Brain Structural Abnormalities in Patients with Post-COVID-19 Headache
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Design
2.2. MRI Protocol
- Sagittal T1-weighted;
- Coronal FLAIR;
- Axial T2-weighted;
- Axial DWI;
- Axial Susceptibility Weighted Imaging (SWI);
- Axial TOF;
- Optional: contrast enhanced 3D sagittal T1-weighted.
2.3. Outcomes
- Cortical atrophy: the Scheltens scale aids in the standardized grading of atrophy severity. It is characterized by a reduction in cortical thickness, widening of the sulci, and dilation of the ventricular system, particularly the lateral ventricles. These changes are typically observed on T1-weighted and FLAIR images, where thinning of the cortical structures is evident [14].
- White matter lesions: the Fazekas scale and the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) criteria are the most commonly used standards. White matter lesions are identified on FLAIR and T2-weighted images as bright (hyperintense) areas located in the periventricular or deep white matter. These may appear as discrete spots or confluent regions, typically indicating small vessel disease [15].
- Vascular lesions: in Hungary, the European Stroke Organization Guidelines serve as the primary reference. MR angiography is routinely used to assist in the diagnosis of vascular abnormalities. On DWI, acute ischemic lesions appear as hyperintense signals. T1/T2-weighted and magnetic resonance angiography (MRA) images can identify stenosis, occlusions, or vascular wall abnormalities. In cases of hemorrhage, hemosiderin deposits can be detected using SWI techniques [16].
- Lacunar lesions: the STRIVE criteria assist in identifying these lesions. They are characterized by small (<15 mm) round or oval hyperintense areas on T2/FLAIR images. Common locations include the thalamus, basal ganglia, and internal capsule. On T1-weighted images, they appear as hypointense signals [15].
- Vascular encephalopathy: the Hungarian Stroke Guidelines and the recommendations of the MSKT (Hungarian Stroke Consensus Council), along with the application of the Fazekas scale, are essential for evaluation. Diffuse white matter hyperintensities are observed on FLAIR images. Subcortical infarcts, dilated perivascular spaces, or signs of microvascular disease may also be present. Cortical and subcortical atrophy is frequently associated with ventricular enlargement [17].
- Sinusitis: the American College of Radiology (ACR) Appropriateness Criteria and the Lund-Mackay scoring system are utilized. Sinus opacification, mucosal thickening, or fluid levels are identified on T2-weighted images. In acute inflammation, high-intensity signals and fluid levels are observed on T2. In chronic sinusitis, findings include thickened bony walls, fibrosis, or the presence of mucoceles [18].
2.4. Statistical Analyses
2.5. Ethical Considerations
3. Results
3.1. Baseline Characteristics
3.2. Primary Outcome
3.3. Secondary Outcome
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease 2019 |
CT | Computed Tomography |
PET | Positron Emission Tomography |
MRI | Magnetic Resonance Imaging |
FLAIR | Fluid-Attenuated Inversion Recovery |
DWI | Diffusion Weighted Imaging |
TOF | Time-of-Flight |
SWI | Susceptibility Weighted Imaging |
TR | Repetition Time |
ms | milliseconds |
TE | Echo Time |
TI | Inversion Time |
FOV | Field of View |
mm | millimeters |
FS | Fat Saturation |
min | minutes |
NEX | Number of Excitations |
s/mm2 | seconds per square millimeter |
kHz | kilohertz |
FSE | Fast Spin Echo |
SE EPI | Spin Echo Echo Planar Imaging |
GRE | Gradient Echo |
SPGR | Spoiled Gradient Echo |
FSPGR | Fast Spoiled Gradient Echo |
STRIVE | Standards for Reporting Vascular Changes on Neuroimaging |
MRA | Magnetic Resonance Angiography |
MSKT | Magyar Stroke Konszenzus Tanács (Hungarian Stroke Consensus Panel) |
ACR | American College of Radiology |
GDPR | General Data Protection Regulation |
HUF | Hungarian Forint |
References
