Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications
Abstract
:1. Introduction
2. SMA as a Non-Cell-Autonomous Disease
Impaired Neurotrophic and Metabolic Support
3. Glial Cells in SMA: Types and Roles
3.1. Astrocytes: The Neurotrophic and Synaptic Regulators
3.1.1. Role of Astrocytes in Maintaining Synaptic Stability and Glutamate Regulation
3.1.2. Dysfunction in Astrocyte-MN Interactions, Including Synapse Formation and Calcium Signaling
3.1.3. Evidence of Reactive Astrogliosis Preceding MN Degeneration
3.2. Microglia: Immune Surveillance and Synaptic Stripping
3.2.1. Microglial Activation in SMA, Synaptic Stripping, and Its Implications
3.2.2. Recent Findings on Complement Systems like C1q-Tagging Synapses for Microglial Phagocytosis
3.2.3. Pro-Inflammatory Vs. Anti-Inflammatory (M1/M2) Microglial Responses
3.2.4. Oligodendrocytes and Schwann Cells: Myelination and Peripheral Nerve Involvement
3.2.5. Emerging Data on Oligodendrocytes’ Reduced Differentiation and Myelin Formation
3.2.6. Role of Schwann Cells in Peripheral Nerves and NMJ Maintenance
3.2.7. SMN Deficiency in Schwann Cells Impacts ECM Proteins and Axon Stability
4. Neuroinflammation and Glial Cell Dysfunction in SMA Progression
5. Potential New Drug Development Pathways Targeting Glia in SMA
5.1. Mechanistic Insights for Therapeutic Targeting
5.2. Emerging Therapeutic Strategies
6. Challenges and Future Directions
6.1. Beyond Restoring SMN Protein Function in Neurons
6.2. PNS Involvement and Its Therapeutic Targeting
6.3. Potential Role of Adaptive Immunity and Its Therapeutic Exploration
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALS | Amyotrophic lateral sclerosis |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid |
ATP | Adenosine triphosphate |
BCID | Bicaudal d |
BDNF | Brain-derived neurotrophic factor |
BV2 | BV2 microglial cell line |
CD206 | Cluster of differentiation 206 |
CD68 | Cluster of differ-entiation 68 |
CD86 | Cluster of differentiation 86 |
CMT | Charcot-Marie-Tooth |
CNS | Central nervous system |
CNTF | Ciliary neurotrophic factor |
DIV | Days in vitro |
EAAT1 | Excitatory amino acid transporter |
ECM | Extracellular matrix |
Erk1/2 | Extracellular Signal-Regulated Kinases 1 and 2 |
GATA6 | GATA-binding protein 6 |
GDNF | Glial-derived neurotrophic factor |
GFAP | Glial fibrillary acidic protein |
Iba1 | Ionized calcium-binding adaptor molecule 1 |
IKK | Inhibitor of nuclear factor-κB kinase |
IL- | Interleukin- |
iNOS | Inducible nitric oxide synthase |
iPSC | Induced pluripotent stem cell |
JNK | c-Jun N-terminal Kinase |
Kir4 | Inwardly rectifying potassium channel 4.1 |
LAMA2 | Laminin alpha 2 |
LPS | Lipopolysaccharide |
MAPK | Mitogen-Activated Protein Kinase |
MBP | Myelin basic protein |
MN | Motor neuron |
NfκB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
NG2 | Nerve/glial antigen 2 |
NLR | NOD-like receptor |
NMJ | Neuromuscular junction |
NO | Nitric oxide |
OLs | Mature oligodendrocytes |
OPC | Oligodendrocyte progenitor cells |
PNS | Peripheral nervous system |
Prox1 | Prospero-related homeobox 1 |
PrP | Prion Protein Promoter |
RGC | Radial glial cells |
ROS | Reactive oxygen species |
SMA | Spinal muscular atrophy |
SMN | Survival motor neuron |
TNF-α | Tumor necrosis factor alfa |
TRAF6 | Tumor necrosis factor receptor associated factor 6 |
TrkB | Tropomyosin receptor kinase B |
WT | Wild-type |
References
- Darras, B.T. Spinal Muscular Atrophies. Pediatr. Clin. N. Am. 2015, 62, 743–766. [Google Scholar] [CrossRef] [PubMed]
- Verhaart, I.E.C.; Robertson, A.; Wilson, I.J.; Aartsma-Rus, A.; Cameron, S.; Jones, C.C.; Cook, S.F.; Lochmüller, H. Prevalence, Incidence and Carrier Frequency of 5q–Linked Spinal Muscular Atrophy—A Literature Review. Orphanet J. Rare Dis. 2017, 12, 124. [Google Scholar] [CrossRef]
- Chen, T.-H. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int. J. Mol. Sci. 2020, 21, 3297. [Google Scholar] [CrossRef] [PubMed]
- Talbot, K.; Tizzano, E.F. The Clinical Landscape for SMA in a New Therapeutic Era. Gene Ther. 2017, 24, 529–533. [Google Scholar] [CrossRef]
- Hassan, H.A.; Zaki, M.S.; Issa, M.Y.; El-Bagoury, N.M.; Essawi, M.L. Genetic Pattern of SMN1, SMN2, and NAIP Genes in Prognosis of SMA Patients. Egypt. J. Med. Hum. Genet. 2020, 21, 4. [Google Scholar] [CrossRef]
- Tizzano, E.F.; Finkel, R.S. Spinal Muscular Atrophy: A Changing Phenotype beyond the Clinical Trials. Neuromuscul. Disord. 2017, 27, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Farrar, M.A.; Carey, K.A.; Paguinto, S.-G.; Kasparian, N.A.; De Abreu Lourenço, R. “The Whole Game Is Changing and You’ve Got Hope”: Australian Perspectives on Treatment Decision Making in Spinal Muscular Atrophy. Patient-Patient-Centered Outcomes Res. 2020, 13, 389–400. [Google Scholar] [CrossRef]
- Abati, E.; Citterio, G.; Bresolin, N.; Comi, G.P.; Corti, S. Glial Cells Involvement in Spinal Muscular Atrophy: Could SMA Be a Neuroinflammatory Disease? Neurobiol. Dis. 2020, 140, 104870. [Google Scholar] [CrossRef]
- Sleigh, J.N.; Gillingwater, T.H.; Talbot, K. The Contribution of Mouse Models to Understanding the Pathogenesis of Spinal Muscular Atrophy. Dis. Models Mech. 2011, 4, 457–467. [Google Scholar] [CrossRef]
- Lobsiger, C.S.; Cleveland, D.W. Glial Cells as Intrinsic Components of Non-Cell-Autonomous Neurodegenerative Disease. Nat. Neurosci. 2007, 10, 1355–1360. [Google Scholar] [CrossRef]
- McGivern, J.V.; Patitucci, T.N.; Nord, J.A.; Barabas, M.-E.A.; Stucky, C.L.; Ebert, A.D. Spinal Muscular Atrophy Astrocytes Exhibit Abnormal Calcium Regulation and Reduced Growth Factor Production. Glia 2013, 61, 1418–1428. [Google Scholar] [CrossRef]
- Rossoll, W.; Jablonka, S.; Andreassi, C.; Kröning, A.-K.; Karle, K.; Monani, U.R.; Sendtner, M. Smn, the Spinal Muscular Atrophy–Determining Gene Product, Modulates Axon Growth and Localization of β-Actin MRNA in Growth Cones of Motoneurons. J. Cell Biol. 2003, 163, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Naryshkin, N.A.; Weetall, M.; Dakka, A.; Narasimhan, J.; Zhao, X.; Feng, Z.; Ling, K.K.Y.; Karp, G.M.; Qi, H.; Woll, M.G.; et al. SMN2 Splicing Modifiers Improve Motor Function and Longevity in Mice with Spinal Muscular Atrophy. Science 2014, 345, 688–693. [Google Scholar] [CrossRef]
- Gogliotti, R.G.; Quinlan, K.A.; Barlow, C.B.; Heier, C.R.; Heckman, C.J.; DiDonato, C.J. Motor Neuron Rescue in Spinal Muscular Atrophy Mice Demonstrates That Sensory-Motor Defects Are a Consequence, Not a Cause, of Motor Neuron Dysfunction. J. Neurosci. 2012, 32, 3818–3829. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Sahashi, K.; Rigo, F.; Hung, G.; Horev, G.; Bennett, C.F.; Krainer, A.R. Peripheral SMN Restoration Is Essential for Long-Term Rescue of a Severe Spinal Muscular Atrophy Mouse Model. Nature 2011, 478, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.-H.; Awano, T.; Park, G.-H.; Monani, U.R. Limited Phenotypic Effects of Selectively Augmenting the SMN Protein in the Neurons of a Mouse Model of Severe Spinal Muscular Atrophy. PLoS ONE 2012, 7, e46353. [Google Scholar] [CrossRef]
- Gavrilina, T.O.; McGovern, V.L.; Workman, E.; Crawford, T.O.; Gogliotti, R.G.; DiDonato, C.J.; Monani, U.R.; Morris, G.E.; Burghes, A.H. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum. Mol. Genet. 2008, 17, 1063–1075. [Google Scholar] [CrossRef]
- Jablonka, S.; Karle, K.; Sandner, B.; Andreassi, C.; von Au, K.; Sendtner, M. Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 2006, 15, 511–518. [Google Scholar] [CrossRef]
- Mentis, G.Z.; Blivis, D.; Liu, W.; Drobac, E.; Crowder, M.E.; Kong, L.; Alvarez, F.J.; Sumner, C.J.; O’Donovan, M.J. Early Functional Impairment of Sensory-Motor Connectivity in a Mouse Model of Spinal Muscular Atrophy. Neuron 2011, 69, 453–467. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef]
- Gupta, V.; You, Y.; Gupta, V.; Klistorner, A.; Graham, S. TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders. Int. J. Mol. Sci. 2013, 14, 10122–10142. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, A.; Huang, E.J. Plastin 3 Rescues BDNF-TrkB Signaling in Spinal Muscular Atrophy. J. Cell Biol. 2023, 222, e202301036. [Google Scholar] [CrossRef] [PubMed]
- Martinez, T.L.; Kong, L.; Wang, X.; Osborne, M.A.; Crowder, M.E.; Van Meerbeke, J.P.; Xu, X.; Davis, C.; Wooley, J.; Goldhamer, D.J.; et al. Survival Motor Neuron Protein in Motor Neurons Determines Synaptic Integrity in Spinal Muscular Atrophy. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 8703–8715. [Google Scholar] [CrossRef]
- Verheijen, B.M. Effects of Astroglia on Motor Neurons in Spinal Muscular Atrophy. J. Neurosci. 2017, 37, 8578–8580. [Google Scholar] [CrossRef]
- Storelli, E.; Cassina, N.; Rasini, E.; Marino, F.; Cosentino, M. Do Th17 Lymphocytes and IL-17 Contribute to Parkinson’s Disease? A Systematic Review of Available Evidence. Front. Neurol. 2019, 10, 13. [Google Scholar] [CrossRef]
