Variants in Neurotransmitter-Related Genes Are Associated with Alzheimer’s Disease Risk and Cognitive Functioning but Not Short-Term Treatment Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. DNA Extraction and Genotyping
2.3. Drug Response Assessment
2.4. Statistical Analysis
3. Results
3.1. Clinical and Demographic Data in Responder and Non-Responder Groups
3.2. Study of Genetic Variants in Patients with Alzheimer’s Disease and Cognitive Performance
3.3. Study of Pharmacogenetic Variants with the Short-Term Response to Donepezil, Galantamine, Rivastigmine, and Memantine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ChEI | Cholinesterase inhibitor |
DPZ | Donepezil |
GAL | Galantamine |
RIV | Rivastigmine |
NMDA | N-methyl-D-aspartate antagonist |
CYP2D6 | Cytochrome P450 family 2 subfamily D member 6 |
CYP3A4 | Cytochrome P450 family 3 subfamily A member 4 |
CYP3A5 | Cytochrome P450 family 3 subfamily A member 5 |
NR1I2 | Nuclear receptor subfamily 1 Group I member 2 |
ABCB1 | ATP binding cassette subfamily B member 1 |
APOE | Apolipoprotein E |
ACHE | Acetylcholinesterase |
BCHE | Butyrylcholinesterase |
CHAT | Choline O-acetyltransferase |
MEM | Memantine |
MM | Mexican Mestizo |
INNN | Instituto Nacional de Neurología y Neurocirugía |
HRALM | Hospital Regional Adolfo López Mateos |
CHRNA7 | Cholinergic receptor nicotinic alpha 7 subunit |
POR | Cytochrome P450 oxidoreductase |
MMSE | Mini-Mental State Examination |
GDS | Global Deterioration Scale |
PVF | Phonological Verbal Fluency test |
SVF | Semantic Verbal Fluency test |
ADRs | Adverse drug reactions |
ADL | Activities of daily living |
SAH | Systemic arterial hypertension |
T2DM | Type 2 diabetes mellitus |
MAF | Minor allele frequency |
CI | Confidence interval |
OR | Odds ratio |
References
- Wortmann, M. Dementia: A global health priority—Highlights from an ADI and World Health Organization report. Alzheimers Res. Ther. 2012, 4, 40. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22995353 (accessed on 24 October 2018). [CrossRef] [PubMed]
- Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement 2018, 14, 367–429. [Google Scholar] [CrossRef]
- Gauthier, S.; Rosa-Neto, P.; Morais, J.A. WC World Alzheimer Report 2021: Journey Through the Diagnosis of Dementia. 2021. Available online: https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf (accessed on 14 July 2022).
- Crews, L.; Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet. 2010, 19, R12–R20. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20413653 (accessed on 25 October 2018). [CrossRef]
- Becker, J.T.; Boller, F.; Lopez, O.L.; Saxton, J.; McGonigle, K.L. The natural history of Alzheimer’s disease. Description of study cohort and accuracy of diagnosis. Arch. Neurol. 1994, 51, 585–594. Available online: http://www.ncbi.nlm.nih.gov/pubmed/8198470 (accessed on 25 October 2018). [CrossRef]
- López, O.L.; DeKosky, S.T. Clinical symptoms in Alzheimer’s disease. Handb. Clin. Neurol. 2008, 89, 207–216. Available online: https://www.sciencedirect.com/science/article/pii/S0072975207012195 (accessed on 25 October 2018).
- Cammisuli, D.M.; Danti, S.; Bosinelli, F.; Cipriani, G. Non-pharmacological interventions for people with Alzheimer’s Disease: A critical review of the scientific literature from the last ten years. Eur. Geriatr. Med. 2016, 7, 57–64. Available online: https://www.sciencedirect.com/science/article/pii/S1878764916000048 (accessed on 25 October 2018). [CrossRef]
- Zúniga, T.; Trujillo, Z.; Cortés, G.; Acosta, I.; Sosa, A.L. Impacto de los Programas de Estimulación en Adultos Mayores con Demencia que Asisten a un Centro de Día. Arch. Neurocien. 2014, 19, 192–198. Available online: http://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1608001 (accessed on 23 May 2017). [CrossRef]
- Alzheimer’s Disease International. World Alzheimer Report 2018—The State of the Art of Dementia Research: New Frontiers. Available online: https://www.alz.co.uk/research/WorldAlzheimerReport2018.pdf?2 (accessed on 25 October 2018).
- Campos, C.; Rocha, N.B.; Vieira, R.T.; Rocha, S.A.; Telles-Correia, D.; Paes, F.; Yuan, T.; Nardi, A.E.; Arias-Carrión, O.; Machado, S.; et al. Treatment of Cognitive Deficits in Alzheimer’s disease: A psychopharmacological review. Psychiatr. Danub. 2016, 28, 2–12. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26938815 (accessed on 15 August 2016).
- Miranda, L.F.J.R.; Gomes, K.B.; Silveira, J.N.; Pianetti, G.A.; Byrro, R.M.; Peles, P.R.; Pereira, F.H.; Santos, T.R.; Assini, A.G.; Ribeiro, V.V.; et al. Predictive factors of clinical response to cholinesterase inhibitors in mild and moderate Alzheimer’s disease and mixed dementia: A one-year naturalistic study. J. Alzheimer’s Dis. 2015, 45, 609–620. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25589728 (accessed on 20 April 2017). [CrossRef]
- US Department of Health and Human Services Food and Drug Administration. E15 Definitions for Genomic Biomarkers, Pharmacogenomics, Pharmacogenetics, Genomic Data and Sample Coding Categories. 2008. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e15-pharmacogenomics-definitions-and-sample-coding (accessed on 6 December 2018).
