflow is associated with futile recanalization in acute ischemic stroke patients. Eur. J. Neurol. 2023, 30, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
  112. Mohammaden, M.H.; Stapleton, C.J.; Brunozzi, D.; Hussein, A.E.; Khedr, E.M.; Atwal, G.; Alaraj, A. Predictors of Poor Outcome Despite Successful Mechanical Thrombectomy of Anterior Circulation Large Vessel Occlusions Within 6 h of Symptom Onset. Front. Neurol. 2020, 11, 907. [Google Scholar] [CrossRef]
  113. Spronk, E.; Sykes, G.; Falcione, S.; Munsterman, D.; Joy, T.; Kamtchum-Tatuene, J.; Jickling, G.C. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front. Neurol. 2021, 12, 661955. [Google Scholar] [CrossRef] [PubMed]
  114. Boisseau, W.; Jean-Philippe, D.; Robert, F.; Maeva, K.; Kevin, Z.; Candice, S.; Guillaume, T.; Malek Ben, M.; Benjamin, M.; Daniele, B.; et al. Neutrophil count predicts poor outcome despite recanalization after endovascular therapy. Neurology 2019, 93, e467. [Google Scholar] [CrossRef] [PubMed]
  115. Mechtouff, L.; Bochaton, T.; Paccalet, A.; Da Silva, C.C.; Buisson, M.; Amaz, C.; Derex, L.; Ong, E.; Berthezene, Y.; Eker, O.F.; et al. Association of Interleukin-6 Levels and Futile Reperfusion After Mechanical Thrombectomy. Neurology 2021, 96, e752–e757. [Google Scholar] [CrossRef] [PubMed]
  116. Tajima, Y.; Hayasaka, M.; Ebihara, K.; Kubota, M.; Suda, S. Predictors of poor outcome after successful mechanical thrombectomy in patients with acute anterior circulation stroke. J. Clin. Interv. Radiol. 2017, 1, 139–143. [Google Scholar] [CrossRef]
  117. Phuong, N.V.; Cong Thanh, N.; Keserci, B.; Sang, N.V.; Minh Duc, N. Mechanical thrombectomy treatment of basilar artery occlusion within 24 hours of symptom onset: A Single-Center Experience. Clin. Ter. 2022, 173, 400–406. [Google Scholar] [CrossRef]
  118. Aguirre, C.; Trillo, S.; Ramos, C.; Zapata-Wainberg, G.; Sanz-García, A.; Ximénez-Carrillo, Á.; Barbosa, A.; Caniego, J.L.; Vivancos, J. Predictive value of ischemia location on multimodal CT in thrombectomy-treated patients. Neuroradiol. J. 2023, 36, 319–328. [Google Scholar] [CrossRef] [PubMed]
  119. de Havenon, A.; Elhorany, M.; Boulouis, G.; Naggara, O.; Darcourt, J.; Clarençon, F.; Richard, S.; Marnat, G.; Bourcier, R.; Sibon, I.; et al. Thrombectomy in basilar artery occlusions: Impact of number of passes and futile reperfusion. J. NeuroInterv. Surg. 2023, 15, 422–427. [Google Scholar] [CrossRef] [PubMed]
  120. Seker, F.; Qureshi, M.M.; Möhlenbruch, M.A.; Nogueira, R.G.; Abdalkader, M.; Ribo, M.; Caparros, F.; Haussen, D.C.; Mohammaden, M.H.; Sheth, S.A.; et al. Reperfusion Without Functional Independence in Late Presentation of Stroke With Large Vessel Occlusion. Stroke 2022, 53, 3594–3604. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Utilization Schematic of the Futile Recanalization Prediction Score (FRPS) in a Clinical Setting. Abbreviations: FRPS: Futile Recanalization Prediction Score; FR: Futile Recanalization; SBP: Systolic Blood Pressure; NIHSS: National Institutes of Health Stroke Scale; mRS: Modified Rankin Scale; DM: Diabetes Mellitus; HL: Hyperlipidemia; AF: Atrial Fibrillation; HTN: Hypertension; sICH: Symptomatic Intracranial Hemorrhage; EVT: Endovascular Thrombectomy.