- Sison, S.L.; Patitucci, T.N.; Seminary, E.R.; Villalon, E.; Lorson, C.L.; Ebert, A.D. Astrocyte-produced miR-146a as a mediator of motor neuron loss in spinal muscular atrophy. Hum. Mol. Genet. 2017, 26, 3409–3420. [Google Scholar] [CrossRef] [PubMed]
- O’meara, R.W.; Cummings, S.E.; De Repentigny, Y.; McFall, E.; Michalski, J.-P.; Deguise, M.-O.; Gibeault, S.; Kothary, R. Oligodendrocyte Development and CNS Myelination Are Unaffected in a Mouse Model of Severe Spinal Muscular Atrophy. Hum. Mol. Genet. 2017, 26, 282–292. [Google Scholar] [CrossRef]
- Khayrullina, G.; Alipio-Gloria, Z.A.; Deguise, M.; Gagnon, S.; Chehade, L.; Stinson, M.; Belous, N.; Bergman, E.M.; Lischka, F.W.; Rotty, J.; et al. Survival Motor Neuron Protein Deficiency Alters Microglia Reactivity. Glia 2022, 70, 1337–1358. [Google Scholar] [CrossRef]
- Park, G.-H.; Maeno-Hikichi, Y.; Awano, T.; Landmesser, L.T.; Monani, U.R. Reduced Survival of Motor Neuron (SMN) Protein in Motor Neuronal Progenitors Functions Cell Autonomously to Cause Spinal Muscular Atrophy in Model Mice Expressing the Human Centromeric (SMN2) Gene. J. Neurosci. 2010, 30, 12005–12019. [Google Scholar] [CrossRef]
- Allison, R.L.; Welby, E.; Khayrullina, G.; Burnett, B.G.; Ebert, A.D. Viral Mediated Knockdown of GATA6 in SMA IPSC -Derived Astrocytes Prevents Motor Neuron Loss and Microglial Activation. Glia 2022, 70, 989–1004. [Google Scholar] [CrossRef]
- Ando, S.; Osanai, D.; Takahashi, K.; Nakamura, S.; Shimazawa, M.; Hara, H. Survival Motor Neuron Protein Regulates Oxidative Stress and Inflammatory Response in Microglia of the Spinal Cord in Spinal Muscular Atrophy. J. Pharmacol. Sci. 2020, 144, 204–211. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Parpura, V.; Pekna, M.; Pekny, M.; Sofroniew, M. Glia in the Pathogenesis of Neurodegenerative Diseases. Biochem. Soc. Trans. 2014, 42, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Schafer, D.P.; Lehrman, E.K.; Stevens, B. The “Quad-Partite” Synapse: Microglia-Synapse Interactions in the Developing and Mature CNS. Glia 2013, 61, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Kettenmann, H.; Verkhratsky, A. Neuroglia: The 150 Years After. Trends Neurosci. 2008, 31, 653–659. [Google Scholar] [CrossRef]
- Allen, N.J.; Lyons, D.A. Glia as Architects of Central Nervous System Formation and Function. Science 2018, 362, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-up Primate Brain. J. Comp. Neurol. 2009, 513, 532–541. [Google Scholar] [CrossRef]
- von Bartheld, C.S.; Bahney, J.; Herculano-Houzel, S. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting. J. Comp. Neurol. 2016, 524, 3865–3895. [Google Scholar] [CrossRef]
- Salter, M.W.; Stevens, B. Microglia Emerge as Central Players in Brain Disease. Nat. Med. 2017, 23, 1018–1027. [Google Scholar] [CrossRef]
- Dimou, L.; Götz, M. Glial Cells as Progenitors and Stem Cells: New Roles in the Healthy and Diseased Brain. Physiol. Rev. 2014, 94, 709–737. [Google Scholar] [CrossRef]
- Chou, S.M.; Nonaka, I. Werdnig-Hoffmann Disease: Proposal of a Pathogenetic Mechanism. Acta Neuropathol. 1978, 41, 45–54. [Google Scholar] [CrossRef]
- Papadimitriou, D.; Le Verche, V.; Jacquier, A.; Ikiz, B.; Przedborski, S.; Re, D.B. Inflammation in ALS and SMA: Sorting out the Good from the Evil. Neurobiol. Dis. 2010, 37, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Romero, D.M.; Zaidi, D.; Cifuentes-Diaz, C.; Maillard, C.; Grannec, G.; Selloum, M.; Birling, M.-C.; Bahi-Buisson, N.; Francis, F. A Human Dynein Heavy Chain Mutation Impacts Cortical Progenitor Cells Causing Developmental Defects, Reduced Brain Size and Altered Brain Architecture. Neurobiol. Dis. 2023, 180, 106085. [Google Scholar] [CrossRef]
- Arellano, J.I.; Morozov, Y.M.; Micali, N.; Rakic, P. Radial Glial Cells: New Views on Old Questions. Neurochem. Res. 2021, 46, 2512–2524. [Google Scholar] [CrossRef]
- D’Arcy, B.R.; Silver, D.L. Local Gene Regulation in Radial Glia: Lessons from across the Nervous System. Traffic 2020, 21, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Negrón, Y.; García-Arrarás, J.E. Radial Glia and Radial Glia-like Cells: Their Role in Neurogenesis and Regeneration. Front. Neurosci. 2022, 16, 1006037. [Google Scholar] [CrossRef]
- Rakic, P. Mode of Cell Migration to the Superficial Layers of Fetal Monkey Neocortex. J. Comp. Neurol. 1972, 145, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Bentivoglio, M.; Mazzarello, P. The History of Radial Glia. Brain Res. Bull. 1999, 49, 305–315. [Google Scholar] [CrossRef]
- Stipursky, J.; Francis, D.; Gomes, F.C.A. Activation of MAPK/PI3K/SMAD Pathways by TGF-β1 Controls Differentiation of Radial Glia into Astrocytes in Vitro. Dev. Neurosci. 2012, 34, 68–81. [Google Scholar] [CrossRef]
- Kriegstein, A.R.; Götz, M. Radial Glia Diversity: A Matter of Cell Fate. Glia 2003, 43, 37–43. [Google Scholar] [CrossRef]
- Lipka, J.; Kuijpers, M.; Jaworski, J.; Hoogenraad, C.C. Mutations in Cytoplasmic Dynein and Its Regulators Cause Malformations of Cortical Development and Neurodegenerative Diseases. Biochem. Soc. Trans. 2013, 41, 1605–1612. [Google Scholar] [CrossRef]
- Harms, M.B.; Ori-McKenney, K.M.; Scoto, M.; Tuck, E.P.; Bell, S.; Ma, D.; Masi, S.; Allred, P.; Al-Lozi, M.; Reilly, M.M.; et al. Mutations in the Tail Domain of DYNC1H1 Cause Dominant Spinal Muscular Atrophy. Neurology 2012, 78, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Greensmith, L.; Hafezparast, M.; Fisher, E.M.C. Cytoplasmic Dynein Heavy Chain: The Servant of Many Masters. Trends Neurosci. 2013, 36, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Eschbach, J.; Sinniger, J.; Bouitbir, J.; Fergani, A.; Schlagowski, A.-I.; Zoll, J.; Geny, B.; René, F.; Larmet, Y.; Marion, V.; et al. Dynein Mutations Associated with Hereditary Motor Neuropathies Impair Mitochondrial Morphology and Function with Age. Neurobiol. Dis. 2013, 58, 220–230. [Google Scholar] [CrossRef]
- Barbosa, D.J.; Carvalho, C.; Costa, I.; Silva, R. Molecular Motors in Myelination and Their Misregulation in Disease. Mol. Neurobiol. 2024, 62, 4705–4723. [Google Scholar] [CrossRef]
- Becker, L.-L.; Dafsari, H.S.; Schallner, J.; Abdin, D.; Seifert, M.; Petit, F.; Smol, T.; Bok, L.; Rodan, L.; Krapels, I.; et al. The Clinical-Phenotype Continuum in DYNC1H1-Related Disorders—Genomic Profiling and Proposal for a Novel Classification. J. Hum. Genet. 2020, 65, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Schlager, M.A.; Serra-Marques, A.; Grigoriev, I.; Gumy, L.F.; Esteves da Silva, M.; Wulf, P.S.; Akhmanova, A.; Hoogenraad, C.C. Bicaudal D Family Adaptor Proteins Control the Velocity of Dynein-Based Movements. Cell Rep. 2014, 8, 1248–1256. [Google Scholar] [CrossRef]
- Neveling, K.; Martinez-Carrera, L.A.; Hölker, I.; Heister, A.; Verrips, A.; Hosseini-Barkooie, S.M.; Gilissen, C.; Vermeer, S.; Pennings, M.; Meijer, R.; et al. Mutations in BICD2, Which Encodes a Golgin and Important Motor Adaptor, Cause Congenital Autosomal-Dominant Spinal Muscular Atrophy. Am. J. Hum. Genet. 2013, 92, 946–954. [Google Scholar] [CrossRef]
- Oates, E.C.; Rossor, A.M.; Hafezparast, M.; Gonzalez, M.; Speziani, F.; MacArthur, D.G.; Lek, M.; Cottenie, E.; Scoto, M.; Foley, A.R.; et al. Mutations in BICD2 Cause Dominant Congenital Spinal Muscular Atrophy and Hereditary Spastic Paraplegia. Am. J. Hum. Genet. 2013, 92, 965–973. [Google Scholar] [CrossRef]
- Peeters, K.; Litvinenko, I.; Asselbergh, B.; Almeida-Souza, L.; Chamova, T.; Geuens, T.; Ydens, E.; Zimoń, M.; Irobi, J.; De Vriendt, E.; et al. Molecular Defects in the Motor Adaptor BICD2 Cause Proximal Spinal Muscular Atrophy with Autosomal-Dominant Inheritance. Am. J. Hum. Genet. 2013, 92, 955–964. [Google Scholar] [CrossRef]
- Ramón, S. Histologie du Système Nerveux de l’Homme & des Vertébrés; Consejo Superior de Investigaciones Científicas, Instituto Ramon y Cajal: Madrid, Spain, 1952. [Google Scholar]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and Pathology. Acta Neuropathol. 2009, 119, 7–35. [Google Scholar] [CrossRef]
- Tabata, H. Diverse Subtypes of Astrocytes and Their Development during Corticogenesis. Front. Neurosci. 2015, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic Analysis of Reactive Astrogliosis. J. Neurosci. 2012, 32, 6391–6410. [Google Scholar] [CrossRef]
- Myer, D.J. Essential Protective Roles of Reactive Astrocytes in Traumatic Brain Injury. Brain 2006, 129, 2761–2772. [Google Scholar] [CrossRef]
- Michinaga, S.; Koyama, Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 6418. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, J.R. Reactive Astrocytes Protect Tissue and Preserve Function after Spinal Cord Injury. J. Neurosci. 2004, 24, 2143–2155. [Google Scholar] [CrossRef]
- Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 2001, 65, 1–105. [Google Scholar] [PubMed]
- Karve, I.P.; Taylor, J.M.; Crack, P.J. The Contribution of Astrocytes and Microglia to Traumatic Brain Injury. Br. J. Pharmacol. 2015, 173, 692–702. [Google Scholar] [CrossRef]