- Fernández-de-Las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Florencio, L.L.; Cuadrado, M.L.; Plaza-Manzano, G.; Navarro-Santana, M. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur. J. Intern. Med. 2021, 92, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Florencio, L.L. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An Integrative Classification. Int. J. Environ. Res. Public Health 2021, 18, 2621. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, N.; Grill, M.F.; Singh, R.B.H. Post-COVID Headache: A Literature Review. Curr. Pain Headache Rep. 2022, 26, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Tana, C.; Bentivegna, E.; Cho, S.J.; Harriott, A.M.; García-Azorín, D.; Labastida-Ramirez, A.; Ornello, R.; Raffaelli, B.; Beltrán, E.R.; Ruscheweyh, R.; et al. Long COVID headache. J. Headache Pain 2022, 23, 93. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Gómez-Mayordomo, V.; Cuadrado, M.L. The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: A case-control study. Cephalalgia Int. J. Headache 2021, 41, 1332–1341. [Google Scholar] [CrossRef]
- Caronna, E.; Ballvé, A.; Llauradó, A.; Gallardo, V.J.; Ariton, D.M.; Lallana, S.; Lopez Maza, S.; Olive Gadea, M.; Quibus, L.; Restrepo, J.L.; et al. Headache: A striking prodromal and persistent symptom, predictive of COVID-19 clinical evolution. Cephalalgia Int. J. Headache 2020, 40, 1410–1421. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Pelizzari, L.; Cazzoli, M.; Lipari, S.; Laganà, M.M.; Cabinio, M.; Isernia, S.; Pirastru, A.; Clerici, M.; Baglio, F. Mid-term MRI evaluation reveals microstructural white matter alterations in COVID-19 fully recovered subjects with anosmia presentation. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221111995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rueb, M.; Ruzicka, M.; Fonseca, G.J.I.; Valdinoci, E.; Benesch, C.; Pernpruner, A.; von Baum, M.; Remi, J.; Jebrini, T.; Schöberl, F.; et al. Headache severity in patients with post COVID-19 condition: A case-control study. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Azorin, D.; Layos-Romero, A.; Porta-Etessam, J.; Membrilla, J.A.; Caronna, E.; Gonzalez-Martinez, A.; Mencia, Á.S.; Segura, T.; Gonzalez-García, N.; Díaz-de-Terán, J.; et al. Post-COVID-19 persistent headache: A multicentric 9-months follow-up study of 905 patients. Cephalalgia 2022, 42, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Navarro-Santana, M.; Gómez-Mayordomo, V.; Cuadrado, M.L.; García-Azorín, D.; Arendt-Nielsen, L.; Plaza-Manzano, G. Headache as an acute and post-COVID-19 symptom in COVID-19 survivors: A meta-analysis of the current literature. Eur. J. Neurol. 2021, 28, 3820–3825. [Google Scholar] [CrossRef] [PubMed]
- Newman-Toker, D.E.; Santina, C.C.D.; Blitz, A.M. Vertigo and Hearing Loss. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 136. [Google Scholar]
- Eller, M.; Goadsby, P.J. MRI in headache. Expert Rev. Neurother. 2013, 13, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P. Grading of global cortical atrophy. J. Neurol. 1997, 244, 658–664. [Google Scholar]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.A.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. STRIVE criteria for reporting vascular changes on neuroimaging. Lancet Neurol. 2013, 12, 822–828. [Google Scholar] [PubMed]
- European Stroke Organization (ESO) Guidelines. Stroke Prevention and Management Recommendations; European Stroke Organization (ESO): Basel, Switzerland, 2020. [Google Scholar]
- Hungarian Stroke Consensus Council (MSKT). National Stroke Guidelines; Hungarian Stroke Consensus Council (MSKT): Budapest, Hungary, 2021. [Google Scholar]
- Lund-Mackay, R. Scoring system for sinusitis assessment. Radiology 1993, 189, 393–398. [Google Scholar]
- Planchuelo-Gómez, Á.; García-Azorín, D.; Guerrero, Á.L.; Aja-Fernández, S.; de Luis-García, R. Structural brain changes in patients with persistent headache after COVID-19 resolution. J. Neurol. 2023, 270, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Honningsvåg, L.M.; Håberg, A.K.; Hagen, K.; Kvistad, K.A.; Stovner, L.J.; Linde, M. White matter hyperintensities and headache: A population-based imaging study (HUNT MRI). Cephalalgia 2018, 38, 1–13. [Google Scholar]