Figure 1. Utilization Schematic of the Futile Recanalization Prediction Score (FRPS) in a Clinical Setting. Abbreviations: FRPS: Futile Recanalization Prediction Score; FR: Futile Recanalization; SBP: Systolic Blood Pressure; NIHSS: National Institutes of Health Stroke Scale; mRS: Modified Rankin Scale; DM: Diabetes Mellitus; HL: Hyperlipidemia; AF: Atrial Fibrillation; HTN: Hypertension; sICH: Symptomatic Intracranial Hemorrhage; EVT: Endovascular Thrombectomy.
Neurolint 16 00045 g001
Figure 2. Factors Contributing to Futile Recanalization—A Flowchart Summary for IV-rtPA and EVT Treatments. Abbreviations: IV: Intravenous; rtPA: Recombinant Tissue Plasminogen Activator; EVT: Endovascular Thrombectomy; ASPECTS: Alberta Stroke Program Early Computed Tomography Score.
Figure 2. Factors Contributing to Futile Recanalization—A Flowchart Summary for IV-rtPA and EVT Treatments. Abbreviations: IV: Intravenous; rtPA: Recombinant Tissue Plasminogen Activator; EVT: Endovascular Thrombectomy; ASPECTS: Alberta Stroke Program Early Computed Tomography Score.
Neurolint 16 00045 g002
Table 1. Summary of the meta-analyses on futile recanalization after endovascular thrombectomy in acute ischemic stroke patients.
Table 1. Summary of the meta-analyses on futile recanalization after endovascular thrombectomy in acute ischemic stroke patients.
Author, y Shahid et al., 2022 [8]Deng et al., 2022 [9]Shen et al., 2023 [7]
No. of studiesN221239
No. of patientsn3037213811,700
Search strategy until-February 2021April 2021May 2023
FR prevalence
PrevalencePercentage
[95% CI; p-value]
51% [45.8–54.7%]48.7%
(only crude prevalence reported)
51% [48–54%; p < 0.001]
FR predictors
AgeSMD [95% CI; p-value]5.6 [4.7–6.6; p < 0.001]5.81 [4.16–7.46; p < 0.00001]0.49 [0.42–0.56; p < 0.0001]
AFOR [95% CI; p-value]1.5 [1.2–1.8; p < 0.001]1.24 [1.01–1.51; p < 0.00001]1.39 [1.22–1.59; p < 0.001]
AlcoholOR [95% CI; p-value]NRNR0.80 [0.581–1.101; p = 0.170]
CVDOR [95% CI; p-value]1.4 [1.1–1.8; p < 0.01]NR1.15 [0.795–1.671; p = 0.454]
HTNOR [95% CI; p-value]1.5 [1.3–1.9; p < 0.001]1.73 [1.43–2.09; p < 0.00001]1.65 [1.41–1.92; p < 0.001]
HLOR [95% CI; p-value]1.1 [0.9–1.3; p = 0.20]1.01 [0.80–1.28; p = 0.92]0.97 [0.870–1.088; p = 0.627]
DMOR [95% CI; p-value]1.5 [1.1–2.1; p = 0.1]1.78 [1.41–2.24; p < 0.00001]1.71 [1.47–1.99; p < 0.001]
Male sexOR [95% CI; p-value]NRNR0.87 [0.77–0.97; p = 0.016]
Female sexOR [95% CI; p-value]1.3 [1.1–1.6; p < 0.01]1.40 [1.16–1.68; p < 0.0004]NR
PS/TIAOR [95% CI; p-value]1.4 [1.03–2.04; p < 0.03]NR1.30 [1.06–1.59; p = 0.012]
SmokingOR [95% CI; p-value]0.6 [0.5–0.7; p < 0.01]NR0.66 [0.57–0.77; p < 0.001]
GCOR [95% CI; p-value]NRNR0.33 [0.23–0.49; p < 0.001]
APUOR [95% CI; p-value]1.1 [0.8–1.4; p = 0.58]NR1.16 [0.976–1.386; p = 0.094]
ACUOR [95% CI; p-value]0.5 [0.1–1.6; p = 0.23]NR1.33 [1.08–1.63; p = 0.007]
LAAOR [95% CI; p-value]NR0.92 [0.70–1.21; p = 0.54]0.83 [0.671–1.018; p = 0.073]
CEOR [95% CI; p-value]NR1.06 [0.85–1.33; p = 0.60]1.34 [1.10–1.63; p = 0.003]
GAOR [95% CI; p-value]1.2 [0.78–2.01; p = 0.34]NR1.53 [1.35–1.74; p < 0.001]
IVTOR [95% CI; p-value]0.7 [0.5–0.8; p < 0.001]0.67 [0.55–0.83; p < 0.0001]0.75 [0.66–0.86; p < 0.001]
BGSMD [95% CI; p-value]NR0.59 [0.37–0.81; p < 0.00001]0.31 [0.22–0.41; p < 0.001]
SBPSMD [95% CI; p-value]6.9 [3.6–8.7; p < 0.001]4.98 [1.87–8.09; p < 0.002]0.20 [0.13–0.27; p < 0.001]