- Zhou, Y.; Shao, A.; Yao, Y.; Tu, S.; Deng, Y.; Zhang, J. Dual Roles of Astrocytes in Plasticity and Reconstruction after Traumatic Brain Injury. Cell Commun. Signal. CCS 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite Synapses: Glia, the Unacknowledged Partner. Trends Neurosci. 1999, 22, 208–215. [Google Scholar] [CrossRef]
- Clarke, L.E.; Barres, B.A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 2013, 14, 311–321. [Google Scholar] [CrossRef]
- Zhou, C.; Feng, Z.; Ko, C.-P. Defects in Motoneuron–Astrocyte Interactions in Spinal Muscular Atrophy. J. Neurosci. 2016, 36, 2543–2553. [Google Scholar] [CrossRef] [PubMed]
- Cornell-Bell, A.H.; Finkbeiner, S.M.; Cooper, M.S.; Smith, S.J. Glutamate Induces Calcium Waves in Cultured Astrocytes: Long-Range Glial Signaling. Science 1990, 247, 470–473. [Google Scholar] [CrossRef]
- Parpura, V.; Haydon, P.G. Physiological Astrocytic Calcium Levels Stimulate Glutamate Release to Modulate Adjacent Neurons. Proc. Natl. Acad. Sci. USA 2000, 97, 8629–8634. [Google Scholar] [CrossRef]
- Ghatak, N.R. GLIAL BUNDLES in SPINAL NERVE ROOTS: A FORM of ISOMORPHIC GLIOSIS at the JUNCTION of the CENTRAL and PERIPHERAL NERVOUS SYSTEM. Neuropathol. Appl. Neurobiol. 1983, 9, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.-W.; et al. Oligodendroglia Metabolically Support Axons and Contribute to Neurodegeneration. Nature 2012, 487, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Rindt, H.; Feng, Z.; Mazzasette, C.; Glascock, J.J.; Valdivia, D.; Pyles, N.; Crawford, T.O.; Swoboda, K.J.; Patitucci, T.N.; Ebert, A.D.; et al. Astrocytes Influence the Severity of Spinal Muscular Atrophy. Hum. Mol. Genet. 2015, 24, 4094–4102. [Google Scholar] [CrossRef]
- Leo, M.; Schmitt, L.-I.; Fleischer, M.; Steffen, R.; Osswald, C.; Kleinschnitz, C.; Hagenacker, T. Induction of Survival of Motor Neuron (SMN) Protein Deficiency in Spinal Astrocytes by Small Interfering RNA as an in Vitro Model of Spinal Muscular Atrophy. Cells 2022, 11, 558. [Google Scholar] [CrossRef]
- Schmitt, L.-I.; David, C.; Steffen, R.; Hezel, S.; Roos, A.; Schara-Schmidt, U.; Kleinschnitz, C.; Leo, M.; Hagenacker, T. Spinal Astrocyte Dysfunction Drives Motor Neuron Loss in Late-Onset Spinal Muscular Atrophy. Acta Neuropathol. 2023, 145, 611–635. [Google Scholar] [CrossRef]
- Hassan, A.; di Vito, R.; Nuzzo, T.; Vidali, M.; Carlini, M.J.; Yadav, S.; Yang, H.; D’Amico, A.; Kolici, X.; Valsecchi, V.; et al. Dysregulated Balance of D- and L-Amino Acids Modulating Glutamatergic Neurotransmission in Severe Spinal Muscular Atrophy. Neurobiol. Dis. 2024, 207, 106849. [Google Scholar] [CrossRef]
- Welby, E.; Ebert, A.D. Diminished Motor Neuron Activity Driven by Abnormal Astrocytic EAAT1 Glutamate Transporter Activity in Spinal Muscular Atrophy Is Not Fully Restored after Lentiviral SMN Delivery. Glia 2023, 71, 1311–1332. [Google Scholar] [CrossRef]
- Freigang, M.; Steinacker, P.; Wurster, C.D.; Schreiber-Katz, O.; Osmanovic, A.; Petri, S.; Koch, J.C.; Rostásy, K.; Huss, A.; Tumani, H.; et al. Glial Fibrillary Acidic Protein in Cerebrospinal Fluid of Patients with Spinal Muscular Atrophy. Ann. Clin. Transl. Neurol. 2022, 9, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.E.; Nguyen, T.T.; Grunseich, C.; Nofziger, J.H.; Lee, P.R.; Fields, D.; Fischbeck, K.H.; Foran, E. Decreased Motor Neuron Support by SMA Astrocytes due to Diminished MCP1 Secretion. J. Neurosci. 2017, 37, 5309–5318. [Google Scholar] [CrossRef]
- Kong, L.; Wang, X.; Choe, D.W.; Polley, M.; Burnett, B.G.; Bosch-Marce, M.; Griffin, J.W.; Rich, M.M.; Sumner, C.J. Impaired Synaptic Vesicle Release and Immaturity of Neuromuscular Junctions in Spinal Muscular Atrophy Mice. J. Neurosci. 2009, 29, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Ling, K.K.Y.; Lin, M.-Y.; Zingg, B.; Feng, Z.; Ko, C.-P. Synaptic Defects in the Spinal and Neuromuscular Circuitry in a Mouse Model of Spinal Muscular Atrophy. PLoS ONE 2010, 5, e15457. [Google Scholar] [CrossRef]
- Wang, D.; Bordey, A. The Astrocyte Odyssey. Prog. Neurobiol. 2008, 86, 342–367. [Google Scholar] [CrossRef]
- Patitucci, T.N.; Ebert, A.D. SMN Deficiency Does Not Induce Oxidative Stress in SMA IPSC-Derived Astrocytes or Motor Neurons. Hum. Mol. Genet. 2015, 25, 514–523. [Google Scholar] [CrossRef]
- Carriedo, S.G.; Sensi, S.L.; Yin, H.; Weiss, J.H. AMPA Exposures Induce Mitochondrial Ca2+Overload and ROS Generation in Spinal Motor Neurons In Vitro. J. Neurosci. 2000, 20, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Krampfl, K.; Schlesinger, F.; Wolfes, H.; Dengler, R.; Bufler, J. Functional Diversity of Recombinant Human AMPA Type Glutamate Receptors: Possible Implications for Selective Vulnerability of Motor Neurons. J. Neurol. Sci. 2001, 191, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in Neurodegeneration. Nat. Neurosci. 2018, 21, 1359–1369. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Tay, T.L.; Savage, J.C.; Hui, C.W.; Bisht, K.; Tremblay, M.-È. Microglia across the Lifespan: From Origin to Function in Brain Development, Plasticity and Cognition. J. Physiol. 2016, 595, 1929–1945. [Google Scholar] [CrossRef] [PubMed]
- Woodburn, S.C.; Bollinger, J.L.; Wohleb, E.S. The Semantics of Microglia Activation: Neuroinflammation, Homeostasis, and Stress. J. Neuroinflamm. 2021, 18, 258. [Google Scholar] [CrossRef]
- Vukojicic, A.; Delestrée, N.; Fletcher, E.V.; Pagiazitis, J.G.; Sankaranarayanan, S.; Yednock, T.A.; Barres, B.A.; Mentis, G.Z. The Classical Complement Pathway Mediates Microglia-Dependent Remodeling of Spinal Motor Circuits during Development and in SMA. Cell Rep. 2019, 29, 3087–3100.e7. [Google Scholar] [CrossRef] [PubMed]
- Kettenmann, H.; Kirchhoff, F.; Verkhratsky, A. Microglia: New Roles for the Synaptic Stripper. Neuron 2013, 77, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s Disease. J. Clin. Investig. 2017, 127, 3240–3249. [Google Scholar] [CrossRef]
- Brochard, V.; Combadière, B.; Prigent, A.; Laouar, Y.; Perrin, A.; Beray-Berthat, V.; Bonduelle, O.; Alvarez-Fischer, D.; Callebert, J.; Launay, J.-M.; et al. Infiltration of CD4+ Lymphocytes into the Brain Contributes to Neurodegeneration in a Mouse Model of Parkinson Disease. J. Clin. Investig. 2009, 119, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Deguise, M.-O.; Kothary, R. New Insights into SMA Pathogenesis: Immune Dysfunction and Neuroinflammation. Ann. Clin. Transl. Neurol. 2017, 4, 522–530. [Google Scholar] [CrossRef]
- Cerveró, C.; Blasco, A.; Tarabal, O.; Casanovas, A.; Piedrafita, L.; Navarro, X.; Esquerda, J.E.; Calderó, J. Glial Activation and Central Synapse Loss, but Not Motoneuron Degeneration, Are Prevented by the Sigma-1 Receptor Agonist PRE-084 in the Smn2B/− Mouse Model of Spinal Muscular Atrophy. J. Neuropathol. Exp. Neurol. 2018, 77, 577–597. [Google Scholar] [CrossRef]
- Kuru, S.; Sakai, M.; Konagaya, M.; Yoshida, M.; Hashizume, Y.; Saito, K. An Autopsy Case of Spinal Muscular Atrophy Type III (Kugelberg-Welander Disease). Neuropathology 2009, 29, 63–67. [Google Scholar] [CrossRef]
- Karafoulidou, E.; Kesidou, E.; Theotokis, P.; Konstantinou, C.; Nella, M.-K.; Michailidou, I.; Touloumi, O.; Polyzoidou, E.; Salamotas, I.; Einstein, O.; et al. Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy. Cells 2024, 13, 785. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.-J. SMN1 Functions as a Novel Inhibitor for TRAF6-Mediated NF-ΚB Signaling. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2017, 1864, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Perera, N.D.; Sheean, R.K.; Crouch, P.J.; White, A.R.; Horne, M.K.; Turner, B.J. Enhancing Survival Motor Neuron Expression Extends Lifespan and Attenuates Neurodegeneration in Mutant TDP-43 Mice. Hum. Mol. Genet. 2016, 25, 4080–4093. [Google Scholar] [CrossRef] [PubMed]
- Tarabal, O.; Caraballo-Miralles, V.; Cardona-Rossinyol, A.; Correa, F.J.; Olmos, G.; Lladó, J.; Esquerda, J.E.; Calderó, J. Mechanisms Involved in Spinal Cord Central Synapse Loss in a Mouse Model of Spinal Muscular Atrophy. J. Neuropathol. Exp. Neurol. 2014, 73, 519–535. [Google Scholar] [CrossRef]
- Dachs, E.; Hereu, M.; Piedrafita, L.; Casanovas, A.; Calderó, J.; Esquerda, J.E. Defective Neuromuscular Junction Organization and Postnatal Myogenesis in Mice with Severe Spinal Muscular Atrophy. J. Neuropathol. Exp. Neurol. 2011, 70, 444–461. [Google Scholar] [CrossRef]
- Wan, B.; Feng, P.; Guan, Z.; Sheng, L.; Liu, Z.; Hua, Y. A Severe Mouse Model of Spinal Muscular Atrophy Develops Early Systemic Inflammation. Hum. Mol. Genet. 2018, 27, 4061–4076. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Spangenberg, E.E.; Tang, B.; Holmes, T.C.; Green, K.N.; Xu, X. Microglia Elimination Increases Neural Circuit Connectivity and Activity in Adult Mouse Cortex. J. Neurosci. 2021, 41, 1274–1287. [Google Scholar] [CrossRef]
- Pierre, W.C.; Smith, P.L.P.; Londono, I.; Chemtob, S.; Mallard, C.; Lodygensky, G.A. Neonatal Microglia: The Cornerstone of Brain Fate. Brain Behav. Immun. 2017, 59, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., III; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.-B. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell 2013, 155, 1596–1609. [Google Scholar] [CrossRef]