Sequence Type | TR 1 | TE 2 | TI 3 | FOV 4 | Matrix 5 | FS 6 | Scan Time 7 | NEX 8 | b-Value 9 | Bandwith 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Sagittal T1 | FSE 11 | 577 | 12.34 | - | 240 | 512 × 512 | N | 3.5 | 1 | - | 31.25 |
Axial T2 | FSE | 7580 | 86.5 | - | 260 | 512 × 512 | N | 3.5 | 1.5 | - | 62.5 |
Coronal T2 | FLAIR | 9000 | 120 | 2580 | 240 | 256 × 256 | N | 3.5 | 1 | - | 70 |
Axial DWI | SE EPI 12 | 7551 | 83.1 | - | 260 | 256 × 256 | N | 2.5 | 1 | 20/1000 | 250 |
Axial SWI | GRE 13 | 73.7 | 47.07 | - | 260 | 512 × 512 | N | 3 | 1 | - | 41.67 |
Axial TOF | SPGR 14 | 26 | 6.8 | - | 220 | 512 × 512 | Y | 3.5 | 1 | - | 250 |
+c Sagittal 3D T1 | FSPGR 15 | 6.884 | 2.06 | - | 240 | 512 × 512 | N | 3.5 | 1 | - | 83.33 |
Variable | Count or Mean | ±SD |
---|---|---|
Number of subjects (males) | 30 (10) | |
Age | 55.03 years | 15.51 years |
Time between COVID infection and MRI | 6.1 months | 5.1 months |
Other post-COVID-19 symptoms, n | ||
Vertigo | 10 (33%) | |
Cognitive disorders | 9 (30%) | |
Visual impairment | 3 (10%) | |
MR results, n | ||
White matte lesion | 15 (50%) | |
Cortical atrophy | 7 (23%) | |
Vascular encephalopathy | 7 (23%) | |
Vascular lesion | 2 (7%) | |
Lacunar lesion | 2 (7%) | |
Sinusitis | 2 (7%) |
Variable | Count or Mean | ±SD |
---|---|---|
Number of subjects (males) | 30 (15) | |
Age | 61.07 years | 17.48 years |
MR results, n | ||
Sinusitis | 11 (37%) | |
Cortical atrophy | 8 (27%) | |
White matte lesion | 6 (20%) | |
Vascular encephalopathy | 5 (17%) | |
Vascular lesion | 4 (13%) | |
Lacunar lesion | 2 (7%) |
Results | Post-COVID-19 Headache Group (%) | Control Group (%) |
---|---|---|
White matter lesion | 50 | 20 |
Cortical atrophy | 23.3 | 26.7 |
Vascular encephalopathy | 23.3 | 16.7 |
Vascular lesion | 6.7 | 13.3 |
Lacunar lesion | 6.7 | 6.7 |
Sinusitis | 6.7 | 36.7 |
Final Diagnosis | % |
---|---|
Headache, migraine | 23.3 |
Post-COVID-19 headache | 20 |
Vestibular syndrome | 13.3 |
Anxiety, other psychological disorders | 6.7 |
Sleep disorder, fatigue | 6.7 |
Visual impairment | 3.3 |
Dementia | 3.3 |
Not specified | 20 |
Other | 3.3 |
White Matter Lesion | Cortical Atrophy | Vascular Encephalopathy | Vascular Lesion | Lacunar Lesion | Sinusitis | |
---|---|---|---|---|---|---|
Headache, migraine | 57.1% | 28.5% | 28.5% | - | - | 14.3% |
Post-COVID-19 headache | 50% | 33.3% | 33.3% | - | 16.7% | 16.7% |
Vestibular syndrome | 50% | - | 25% | - | 25% | - |
Anxiety, other psychological disorders | 50% | - | - | - | - | - |
Sleep disorder, fatigue | 50% | - | 50% | - | - | - |
Visual impairment | - | 100% | - | - | - | - |
Dementia | 100% | 100% | 100% | 100% | - | - |
Other | 100% | 100% | - | 100% | - | - |
Treatments | % |
---|---|
Cognitive function stimulant drugs | 23.3 |
Anxiolytic, hypnotic, antidepressant drugs | 20 |
Lifestyle advance | 10 |
Anti-inflammatory drugs | 10 |
Antiepileptic drugs | 3.3 |
Migraine medication | 3.3 |
Vitamin, mineral | 3.3 |
Other drugs | 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Széphelyi, K.; Kóra, S.; Orsi, G.; Tollár, J. Brain Structural Abnormalities in Patients with Post-COVID-19 Headache. Neurol. Int. 2025, 17, 50. https://doi.org/10.3390/neurolint17040050
Széphelyi K, Kóra S, Orsi G, Tollár J. Brain Structural Abnormalities in Patients with Post-COVID-19 Headache. Neurology International. 2025; 17(4):50. https://doi.org/10.3390/neurolint17040050
Chicago/Turabian StyleSzéphelyi, Klaudia, Szilvia Kóra, Gergely Orsi, and József Tollár. 2025. "Brain Structural Abnormalities in Patients with Post-COVID-19 Headache" Neurology International 17, no. 4: 50. https://doi.org/10.3390/neurolint17040050
APA StyleSzéphelyi, K., Kóra, S., Orsi, G., & Tollár, J. (2025). Brain Structural Abnormalities in Patients with Post-COVID-19 Headache. Neurology International, 17(4), 50. https://doi.org/10.3390/neurolint17040050