DBPSMD [95% CI; p-value]1.31 [−1.0–3.6; p = 0.26]−0.36 [−3.14–2.42; p = 0.80]NR
NIHSSSMD [95% CI; p-value]4.2 [3.2–5.1; p < 0.001]4.22 [3.38–5.07; p < 0.00001]0.75 [0.65–0.86; p < 0.001]
ASPECTSSMD [95% CI; p-value]−0.5 [−0.8– −0.3; p < 0.001]−0.71 [−1.23–−0.19; p = 0.007]−0.37 [−0.46–−0.27; p < 0.001]
OTTSMD [95% CI; p-value]24.3 [9.9–38.7; p < 0.001]16.92 [6.52–27.31; p < 0.001]0.22 [0.13–0.30; p < 0.001]
PTRSMD [95% CI; p-value]9.58 [5.3–13.8; p < 0.001]12.37 [7.96–16.79; p < 0.00001]NR
OTRSMD [95% CI; p-value]32.1 [6.5–47.7; p < 0.001]13.97 [−7.85–35.80; p = 0.21]0.38 [0.19–0.57; p < 0.001]
OTEDSMD [95% CI; p-value]20.1 [4.4–35.8; p < 0.01]NRNR
ICA occlusionOR [95% CI; p-value]NR1.85 [1.17–2.95; p = 0.009]NR
MCA-MI occlusionOR [95% CI; p-value]NR0.81 [0.51–1.28; p = 0.37]NR
MCA-M2 occlusionOR [95% CI; p-value]NR0.70 [0.42–1.18; p = 0.19]NR
Tandem occlusionOR [95% CI; p-value]NR1.30 [0.72–2.33; p = 0.38]NR
Procedure complicationsOR [95% CI; p-value]0.8 [0.4–1.8; p = 0.61]NRNR
FR outcomes
sICHOR [95% CI; p-value]5.7 [2.8–11.65; p < 0.01]6.09 [3.18–11.68; p < 0.00001]7.37 [4.89–11.12; p < 0.001]
HTOR [95% CI; p-value]NRNR2.98 [2.37–3.75; p < 0.001]
90-day mortalityOR [95% CI; p-value]NRNR19.24 [1.57–235.18; p = 0.021]
Data processing and evaluation
Meta-regression-AppliedAppliedApplied
Sensitivity analysis-NPNPApplied
Trails sequential analysis-NPNPNP
Evidence of effect-NPNPNP
Abbreviations: FR = futile recanalization; SMD = standard mean difference; CI = confidence interval; AF = atrial fibrillation; OR = odds ratio; NR = not reported; CVD = cardiovascular disease; HTN = hypertension; HL = hyperlipidemia, DM = diabetes mellitus; PS/TIA = prior stroke/transient ischemic attack; GC = good collaterals; APU = antiplatelet usage; ACU = anticoagulant usage; LAA = large artery atherosclerosis; CE = cardioembolic; GA = general anesthesia; IVT = intravenous thrombolysis; BG = blood glucose; SBP = systolic blood pressure; DBP = diastolic blood pressure; NIHSS = National Institutes of Health Stroke Severity; ASPECTS = Alberta Stroke Program Early CT Score, OTT = onset-to-treatment time; PTR = puncture-to-recanalization time; OTR = onset-to-recanalization time; OTED = onset-to-emergency-department-arrival time; ICA = internal carotid artery; MCA = middle cerebral artery; sICH = symptomatic intracranial hemorrhage; HT = hemorrhagic transformation; NP = not performed.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Shen, H.; Huasen, B.B.; Killingsworth, M.C.; Bhaskar, S.M.M. Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke. Neurol. Int. 2024, 16, 605-619. https://doi.org/10.3390/neurolint16030045

AMA Style

Shen H, Huasen BB, Killingsworth MC, Bhaskar SMM. Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke. Neurology International. 2024; 16(3):605-619. https://doi.org/10.3390/neurolint16030045

Chicago/Turabian Style

Shen, Helen, Bella B. Huasen, Murray C. Killingsworth, and Sonu M. M. Bhaskar. 2024. "Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke" Neurology International 16, no. 3: 605-619. https://doi.org/10.3390/neurolint16030045

APA Style

Shen, H., Huasen, B. B., Killingsworth, M. C., & Bhaskar, S. M. M. (2024). Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke. Neurology International, 16(3), 605-619. https://doi.org/10.3390/neurolint16030045

Article Metrics

Back to TopTop