- Blinzinger, K.; Kreutzberg, G.W. Displacement of Synaptic Terminals from Regenerating Motoneurons by Microglial Cells. Cell Tissue Res. 1968, 85, 145–157. [Google Scholar] [CrossRef]
- Moran, L.B.; Graeber, M.B. The Facial Nerve Axotomy Model. Brain Res. Rev. 2004, 44, 154–178. [Google Scholar] [CrossRef]
- Stevens, B.; Allen, N.J.; Vazquez, L.E.; Howell, G.R.; Christopherson, K.S.; Nouri, N.; Micheva, K.D.; Mehalow, A.K.; Huberman, A.D.; Stafford, B.; et al. The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 2007, 131, 1164–1178. [Google Scholar] [CrossRef]
- Chung, W.-S.; Clarke, L.E.; Wang, G.X.; Stafford, B.K.; Sher, A.; Chakraborty, C.; Joung, J.; Foo, L.C.; Thompson, A.; Chen, C.; et al. Astrocytes Mediate Synapse Elimination through MEGF10 and MERTK Pathways. Nature 2013, 504, 394–400. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science 2011, 333, 1456–1458. [Google Scholar] [CrossRef]
- Gasque, P. Complement: A Unique Innate Immune Sensor for Danger Signals. Mol. Immunol. 2004, 41, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.-Q.; Shen, S.-Y.; Liang, L.-F.; Chen, X.-R.; Yu, J. Complement C1q/C3-CR3 Signaling Pathway Mediates Abnormal Microglial Phagocytosis of Synapses in a Mouse Model of Depression. Brain Behav. Immun. 2024, 119, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yue, H.; Hu, Z.; Shen, Y.; Ma, J.; Li, J.; Wang, X.-D.; Wang, L.; Sun, B.; Shi, P.; et al. Microglia Mediate Forgetting via Complement-Dependent Synaptic Elimination. Science 2020, 367, 688–694. [Google Scholar] [CrossRef]
- Choucair-Jaafar, N.; Laporte, V.; Levy, R.; Poindron, P.; Lombard, Y.; Gies, J.-P. Complement Receptor 3 (CD11b/CD18) Is Implicated in the Elimination of β-Amyloid Peptides. Fundam. Clin. Pharmacol. 2010, 25, 115–122. [Google Scholar] [CrossRef]
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; et al. Complement and Microglia Mediate Early Synapse Loss in Alzheimer Mouse Models. Science 2016, 352, 712–716. [Google Scholar] [CrossRef]
- Lui, H.; Zhang, J.; Makinson, S.R.; Cahill, M.K.; Kelley, K.W.; Huang, H.-Y.; Shang, Y.; Oldham, M.C.; Martens, L.H.; Gao, F.; et al. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell 2016, 165, 921–935. [Google Scholar] [CrossRef]
- Yao, Q.; Li, Y. Increased Serum Levels of Complement C1q in Major Depressive Disorder. J. Psychosom. Res. 2020, 133, 110105. [Google Scholar] [CrossRef]
- Zhang, Z.; Pinto, A.M.; Wan, L.; Wang, W.; Berg, M.G.; Oliva, I.; Singh, L.N.; Dengler, C.; Wei, Z.; Dreyfuss, G. Dysregulation of Synaptogenesis Genes Antecedes Motor Neuron Pathology in Spinal Muscular Atrophy. Proc. Natl. Acad. Sci. USA 2013, 110, 19348–19353. [Google Scholar] [CrossRef] [PubMed]
- Banati, R.B.; Gehrmann, J.; Schubert, P.; Kreutzberg, G.W. Cytotoxicity of Microglia. Glia 1993, 7, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Chhor, V.; Le Charpentier, T.; Lebon, S.; Oré, M.-V.; Celador, I.L.; Josserand, J.; Degos, V.; Jacotot, E.; Hagberg, H.; Sävman, K.; et al. Characterization of Phenotype Markers and Neuronotoxic Potential of Polarised Primary Microglia in Vitro. Brain Behav. Immun. 2013, 32, 70–85. [Google Scholar] [CrossRef]
- Kreutzberg, G.W. Microglia: A Sensor for Pathological Events in the CNS. Trends Neurosci. 1996, 19, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Jurga, A.M.; Paleczna, M.; Kuter, K.Z. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front. Cell. Neurosci. 2020, 14, 198. [Google Scholar] [CrossRef]
- Wang, M.; Kang, L.; Wang, Y.; Yang, B.; Zhang, C.; Lu, Y.; Kang, L. Microglia in Motor Neuron Disease: Signaling Evidence from Last 10 Years. Dev. Neurobiol. 2022, 82, 625–638. [Google Scholar] [CrossRef]
- Böttcher, C.; Schlickeiser, S.; Sneeboer, M.A.M.; Kunkel, D.; Knop, A.; Paza, E.; Fidzinski, P.; Kraus, L.; Snijders, G.J.L.; Kahn, R.S.; et al. Human Microglia Regional Heterogeneity and Phenotypes Determined by Multiplexed Single-Cell Mass Cytometry. Nat. Neurosci. 2018, 22, 78–90. [Google Scholar] [CrossRef]
- Provenzano, F.; Pérez, M.J.; Deleidi, M. Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends Mol. Med. 2020, 27, 47–59. [Google Scholar] [CrossRef]
- Sankowski, R.; Böttcher, C.; Masuda, T.; Geirsdottir, L.; Sagar; Sindram, E.; Seredenina, T.; Muhs, A.; Scheiwe, C.; Shah, M.J.; et al. Mapping Microglia States in the Human Brain through the Integration of High-Dimensional Techniques. Nat. Neurosci. 2019, 22, 2098–2110. [Google Scholar] [CrossRef]
- Barateiro, A.; Brites, D.; Fernandes, A. Oligodendrocyte Development and Myelination in Neurodevelopment: Molecular Mechanisms in Health and Disease. Curr. Pharm. Des. 2016, 22, 656–679. [Google Scholar] [CrossRef]
- Elbaz, B.; Popko, B. Molecular Control of Oligodendrocyte Development. Trends Neurosci. 2019, 42, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Miron, V.E.; Kuhlmann, T.; Antel, J.P. Cells of the Oligodendroglial Lineage, Myelination, and Remyelination. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2011, 1812, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Nave, K.-A. Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb. Perspect. Biol. 2019, 8, a020479. [Google Scholar] [CrossRef]
- Garbern, J.Y.; Yool, D.; Moore, G.W.; Wilds, I.B.; Faulk, M.W.; Klugmann, M.; Nave, K.-A.; Sistermans, E.A.; van der Knaap, M.S.; Bird, T.D.; et al. Patients Lacking the Major CNS Myelin Protein, Proteolipid Protein 1, Develop Length-Dependent Axonal Degeneration in the Absence of Demyelination and Inflammation. Brain 2002, 125, 551–561. [Google Scholar] [CrossRef]
- Lappe-Siefke, C.; Goebbels, S.; Gravel, M.; Nicksch, E.; Lee, J.; Braun, P.E.; Griffiths, I.R.; Nave, K.-A. Disruption of Cnp1 Uncouples Oligodendroglial Functions in Axonal Support and Myelination. Nat. Genet. 2003, 33, 366–374. [Google Scholar] [CrossRef]
- Ubhi, K.; Rockenstein, E.; Mante, M.; Inglis, C.; Adame, A.; Patrick, C.; Whitney, K.; Masliah, E. Neurodegeneration in a Transgenic Mouse Model of Multiple System Atrophy Is Associated with Altered Expression of Oligodendroglial-Derived Neurotrophic Factors. J. Neurosci. 2010, 30, 6236–6246. [Google Scholar] [CrossRef]
- Bäumer, D.; Lee, S.; Nicholson, G.; Davies, J.L.; Parkinson, N.J.; Murray, L.M.; Gillingwater, T.H.; Ansorge, O.; Davies, K.E.; Talbot, K. Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy. PLoS Genet. 2009, 5, e1000773. [Google Scholar] [CrossRef]
- Nualart-Marti, A.; Solsona, C.; Fields, R.D. Gap Junction Communication in Myelinating Glia. Biochim. Biophys. Acta 2013, 1828, 69–78. [Google Scholar] [CrossRef]
- Taveggia, C.; Feltri, M.L. Beyond Wrapping: Canonical and Noncanonical Functions of Schwann Cells. Annu. Rev. Neurosci. 2022, 45, 561–580. [Google Scholar] [CrossRef]
- Bosch-Queralt, M.; Fledrich, R.; Stassart, R.M. Schwann Cell Functions in Peripheral Nerve Development and Repair. Neurobiol. Dis. 2023, 176, 105952. [Google Scholar] [CrossRef]
- Birchmeier, C.; Nave, K.-A. Neuregulin-1, a Key Axonal Signal That Drives Schwann Cell Growth and Differentiation. Glia 2008, 56, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.M.; Jablonka, S.; Ruiz, R.; Tabares, L.; Sendtner, M. Ciliary Neurotrophic Factor-Induced Sprouting Preserves Motor Function in a Mouse Model of Mild Spinal Muscular Atrophy. Hum. Mol. Genet. 2009, 19, 973–986. [Google Scholar] [CrossRef] [PubMed]
- Nave, K.-A.; Werner, H.B. Ensheathment and Myelination of Axons: Evolution of Glial Functions. Annu. Rev. Neurosci. 2021, 44, 197–219. [Google Scholar] [CrossRef]
- Aghamaleky Sarvestany, A.; Hunter, G.; Tavendale, A.; Lamont, D.J.; Llavero Hurtado, M.; Graham, L.C.; Wishart, T.M.; Gillingwater, T.H. Label-Free Quantitative Proteomic Profiling Identifies Disruption of Ubiquitin Homeostasis as a Key Driver of Schwann Cell Defects in Spinal Muscular Atrophy. J. Proteome Res. 2014, 13, 4546–4557. [Google Scholar] [CrossRef] [PubMed]
- Trotter, J.; Karram, K.; Nishiyama, A. NG2 Cells: Properties, Progeny and Origin. Brain Res. Rev. 2010, 63, 72–82. [Google Scholar] [CrossRef]
- Young, K.M.; Psachoulia, K.; Tripathi, R.B.; Dunn, S.-J.; Cossell, L.; Attwell, D.; Tohyama, K.; Richardson, W.D. Oligodendrocyte Dynamics in the Healthy Adult CNS: Evidence for Myelin Remodeling. Neuron 2013, 77, 873–885. [Google Scholar] [CrossRef]
- Ohuchi, K.; Funato, M.; Ando, S.; Inagaki, S.; Sato, A.; Kawase, C.; Seki, J.; Nakamura, S.; Shimazawa, M.; Kaneko, H.; et al. Impairment of Oligodendrocyte Lineages in Spinal Muscular Atrophy Model Systems. Neuroreport 2019, 30, 350–357. [Google Scholar] [CrossRef]
- Wang, S.; Sdrulla, A.D.; diSibio, G.; Bush, G.; Nofziger, D.; Hicks, C.; Weinmaster, G.; Barres, B.A. Notch Receptor Activation Inhibits Oligodendrocyte Differentiation. Neuron 1998, 21, 63–75. [Google Scholar] [CrossRef]
- Caraballo-Miralles, V.; Cardona-Rossinyol, A.; Garcera, A.; Torres-Benito, L.; Soler, R.; Tabares, L.; Lladó, J.; Olmos, G. Notch Signaling Pathway Is Activated in Motoneurons of Spinal Muscular Atrophy. Int. J. Mol. Sci. 2013, 14, 11424–11437. [Google Scholar] [CrossRef]
- Hauser, S.; Schuster, S.; Heuten, E.; Höflinger, P.; Admard, J.; Schelling, Y.; Velic, A.; Macek, B.; Ossowski, S.; Schöls, L. Comparative Transcriptional Profiling of Motor Neuron Disorder-Associated Genes in Various Human Cell Culture Models. Front. Cell Dev. Biol. 2020, 8, 544043. [Google Scholar] [CrossRef]
- Edgar, J.M.; McLaughlin, M.; Werner, H.B.; McCulloch, M.C.; Barrie, J.A.; Brown, A.; Faichney, A.B.; Snaidero, N.; Nave, K.-A.; Griffiths, I.R. Early Ultrastructural Defects of Axons and Axon-Glia Junctions in Mice Lacking Expression of Cnp1. Glia 2009, 57, 1815–1824. [Google Scholar] [CrossRef]
- Griffiths, I. Axonal Swellings and Degeneration in Mice Lacking the Major Proteolipid of Myelin. Science 1998, 280, 1610–1613. [Google Scholar] [CrossRef]
- Yin, X.; Crawford, T.O.; Griffin, J.W.; Tu, P.; Lee, V.M.-Y.; Li, C.; Roder, J.; Trapp, B.D. Myelin-Associated Glycoprotein Is a Myelin Signal That Modulates the Caliber of Myelinated Axons. J. Neurosci. 1998, 18, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Babetto, E.; Wong, K.M.; Beirowski, B. A Glycolytic Shift in Schwann Cells Supports Injured Axons. Nat. Neurosci. 2020, 23, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Cruz, P.M.; Cossins, J.; Beeson, D.; Vincent, A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front. Mol. Neurosci. 2020, 13, 610964. [Google Scholar] [CrossRef] [PubMed]
- Fuertes-Alvarez, S.; Izeta, A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis. 2021, 12, 494. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.; Taetzsch, T.; Vaughan, S.K.; Godbe, K.; Chappell, J.; Settlage, R.E.; Valdez, G. Specific Labeling of Synaptic Schwann Cells Reveals Unique Cellular and Molecular Features. eLife 2020, 9, e56935. [Google Scholar] [CrossRef]
- Todd, K.J.; Darabid, H.; Robitaille, R. Perisynaptic Glia Discriminate Patterns of Motor Nerve Activity and Influence Plasticity at the Neuromuscular Junction. J. Neurosci. 2010, 30, 11870–11882. [Google Scholar] [CrossRef]
- Ko, C.-P.; Robitaille, R. Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells. Cold Spring Harb. Perspect. Biol. 2015, 7, a020503. [Google Scholar] [CrossRef]
- Darabid, H.; Perez-Gonzalez, A.P.; Robitaille, R. Neuromuscular Synaptogenesis: Coordinating Partners with Multiple Functions. Nat. Rev. Neurosci. 2014, 15, 703–718. [Google Scholar] [CrossRef]
- Reddy, L.V.; Koirala, S.; Sugiura, Y.; Herrera, A.A.; Ko, C.-P. Glial Cells Maintain Synaptic Structure and Function and Promote Development of the Neuromuscular Junction in Vivo. Neuron 2003, 40, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Love, F.M.; Thompson, W.J. Glial Cells Promote Muscle Reinnervation by Responding to Activity-Dependent Postsynaptic Signals. J. Neurosci. 1999, 19, 10390–10396. [Google Scholar] [CrossRef]
- Son, Y.-J.; Thompson, W.J. Nerve Sprouting in Muscle Is Induced and Guided by Processes Extended by Schwann Cells. Neuron 1995, 14, 133–141. [Google Scholar] [CrossRef]
- Negro, S.; Lessi, F.; Duregotti, E.; Aretini, P.; La Ferla, M.; Franceschi, S.; Menicagli, M.; Bergamin, E.; Radice, E.; Thelen, M.; et al. CXCL12α/SDF-1 from Perisynaptic Schwann Cells Promotes Regeneration of Injured Motor Axon Terminals. EMBO Mol. Med. 2017, 9, 1000–1010. [Google Scholar] [CrossRef]
- Perez-Gonzalez, A.P.; Provost, F.; Rousse, I.; Piovesana, R.; Benzina, O.; Darabid, H.; Lamoureux, B.; Wang, Y.S.; Arbour, D.; Robitaille, R. Functional Adaptation of Glial Cells at Neuromuscular Junctions in Response to Injury. Glia 2022, 70, 1605–1629. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Beauvais, A.; Bhanot, K.; Kothary, R. Defects in Neuromuscular Junction Remodelling in the Smn2B/− Mouse Model of Spinal Muscular Atrophy. Neurobiol. Dis. 2013, 49, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Rimer, M.; Seaberg, B.L.; Yen, P.-F.; Lam, S.; Hastings, R.L.; Lee, Y.I.; Thompson, W.J.; Feng, Z.; Metzger, F.; Paushkin, S.; et al. Nerve Sprouting Capacity in a Pharmacologically Induced Mouse Model of Spinal Muscular Atrophy. Sci. Rep. 2019, 9, 7799. [Google Scholar] [CrossRef]
- Lee, Y.I.; Mikesh, M.; Smith, I.; Rimer, M.; Thompson, W. Muscles in a Mouse Model of Spinal Muscular Atrophy Show Profound Defects in Neuromuscular Development Even in the Absence of Failure in Neuromuscular Transmission or Loss of Motor Neurons. Dev. Biol. 2011, 356, 432–444. [Google Scholar] [CrossRef]
- Neve, A.; Trüb, J.; Saxena, S.; Schümperli, D. Central and Peripheral Defects in Motor Units of the Diaphragm of Spinal Muscular Atrophy Mice. Mol. Cell. Neurosci. 2016, 70, 30–41. [Google Scholar] [CrossRef]
- Voigt, A.; Herholz, D.; Fiesel, F.C.; Kaur, K.; Müller, D.; Karsten, P.; Weber, S.S.; Kahle, P.J.; Marquardt, T.; Schulz, J.B. TDP-43-Mediated Neuron Loss in Vivo Requires RNA-Binding Activity. PLoS ONE 2010, 5, e12247. [Google Scholar] [CrossRef]
- Voigt, T.; Neve, A.; Schümperli, D. The Craniosacral Progression of Muscle Development Influences the Emergence of Neuromuscular Junction Alterations in a Severe Murine Model for Spinal Muscular Atrophy. Neuropathol. Appl. Neurobiol. 2014, 40, 416–434. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Valdivia, D.O.; Simon, C.M.; Hassinan, C.W.; Delestrée, N.; Ramos, D.M.; Park, J.H.; Pilato, C.M.; Xu, X.; Crowder, M.; et al. Impaired Prenatal Motor Axon Development Necessitates Early Therapeutic Intervention in Severe SMA. Sci. Transl. Med. 2021, 13, eabb6871. [Google Scholar] [CrossRef]
- Hunter, G.; Powis, R.A.; Jones, R.A.; Groen, E.J.N.; Shorrock, H.K.; Lane, F.M.; Zheng, Y.; Sherman, D.L.; Brophy, P.J.; Gillingwater, T.H. Restoration of SMN in Schwann Cells Reverses Myelination Defects and Improves Neuromuscular Function in Spinal Muscular Atrophy. Hum. Mol. Genet. 2016, 25, 2853–2861. [Google Scholar] [CrossRef]
- Hunter, G.; Aghamaleky Sarvestany, A.; Roche, S.L.; Symes, R.C.; Gillingwater, T.H. SMN-Dependent Intrinsic Defects in Schwann Cells in Mouse Models of Spinal Muscular Atrophy. Hum. Mol. Genet. 2013, 23, 2235–2250. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Lee, S.; Bäumer, D.; Parson, S.H.; Talbot, K.; Gillingwater, T.H. Pre-Symptomatic Development of Lower Motor Neuron Connectivity in a Mouse Model of Severe Spinal Muscular Atrophy. Hum. Mol. Genet. 2009, 19, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Aszódi, A.; Legate, K.R.; Nakchbandi, I.; Fässler, R. What Mouse Mutants Teach Us about Extracellular Matrix Function. Annu. Rev. Cell Dev. Biol. 2006, 22, 591–621. [Google Scholar] [CrossRef]
- Yu, W.-M.; Yu, H.; Chen, Z.-L. Laminins in Peripheral Nerve Development and Muscular Dystrophy. Mol. Neurobiol. 2007, 35, 288–297. [Google Scholar] [CrossRef]
- Chernousov, M.A.; Yu, W.-M.; Chen, Z.-L.; Carey, D.J.; Strickland, S. Regulation of Schwann Cell Function by the Extracellular Matrix. Glia 2008, 56, 1498–1507. [Google Scholar] [CrossRef]
- Feltri, M.L.; Porta, D.G.; Previtali, S.C.; Nodari, A.; Migliavacca, B.; Cassetti, A.; Littlewood-Evans, A.; Reichardt, L.F.; Messing, A.; Quattrini, A.; et al. Conditional Disruption of β1 Integrin in Schwann Cells Impedes Interactions with Axons. J. Cell Biol. 2002, 156, 199–210. [Google Scholar] [CrossRef]
- Cekanaviciute, E.; Buckwalter, M.S. Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases. Neurotherapeutics 2016, 13, 685–701. [Google Scholar] [CrossRef]
- Thelen, M.P.; Wirth, B.; Kye, M.J. Mitochondrial Defects in the Respiratory Complex I Contribute to Impaired Translational Initiation via ROS and Energy Homeostasis in SMA Motor Neurons. Acta Neuropathol. Commun. 2020, 8, 223. [Google Scholar] [CrossRef]
- Bonanno, S.; Cavalcante, P.; Salvi, E.; Giagnorio, E.; Malacarne, C.; Cattaneo, M.; Andreetta, F.; Venerando, A.; Pensato, V.; Gellera, C.; et al. Identification of a Cytokine Profile in Serum and Cerebrospinal Fluid of Pediatric and Adult Spinal Muscular Atrophy Patients and Its Modulation upon Nusinersen Treatment. Front. Cell. Neurosci. 2022, 16, 982760. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, K.; Funato, M.; Yoshino, Y.; Ando, S.; Inagaki, S.; Sato, A.; Kawase, C.; Seki, J.; Saito, T.; Nishio, H.; et al. Notch Signaling Mediates Astrocyte Abnormality in Spinal Muscular Atrophy Model Systems. Sci. Rep. 2019, 9, 3701. [Google Scholar] [CrossRef] [PubMed]
- Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; et al. A Small-Molecule Inhibitor of the NLRP3 Inflammasome for the Treatment of Inflammatory Diseases. Nat. Med. 2015, 21, 248–255. [Google Scholar] [CrossRef]
- Jain, M.; Singh, M.K.; Shyam, H.; Mishra, A.; Kumar, S.; Kumar, A.; Kushwaha, J. Role of JAK/STAT in the Neuroinflammation and Its Association with Neurological Disorders. Ann. Neurosci. 2021, 28, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Schartz, N.D.; Tenner, A.J. The Good, the Bad, and the Opportunities of the Complement System in Neurodegenerative Disease. J. Neuroinflamm. 2020, 17, 354. [Google Scholar] [CrossRef]
- Branchu, J.; Biondi, O.; Chali, F.; Collin, T.; Leroy, F.; Mamchaoui, K.; Makoukji, J.; Pariset, C.; Lopes, P.; Massaad, C.; et al. Shift from Extracellular Signal-Regulated Kinase to AKT/CAMP Response Element-Binding Protein Pathway Increases Survival-Motor-Neuron Expression in Spinal-Muscular-Atrophy-like Mice and Patient Cells. J. Neurosci. 2013, 33, 4280–4294. [Google Scholar] [CrossRef]
- Araki, S.; Hayashi, M.; Tamagawa, K.; Saito, M.; Kato, S.; Komori, T.; Sakakihara, Y.; Mizutani, T.; Oda, M. Neuropathological Analysis in Spinal Muscular Atrophy Type II. Acta Neuropathol. 2003, 106, 441–448. [Google Scholar] [CrossRef]
- Fan, L. Survival Motor Neuron (SMN) Protein: Role in Neurite Outgrowth and Neuromuscular Maturation during Neuronal Differentiation and Development. Hum. Mol. Genet. 2002, 11, 1605–1614. [Google Scholar] [CrossRef]
- Antonaci, L.; Pera, M.C.; Mercuri, E. New Therapies for Spinal Muscular Atrophy: Where We Stand and What Is Next. Eur. J. Pediatr. 2023, 182, 2935–2942. [Google Scholar] [CrossRef]
- Pekny, M.; Pekna, M.; Messing, A.; Steinhäuser, C.; Lee, J.-M.; Parpura, V.; Hol, E.M.; Sofroniew, M.V.; Verkhratsky, A. Astrocytes: A Central Element in Neurological Diseases. Acta Neuropathol. 2015, 131, 323–345. [Google Scholar] [CrossRef]
- Lee, H.-G.; Wheeler, M.A.; Quintana, F.J. Function and Therapeutic Value of Astrocytes in Neurological Diseases. Nat. Rev. Drug Discov. 2022, 21, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, A.; Holt, A.; Brown, C.; Cosme, C.; Wipf, P.; Gomez-Marin, A.; Castro, M.R.; Ayala-Peña, S.; McMurray, C.T. Mitochondrial Targeting of XJB-5-131 Attenuates or Improves Pathophysiology in HdhQ150 Animals with Well-Developed Disease Phenotypes. Hum. Mol. Genet. 2016, 25, 1792–1802. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, A.A.; Lee, D.Y.; Datta, R.; Hauser, M.; Budworth, H.; Holt, A.; Mihalik, S.; Goldschmidt, P.; Frankel, K.; Trego, K.; et al. Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metab. 2019, 29, 1258–1273.e11. [Google Scholar] [CrossRef]
- Anderson, C.M.; Swanson, R.A. Astrocyte Glutamate Transport: Review of Properties, Regulation, and Physiological Functions. Glia 2000, 32, 1–14. [Google Scholar] [CrossRef]
- Duan, S.; Anderson, C.; Stein, B.A.; Swanson, R.A. Glutamate Induces Rapid Upregulation of Astrocyte Glutamate Transport and Cell-Surface Expression of GLAST. J. Neurosci. 1999, 19, 10193–10200. [Google Scholar] [CrossRef]
- Clark, I.C.; Gutiérrez-Vázquez, C.; Wheeler, M.A.; Li, Z.; Rothhammer, V.; Linnerbauer, M.; Sanmarco, L.M.; Guo, L.; Blain, M.; Zandee, S.E.J.; et al. Barcoded Viral Tracing of Single-Cell Interactions in Central Nervous System Inflammation. Science 2021, 372, eabf1230. [Google Scholar] [CrossRef]
- Chaytow, H.; Huang, Y.-T.; Gillingwater, T.H.; Faller, K.M.E. The Role of Survival Motor Neuron Protein (SMN) in Protein Homeostasis. Cell. Mol. Life Sci. 2018, 75, 3877–3894. [Google Scholar] [CrossRef]
- Racki, V.; Marcelic, M.; Stimac, I.; Petric, D.; Kucic, N. Effects of Haloperidol, Risperidone, and Aripiprazole on the Immunometabolic Properties of BV-2 Microglial Cells. Int. J. Mol. Sci. 2021, 22, 4399. [Google Scholar] [CrossRef]
- Kučić, N.; Rački, V.; Šverko, R.; Vidović, T.; Grahovac, I.; Mršić-Pelčić, J. Immunometabolic Modulatory Role of Naltrexone in BV-2 Microglia Cells. Int. J. Mol. Sci. 2021, 22, 8429. [Google Scholar] [CrossRef]
- Ransohoff, R.M. A Polarizing Question: Do M1 and M2 Microglia Exist? Nat. Neurosci. 2016, 19, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Yvanka de Soysa, T.; Therrien, M.; Walker, A.C.; Stevens, B. Redefining Microglia States: Lessons and Limits of Human and Mouse Models to Study Microglia States in Neurodegenerative Diseases. Semin. Immunol. 2022, 60, 101651. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.; Yin, Y. Microglia Polarization from M1 to M2 in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Jiang, X.; Yang, L.; Zhang, Q.; Wang, B.; Cui, L.; Wang, X. Hydroxytyrosol Inhibits LPS-Induced Neuroinflammatory Responses via Suppression of TLR-4-Mediated NF-ΚB P65 Activation and ERK Signaling Pathway. Neuroscience 2019, 426, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Nowell, C.S.; Radtke, F. Notch as a Tumour Suppressor. Nat. Rev. Cancer 2017, 17, 145–159. [Google Scholar] [CrossRef]
- Hosseini-Alghaderi, S.; Baron, M. Notch3 in Development, Health and Disease. Biomolecules 2020, 10, 485. [Google Scholar] [CrossRef]
- Cui, W.; Sun, C.; Ma, Y.; Wang, S.; Wang, X.; Zhang, Y. Inhibition of TLR4 Induces M2 Microglial Polarization and Provides Neuroprotection via the NLRP3 Inflammasome in Alzheimer’s Disease. Front. Neurosci. 2020, 14, 444. [Google Scholar] [CrossRef]
- West, E.E.; Woodruff, T.; Fremeaux-Bacchi, V.; Kemper, C. Complement in Human Disease: Approved and Up-And-Coming Therapeutics. Lancet 2024, 403, 392–405. [Google Scholar] [CrossRef]
- Jia, J.; Cheng, J.; Wang, C.; Zhen, X. Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Front. Cell. Neurosci. 2018, 12, 314. [Google Scholar] [CrossRef]
- Nguyen, L.; Lucke-Wold, B.P.; Mookerjee, S.; Kaushal, N.; Matsumoto, R.R. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection. In Sigma Receptors: Their Role in Disease and as Therapeutic Targets; Smith, S., Su, T.P., Eds.; Advances in Experimental Medicine and Biology Series; Springer: Cham, Switzerland, 2017; Volume 964, pp. 133–152. [Google Scholar] [CrossRef]
- Francardo, V.; Bez, F.; Wieloch, T.; Nissbrandt, H.; Ruscher, K.; Cenci, M.A. Pharmacological Stimulation of Sigma-1 Receptors Has Neurorestorative Effects in Experimental Parkinsonism. Brain 2014, 137, 1998–2014. [Google Scholar] [CrossRef]
- Cuevas, J.; Rodriguez, A.; Behensky, A.; Katnik, C. Afobazole Modulates Microglial Function via Activation of Both σ-1 and σ-2 Receptors. J. Pharmacol. Exp. Ther. 2011, 339, 161–172. [Google Scholar] [CrossRef]
- Malik, M.; Rangel-Barajas, C.; Sumien, N.; Su, C.; Singh, M.; Chen, Z.; Huang, R.-Q.; Meunier, J.; Maurice, T.; Mach, R.H.; et al. The Effects of Sigma (σ1) Receptor-Selective Ligands on Muscarinic Receptor Antagonist-Induced Cognitive Deficits in Mice. Br. J. Pharmacol. 2015, 172, 2519–2531. [Google Scholar] [CrossRef]
- Heiss, K.; Vanella, L.; Murabito, P.; Prezzavento, O.; Marrazzo, A.; Castracani, C.C.; Barbagallo, I.; Zappalà, A.; Arena, E.; Astuto, M.; et al. Corrigendum to “(+)-Pentazocine Reduces Oxidative Stress and Apoptosis in Microglia Following Hypoxia/Reoxygenation Injury” [Neurosci. Lett. 626 142–148]. Neurosci. Lett. 2023, 807, 137247. [Google Scholar] [CrossRef] [PubMed]
- Gaja-Capdevila, N.; Hernández, N.; Navarro, X.; Herrando-Grabulosa, M. Sigma-1 Receptor Is a Pharmacological Target to Promote Neuroprotection in the SOD1G93A ALS Mice. Front. Pharmacol. 2021, 12, 780588. [Google Scholar] [CrossRef]
- Herrando-Grabulosa, M.; Gaja-Capdevila, N.; Vela, J.M.; Navarro, X. Sigma 1 Receptor as a Therapeutic Target for Amyotrophic Lateral Sclerosis. Br. J. Pharmacol. 2020, 178, 1336–1352. [Google Scholar] [CrossRef] [PubMed]
- Santiago, A.R.; Bernardino, L.; Agudo-Barriuso, M.; Gonçalves, J. Microglia in Health and Disease: A Double-Edged Sword. Mediat. Inflamm. 2017, 2017, 7034143. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of Neuroinflammation in Neurodegeneration Development. Nature 2023, 8, 267. [Google Scholar] [CrossRef]
- Fan, Z.; Brooks, D.J.; Okello, A.; Edison, P. An Early and Late Peak in Microglial Activation in Alzheimer’s Disease Trajectory. Brain A J. Neurol. 2017, 140, 792–803. [Google Scholar] [CrossRef]
- Baligács, N.; Albertini, G.; Borrie, S.C.; Serneels, L.; Pridans, C.; Balusu, S.; De Strooper, B. Homeostatic Microglia Initially Seed and Activated Microglia Later Reshape Amyloid Plaques in Alzheimer’s Disease. Nat. Commun. 2024, 15, 10634. [Google Scholar] [CrossRef]
- Yong, H.Y.F.; Rawji, K.S.; Ghorbani, S.; Xue, M.; Yong, V.W. The Benefits of Neuroinflammation for the Repair of the Injured Central Nervous System. Cell. Mol. Immunol. 2019, 16, 540–546. [Google Scholar] [CrossRef]
- Kery, R.; Chen, A.P.F.; Kirschen, G.W. Genetic Targeting of Astrocytes to Combat Neurodegenerative Disease. Neural Regen. Res. 2020, 15, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Shigetomi, E.; Shinozaki, Y.; Kobayashi, K.; Parajuli, B.; Kubota, Y.; Sakai, K.; Miyakawa, M.; Horiuchi, H.; Nabekura, J.; et al. Microglia Sense Astrocyte Dysfunction and Prevent Disease Progression in an Alexander Disease Model. Brain 2023, 147, 698–716. [Google Scholar] [CrossRef] [PubMed]
- Yshii, L.; Pasciuto, E.; Bielefeld, P.; Mascali, L.; Lemaitre, P.; Marino, M.; Dooley, J.; Kouser, L.; Verschoren, S.; Lagou, V.; et al. Astrocyte-Targeted Gene Delivery of Interleukin 2 Specifically Increases Brain-Resident Regulatory T Cell Numbers and Protects against Pathological Neuroinflammation. Nat. Immunol. 2022, 23, 878–891. [Google Scholar] [CrossRef]
- Vandenbark, A.A.; Offner, H.; Matejuk, S.; Matejuk, A. Microglia and Astrocyte Involvement in Neurodegeneration and Brain Cancer. J. Neuroinflamm. 2021, 18, 298. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Sheng, X.; Wang, W.; Li, Y.; Zhuo, R.; Wang, K.; Zhang, L.; Hu, D.-D.; Hong, Y.; Chen, L.; et al. TREM2 Receptor Protects against Complement-Mediated Synaptic Loss by Binding to Complement C1q during Neurodegeneration. Immunity 2023, 56, 1794–1808. [Google Scholar] [CrossRef]
- Morini, R.; Bizzotto, M.; Perrucci, F.; Filipello, F.; Matteoli, M. Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Front. Immunol. 2021, 12, 640937. [Google Scholar] [CrossRef]
- Andoh, M.; Koyama, R. Microglia Regulate Synaptic Development and Plasticity. Dev. Neurobiol. 2021, 81, 568–590. [Google Scholar] [CrossRef]
- Cornell, J.; Salinas, S.; Huang, H.-Y.; Zhou, M. Microglia Regulation of Synaptic Plasticity and Learning and Memory. Neural Regen. Res. 2022, 17, 705–716. [Google Scholar] [CrossRef]
- Matejuk, A.; Ransohoff, R.M. Crosstalk between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416. [Google Scholar] [CrossRef]
- Yousefpour, N.; Locke, S.; Deamond, H.; Wang, C.; Marques, L.; St-Louis, M.; Ouellette, J.; Khoutorsky, A.; De Koninck, Y.; Ribeiro-da-Silva, A. Time-Dependent and Selective Microglia-Mediated Removal of Spinal Synapses in Neuropathic Pain. Cell Rep. 2023, 42, 112010. [Google Scholar] [CrossRef]
- Madrigal, M.; Leza, J.C.; Polak, P.; Kalinin, S.; Feinstein, D.L. Astrocyte-Derived MCP-1 Mediates Neuroprotective Effects of Noradrenaline. J. Neurosci. 2009, 29, 263–267. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, L.; Wang, K.; Qi, Q.; Wang, M.; Yang, L.; Sun, P.; Mu, H. MicroRNA-146a Inhibits NF-ΚB Activation and Pro-Inflammatory Cytokine Production by Regulating IRAK1 Expression in THP-1 Cells. Exp. Ther. Med. 2019, 18, 3078–3084. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zheng, R.; Shao, G. Mechanisms and Application Strategies of MiRNA-146a Regulating Inflammation and Fibrosis at Molecular and Cellular Levels (Review). Int. J. Mol. Med. 2022, 51, 7. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Liang, C.; Ou, M.; Zou, T.; Sun, F.; Zhou, H.; Cui, L. MicroRNA-146a Is a Wide-Reaching Neuroinflammatory Regulator and Potential Treatment Target in Neurological Diseases. Front. Mol. Neurosci. 2020, 13, 90. [Google Scholar] [CrossRef]
- Labbaye, C.; Testa, U. The Emerging Role of MIR-146A in the Control of Hematopoiesis, Immune Function and Cancer. J. Hematol. Oncol. 2012, 5, 13. [Google Scholar] [CrossRef]
- Dull, K.; Fazekas, F.; Deák, D.; Kovács, D.; Póliska, S.; Szegedi, A.; Zouboulis, C.C.; Törőcsik, D. MiR-146a Modulates TLR1/2 and 4 Induced Inflammation and Links It with Proliferation and Lipid Production via the Indirect Regulation of GNG7 in Human SZ95 Sebocytes. Sci. Rep. 2021, 11, 21510. [Google Scholar] [CrossRef] [PubMed]
- Gilyazova, I.; Asadullina, D.; Kagirova, E.; Sikka, R.; Mustafin, A.; Ivanova, E.; Bakhtiyarova, K.; Gilyazova, G.; Gupta, S.; Khusnutdinova, E.; et al. MiRNA-146a-A Key Player in Immunity and Diseases. Int. J. Mol. Sci. 2023, 24, 12767. [Google Scholar] [CrossRef]
- Chongmelaxme, B.; Yodsurang, V.; Vichayachaipat, P.; Srimatimanon, T.; Sanmaneechai, O. Gene-Based Therapy for the Treatment of Spinal Muscular Atrophy Types 1 and 2: A Systematic Review and Meta-Analysis. Gene Ther. 2024. [Google Scholar] [CrossRef]
- Nuzzo, T.; Russo, R.; Errico, F.; D’Amico, A.; Tewelde, A.G.; Valletta, M.; Hassan, A.; Tosi, M.; Panicucci, C.; Bruno, C.; et al. Nusinersen Mitigates Neuroinflammation in Severe Spinal Muscular Atrophy Patients. Commun. Med. 2023, 3, 28. [Google Scholar] [CrossRef]
- Arslan, D.; Ergul-Ulger, Z.; Goksen, S.; Esendagli, G.; Erdem-Ozdamar, S.; Tan, E.; Bekircan-Kurt, C.E. Evaluation of Inflammatory and Glial Cell-Related Biomarkers in Adults with Spinal Muscular Atrophy under Nusinersen Treatment (P2-11.003). Neurology 2024, 102 (Suppl. 1). [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, Y.; Brusa, C.; Scoto, M.; Cornell, N.; Patel, P.; Baranello, G.; Muntoni, F.; Zhou, H. Profiling Neuroinflammatory Markers and Response to Nusinersen in Paediatric Spinal Muscular Atrophy. Sci. Rep. 2024, 14, 23491. [Google Scholar] [CrossRef]
- Lu, I.-N.; Cheung, P.F.-Y.; Heming, M.; Thomas, C.; Giglio, G.; Leo, M.; Erdemir, M.; Wirth, T.; König, S.; Dambietz, C.A.; et al. Cell-Mediated Cytotoxicity within CSF and Brain Parenchyma in Spinal Muscular Atrophy Unaltered by Nusinersen Treatment. Nat. Commun. 2024, 15, 4120. [Google Scholar] [CrossRef] [PubMed]
- Hensel, N.; Kubinski, S.; Claus, P. The Need for SMN-Independent Treatments of Spinal Muscular Atrophy (SMA) to Complement SMN-Enhancing Drugs. Front. Neurol. 2020, 11, 45. [Google Scholar] [CrossRef]
- Doble, A. The Pharmacology and Mechanism of Action of Riluzole. Neurology 1996, 47 (Suppl. 4), S233–S241. [Google Scholar] [CrossRef]
- Nagoshi, N.; Nakashima, H.; Fehlings, M. Riluzole as a Neuroprotective Drug for Spinal Cord Injury: From Bench to Bedside. Molecules 2015, 20, 7775–7789. [Google Scholar] [CrossRef]
- Nguyen, D.; Alavi, M.V.; Kim, K.-Y.; Kang, T.; Scott, R.T.; Noh, Y.H.; Lindsey, J.D.; Wissinger, B.; Ellisman, M.H.; Weinreb, R.N.; et al. A New Vicious Cycle Involving Glutamate Excitotoxicity, Oxidative Stress and Mitochondrial Dynamics. Cell Death Dis. 2011, 2, e240. [Google Scholar] [CrossRef]
- Zilio, E.; Piano, V.; Wirth, B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int. J. Mol. Sci. 2022, 23, 10878. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadi, M.; Kye, M.J.; Kalloo, G.; Yersak, J.M.; Sahin, M.; Hart, A.C. The Neuroprotective Drug Riluzole Acts via Small Conductance Ca2+-Activated K+Channels to Ameliorate Defects in Spinal Muscular Atrophy Models. J. Neurosci. 2013, 33, 6557–6562. [Google Scholar] [CrossRef] [PubMed]
- Russman, B.S.; Iannaccone, S.T.; Samaha, F.F. A Phase 1 Trial of Riluzole in Spinal Muscular Atrophy. Arch. Neurol. 2003, 60, 1601–1603. [Google Scholar] [CrossRef]
- Ando, S.; Funato, M.; Ohuchi, K.; Kameyama, T.; Inagaki, S.; Seki, J.; Kawase, C.; Tsuruma, K.; Shimazawa, M.; Kaneko, H.; et al. Edaravone Is a Candidate Agent for Spinal Muscular Atrophy: In Vitro Analysis Using a Human Induced Pluripotent Stem Cells-Derived Disease Model. Eur. J. Pharmacol. 2017, 814, 161–168. [Google Scholar] [CrossRef]
- Sawada, H. Clinical Efficacy of Edaravone for the Treatment of Amyotrophic Lateral Sclerosis. Expert Opin. Pharmacother. 2017, 18, 735–738. [Google Scholar] [CrossRef]
- Chaytow, H.; Faller, K.M.E.; Huang, Y.-T.; Gillingwater, T.H. Spinal Muscular Atrophy: From Approved Therapies to Future Therapeutic Targets for Personalized Medicine. Cell Rep. Med. 2021, 2, 100346. [Google Scholar] [CrossRef] [PubMed]
- Garred, P.; Tenner, A.J.; Mollnes, T.E. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol. Rev. 2021, 73, 792–827. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.F.; Keith, J.L.; Gao, F.; Black, S.E.; Moscovitch, M.; Rosenbaum, R.S. Neuropathology of a Remarkable Case of Memory Impairment Informs Human Memory. Neuropsychologia 2020, 140, 107342. [Google Scholar] [CrossRef]
- Fallon, M.; Tadi, P. Histology, Schwann Cells. PubMed. Available online: https://www.ncbi.nlm.nih.gov/books/NBK544316/ (accessed on 1 December 2024).
- Kamholz, J.; Menichella, D.; Jani, A.; Garbern, J.; Lewis, R.A.; Krajewski, K.M.; Lilien, J.; Scherer, S.S.; Shy, M.E. Charcot–Marie–Tooth Disease Type 1. Brain 2000, 123, 222–233. [Google Scholar] [CrossRef]
- O’Carroll, S.J.; Cook, W.H.; Young, D. AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy. Front. Mol. Neurosci. 2021, 13, 618020. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, M.; Abu; Otani, Y. Regeneration Mechanisms and Therapeutic Strategies for Neuromuscular Junctions in Aging and Diseases. Neural Regen. Res. 2024, 20, 193–194. [Google Scholar] [CrossRef]
- Serra, A.; Ruff, R.L.; Leigh, R.J. Neuromuscular Transmission Failure in Myasthenia Gravis: Decrement of Safety Factor and Susceptibility of Extraocular Muscles. Ann. N. Y. Acad. Sci. 2012, 1275, 129–135. [Google Scholar] [CrossRef]
- Dale, J.M.; Shen, H.; Barry, D.M.; Garcia, V.B.; Rose, F.F.; Lorson, C.L.; Garcia, M.L. The Spinal Muscular Atrophy Mouse Model, SMAΔ7, Displays Altered Axonal Transport without Global Neurofilament Alterations. Acta Neuropathol. 2011, 122, 331–341. [Google Scholar] [CrossRef]
- Boido, M.; Vercelli, A. Neuromuscular Junctions as Key Contributors and Therapeutic Targets in Spinal Muscular Atrophy. Front. Neuroanat. 2016, 10, 6. [Google Scholar] [CrossRef]
- Kusner, L.L.; Satija, N.; Cheng, G.; Kaminski, H.J. Targeting Therapy to the Neuromuscular Junction: Proof of Concept. Muscle Nerve 2014, 49, 749–756. [Google Scholar] [CrossRef]
- Alberts, B. Lymphocytes and the Cellular Basis of Adaptive Immunity. Nih.gov. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26921/ (accessed on 1 December 2024).
- Chi, H.; Pepper, M.; Thomas, P.G. Principles and Therapeutic Applications of Adaptive Immunity. Cell 2024, 187, 2052–2078. [Google Scholar] [CrossRef]
- DeMaio, A.; Mehrotra, S.; Sambamurti, K.; Husain, S. The Role of the Adaptive Immune System and T Cell Dysfunction in Neurodegenerative Diseases. J. Neuroinflamm. 2022, 19, 251. [Google Scholar] [CrossRef]
- Park, S.; Jiang, Z.; Mortenson, E.D.; Deng, L.; Radkevich-Brown, O.; Yang, X.; Sattar, H.; Wang, Y.; Brown, N.K.; Greene, M.; et al. The Therapeutic Effect of Anti-HER2/Neu Antibody Depends on Both Innate and Adaptive Immunity. Cancer Cell 2010, 18, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Glia Move to the Foreground. Nat. Neurosci. 2024, 27, 1427. [CrossRef]
- Huang, Y.; Happonen, K.E.; Burrola, P.G.; O’Connor, C.; Hah, N.; Huang, L.; Nimmerjahn, A.; Lemke, G. Microglia Use TAM Receptors to Detect and Engulf Amyloid Beta Plaques. Nat. Immunol. 2021, 22, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Allen Reish, H.E.; Standaert, D.G. Role of α-Synuclein in Inducing Innate and Adaptive Immunity in Parkinson Disease. J. Park. Dis. 2015, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Smajić, S.; Prada-Medina, C.A.; Landoulsi, Z.; Ghelfi, J.; Delcambre, S.; Dietrich, C.; Jarazo, J.; Henck, J.; Balachandran, S.; Pachchek, S.; et al. Single-Cell Sequencing of Human Midbrain Reveals Glial Activation and a Parkinson-Specific Neuronal State. Brain J. Neurol. 2022, 145, 964–978. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, K.K.W. Glial Fibrillary Acidic Protein: From Intermediate Filament Assembly and Gliosis to Neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef]
- Sosunov, A.; Olabarria, M.; Goldman, J.E. Alexander Disease: An Astrocytopathy That Produces a Leukodystrophy. Brain Pathol. 2018, 28, 388–398. [Google Scholar] [CrossRef]
- Hsiao, V.C. Alexander-Disease Mutation of GFAP Causes Filament Disorganization and Decreased Solubility of GFAP. J. Cell Sci. 2005, 118, 2057–2065. [Google Scholar] [CrossRef]
- Sun, J.; Osenberg, S.; Irwin, A.; Ma, L.-H.; Lee, N.; Xiang, Y.; Li, F.; Wan, Y.-W.; Park, I.-H.; Maletic-Savatic, M.; et al. Mutations in the Transcriptional Regulator MeCP2 Severely Impact Key Cellular and Molecular Signatures of Human Astrocytes during Maturation. Cell Rep. 2023, 42, 111942. [Google Scholar] [CrossRef]
- D’Antoni, S.; Spatuzza, M.; Bonaccorso, C.M.; Catania, M.V. Role of Fragile X Messenger Ribonucleoprotein 1 in the Pathophysiology of Brain Disorders: A Glia Perspective. Neurosci. Biobehav. Rev. 2024, 162, 105731. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.V.C.; Felice, C.A.; Du, F.; Covey, M.V.; Robinson, J.K.; Mandel, G.; Ballas, N. Oligodendrocyte Lineage Cells Contribute Unique Features to Rett Syndrome Neuropathology. J. Neurosci. 2013, 33, 18764–18774. [Google Scholar] [CrossRef]
- Krasovska, V.; Doering, L.C. Regulation of IL-6 Secretion by Astrocytes via TLR4 in the Fragile X Mouse Model. Front. Mol. Neurosci. 2018, 11, 272. [Google Scholar] [CrossRef]
- Kanaumi, T.; Milenkovic, I.; Adle-Biassette, H.; Aronica, E.; Kovacs, G.G. Non-Neuronal Cell Responses Differ between Normal and down Syndrome Developing Brains. Int. J. Dev. Neurosci. 2013, 31, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.C.; Pakkenberg, B.; Vann, S.D. Striking Reduction in Neurons and Glial Cells in Anterior Thalamic Nuclei of Older Patients with down Syndrome. Neurobiol. Aging 2019, 75, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Sase, S.; Takanohashi, A.; Vanderver, A.; Almad, A. Astrocytes, an Active Player in Aicardi-Goutières Syndrome. Brain Pathol. 2018, 28, 399–407. [Google Scholar] [CrossRef]
- Sushma; Mishra, S.; Kanchan, S.; Divakar, A.; Jha, G.; Sharma, D.; Kapoor, R.; Kumar Rath, S. Alcohol Induces ER Stress and Apoptosis by Inducing Oxidative Stress and Disruption of Calcium Homeostasis in Glial Cells. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2023, 182, 114192. [Google Scholar] [CrossRef]
- Saba, W. Glial Dysfunction in Substance Use Disorders. New Insights from PET and MR Imaging. Addict. Neurosci. 2023, 9, 100135. [Google Scholar] [CrossRef]
- Mukherjee, S.; Cabrera, M.A.; Boyadjieva, N.; Berger, G.; Rousseau, B.; Sarkar, D.K. Alcohol Increases Exosome Release from Microglia to Promote Complement C1q-Induced Cellular Death of Proopiomelanocortin Neurons in the Hypothalamus in a Rat Model of Fetal Alcohol Spectrum Disorders. J. Neurosci. 2020, 40, 7965–7979. [Google Scholar] [CrossRef]
- Xu, M.M.; Pu, Y.; Zhang, Y.; Fu, Y.-X. The Role of Adaptive Immunity in the Efficacy of Targeted Cancer Therapies. Trends Immunol. 2016, 37, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining Trained Immunity and Its Role in Health and Disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef] [PubMed]
In Vivo | |
---|---|
Model/Genotype | Notable Changes in Astrocyte Morphology and Function |
SMNΔ7mice [10] | SMA astrocytes in spinal cord exhibit distinct morphological changes alongside upregulated GFAP and Nestin expression [10]. |
SMNΔ7 and the less severe Smn2B/−model, SMNΔ7 mice treated with scAAV-SMNgfap [77] |
|
SMNΔ7mice [26] | miR-146a was markedly upregulated in spinal cords [26]. |
SMNΔ7 mice (Hung model) [78] | |
SMNΔ7 mice (Hung model) [79] |
|
SMNΔ7 mice [80] | |
In Vitro | |
Model/Genotype | Notable Changes in Astrocytes Morphology and Function |
iPSC-derived SMA astrocytes from a human SMA patient [10] | |
primary cultures of pure MN and astrocytes from WT and SMNΔ7mice along with their mixed and matched co-cultures [72] | |
iPSC-derived SMA astrocytes—from a human SMA patient/iPSC from a health control patient [26] |
|
iPSC-derived SMA astrocytes—from a human SMA patient/iPSC from a health control patient [30] |
|
MNs and spinal astrocytes transfected with SMN siRNA from WT mice [78] | |
iPSC-derived spinal MNs and SMA astrocytes—from a human SMA patient/iPSC from a health control patient [81] |
|
MNs and spinal astrocytes transfected with SMN siRNA from WT mice [79] | SMN-deficient astrocytes display reduced EAAT1 protein levels, resulting in elevated glutamate concentrations [79]. |
In Vivo | |
---|---|
Model/Genotype | Notable Changes in Microglia Morphology and Function |
SMNΔ7 mice [101] |
|
SMNΔ7 mice [28] |
|
SMNΔ7 mice [31] |
|
SMNΔ7, C1q-, SMNΔ7/C1q-mice [94] |
|
SMNΔ7 and Smn2B/− mice [99] |
|
TDP-43A315T x SMN, TDP-43A315T, SMN and WT mice [103] |
|
SMNΔ7 mice [104] |
|
SMN−/− and SMN2+/+ Mice [105] |
|
SMNΔ7 mice [85] |
|
In Vitro | |
Model/Genotype | Notable Changes in Microglia Morphology and Function |
iPSC-derived SMA microglia—from a human SMA patient/iPSC from a health control patient [28] |
|
iPSC-derived microglia—from a human SMA patient and control—exposed to SMA iPSC astrocyte-conditioned media (ACM) [30] | SMA astrocytes contribute to the microglial phagocytosis observed in SMA, with this process being significantly reduced following lentiviral-mediated knockdown of GATA6 [30]. |
siRNA SMN-depleted RAW264.7 macrophage cells [31] | Depletion of SMN protein in RAW264.7 cells enhanced oxidative stress and elevated the inflammatory response by phosphorylation of NFκB and JNK [31]. |
BV2 microglia cells [102] |
In Vivo | |
---|---|
Model/Genotype | Notable Changes in Oligodendrocytes Morphology and Function |
SMNΔ7mice [148] |
|
Smn−/−; SMN2 mice [27] |
|
Smn−/−; SMN2;SMNΔ7 mice [138] | Genetic changes in spinal cord oligodendrocyte development between P1 and P7, and P7 and P13 day old mice [138]. |
In Vitro | |
Model/Genotype | Notable Changes in Oligodendrocytes Morphology and Function |
SMA-iPSC culture containing motor neurons, astrocytes, and oligodendrocytes [148] |
|
Primary oligodendrocytes from Smn−/−; SMN2 mice [27] |
|
In Vivo | |
---|---|
Model/Genotype | Notable Changes in Schwann Cells Morphology and Function |
SMAΔ7, Hb9-GFP SMAΔ7, SmnRes/SMN2+/+/SMNΔ7+/+ expressing ChATCre, DhhCre or MyoD/Cre mice [173] |
|
Pharmacological SMA mice—SMN∆7 mice receiving splicing modifier SMN-C1 to generate mice with milder SMA phenotype [168] | The progressive loss of terminal Schwann cells, despite their retained ability to proliferate and migrate, contributes to disruptions in NMJ remodeling [168]. |
Smn+/−; SMN2tg/0, Smn+/−; SMN2tg/0; SMN1SC, Smn−/−; SMN2tg/0, Smn−/−; SMN2tg/0; SMN1SC [174] | Transgenic SMA mice overexpressing SMN only in myelinating Schwann cells Smn−/−; SMN2tg/0; SMN1SC corrected myelination defects, greatly enhanced neuromuscular function, and alleviated NMJ pathology [174]. |
Smn+/−; SMN2+/+ mice [170] |
|
‘Severe’ SMA mouse model (Smn−/−; SMN2tg/tg) and ‘Taiwanese’ SMA mice (Smn−/−; SMN2tg/0) [175] |
|
FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1, smn+/+; hSMN2+/+ and B6d2F2xFVB/N mice [171,172] | Vacuole-like inclusions are present in terminal Schwann cells at NMJs with swollen mitochondria, particularly in the diaphragm and intercostal muscles. |
Smn2B/− mice [167] | |
SMAΔ7 mice [169] | A marked decrease in the number of terminal Schwann cells [169]. |
Smn+/−; SMN2 and Smn−/; SMN2; delta7 mice [176] | Gene expression of laminin alpha-2 is increased at P1, which corresponds to the pre-symptomatic stage, but significantly decreases at P5 during the late-symptomatic stage, which suggests a disruption in extracellular matrix [176]. |
Smn+/−; SMN2; SMNΔ7 [138] | During the pre-symptomatic stage, at P1, increased gene expression in laminin alpha 2 is observed [138]. |
Smn+/+, Smn+/−, Smn+/− Cntf−/− and Smn+/+ Cntf−/− mice [143] | |
In Vitro | |
Model/Genotype | Notable Changes in Schwann Cells Morphology and Function |
Primary Schwann cells from ‘Taiwanese’ SMA mice (Smn−/−; SMN2tg/0) [175] |
|
Primary Schwann cells from‘Taiwanese’ SMA mice (Smn−/−; SMN2tg/0) [145] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belančić, A.; Janković, T.; Gkrinia, E.M.M.; Kristić, I.; Rajič Bumber, J.; Rački, V.; Pilipović, K.; Vitezić, D.; Mršić-Pelčić, J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol. Int. 2025, 17, 41. https://doi.org/10.3390/neurolint17030041
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurology International. 2025; 17(3):41. https://doi.org/10.3390/neurolint17030041
Chicago/Turabian StyleBelančić, Andrej, Tamara Janković, Elvira Meni Maria Gkrinia, Iva Kristić, Jelena Rajič Bumber, Valentino Rački, Kristina Pilipović, Dinko Vitezić, and Jasenka Mršić-Pelčić. 2025. "Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications" Neurology International 17, no. 3: 41. https://doi.org/10.3390/neurolint17030041
APA StyleBelančić, A., Janković, T., Gkrinia, E. M. M., Kristić, I., Rajič Bumber, J., Rački, V., Pilipović, K., Vitezić, D., & Mršić-Pelčić, J. (2025). Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurology International, 17(3), 41. https://doi.org/10.3390/neurolint17030041