- Zúñiga Santamaría, T.; Yescas Gómez, P.; Fricke Galindo, I.; González, M.G.; Vázquez, A.O.; López, M.L. Pharmacogenetic studies in Alzheimer disease. Neurol. (Engl. Ed.) 2022, 37, 287–303. [Google Scholar] [CrossRef]
- Wattmo, C.; Wallin, Å.K.; Londos, E.; Minthon, L. Long-term Outcome and Prediction Models of Activities of Daily Living in Alzheimer Disease With Cholinesterase Inhibitor Treatment. Alzheimer Dis. Assoc. Disord. 2011, 25, 63–72. Available online: http://journals.lww.com/00002093-201101000-00010 (accessed on 20 August 2020). [CrossRef] [PubMed]
- Wattmo, C.; Wallin, Å.K.; Londos, E.; Minthon, L. Predictors of long-term cognitive outcome in Alzheimer’s disease. Alzheimer’s Res. Ther. 2011, 3, 23. Available online: https://alzres.biomedcentral.com/articles/10.1186/alzrt85 (accessed on 20 August 2020). [CrossRef] [PubMed]
- Lopez, O.L.; Becker, J.T.; Wisniewski, S.; Saxton, J.; Kaufer, D.I.; DeKosky, S.T. Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2002, 72, 310–314. Available online: www.jnnp.com (accessed on 20 August 2020). [CrossRef] [PubMed]
- Birks, J.S. Cholinesterase inhibitors for Alzheimer’s disease. In Cochrane Database of Systematic Reviews; Birks, J.S., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; p. CD005593. Available online: http://www.ncbi.nlm.nih.gov/pubmed/16437532 (accessed on 14 December 2018).
- Blanco-Silvente, L.; Capellà, D.; Garre-Olmo, J.; Vilalta-Franch, J.; Castells, X. Predictors of discontinuation, efficacy, and safety of memantine treatment for Alzheimer’s disease: Meta-analysis and meta-regression of 18 randomized clinical trials involving 5004 patients. BMC Geriatr. 2018, 18, 168. Available online: http://www.ncbi.nlm.nih.gov/pubmed/30041625 (accessed on 14 December 2018). [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. Available online: http://www.ncbi.nlm.nih.gov/pubmed/6610841 (accessed on 9 March 2018). [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17616482 (accessed on 9 March 2018). [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 2011, 7, 263–269. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21514250 (accessed on 9 March 2018). [CrossRef]
- Hixson, J.E.; Vernier, D.T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J. Lipid Res. 1990, 31, 545–548. Available online: http://www.ncbi.nlm.nih.gov/pubmed/2341813 (accessed on 12 December 2018). [CrossRef]
- Varela, N.; Quiñones, L.A.; Stojanova, J.; Garay, J.; Cáceres, D.; Cespedes, S.; Sasso, J.; Miranda, C. Characterization of the CYP2D6 drug metabolizing phenotypes of the Chilean mestizo population through polymorphism analyses. Pharmacol. Res. 2015, 101, 124–129. [Google Scholar] [CrossRef]
- López-López, M.; Peñas-Lledó, E.; Dorado, P.; Ortega, A.; Corona, T.; Ochoa, A.; Yescas, P.; Alonso, E.; Llerena, A. CYP2D6 genetic polymorphisms in Southern Mexican Mayan Lacandones and Mestizos from Chiapas. Pharmacogenomics 2014, 15, 1859–1865. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25495408 (accessed on 24 June 2015). [CrossRef]
- Dorado, P.; Cáceres, M.C.; Pozo-Guisado, E.; Wong, M.L.; Licinio, J.; Llerena, A. Development of a PCR-based strategy for CYP2D6 genotyping including gene multiplication of worldwide potential use. Biotechniques 2005, 39 (Suppl. S10), S571–S574. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18957039 (accessed on 3 June 2016). [CrossRef]
- Gaedigk, A.; Simon, S.D.; Pearce, R.E.; Bradford, L.D.; Kennedy, M.J.; Leeder, J.S. The CYP2D6 activity score: Translating genotype information into a qualitative measure of phenotype. Clin. Pharmacol. Ther. 2008, 83, 234–242. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17971818 (accessed on 17 June 2015). [CrossRef] [PubMed]
- Llerena, A.; Dorado, P.; Ramírez, R.; González, I.; Alvarez, M.; Peñas-Lledó, E.M.; Pérez, B.; Calzadilla, L.R. CYP2D6 genotype and debrisoquine hydroxylation phenotype in Cubans and Nicaraguans. Pharmacogenomics J. 2012, 12, 176–183. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21135868 (accessed on 17 June 2015). [CrossRef]
- Acosta Quiroz, C.O.; García-Flores, R.; Echeverría-Castro, S.B. The Geriatric Depression Scale (GDS-15): Validation in Mexico and Disorder in the State of Knowledge. Int. J. Aging Hum. Dev. 2021, 93, 854–863. Available online: https://pubmed.ncbi.nlm.nih.gov/32960071/ (accessed on 14 July 2022). [CrossRef] [PubMed]
- Aguilar-Navarro, S.G.; Mimenza-Alvarado, A.J.; Samudio-Cruz, M.A.; Hernández-Contreras, F.J.; Gutiérrez-Gutiérrez, L.A.; Ramírez-González, F.; Avila-Funes, J.A. Validation of the Clock Drawing Test Scoring Method in older adults with neurocognitive disorder. Salud Ment. 2018, 41, 179–186. Available online: www.revistasaludmental.mx (accessed on 14 July 2022). [CrossRef]
- Franco-Marina, F.; García-González, J.J.; Wagner-Echeagaray, F.; Gallo, J.; Ugalde, O.; Sánchez-García, S.; Espinel-Bermúdez, C.; Juárez-Cedillo, T.; Rodríguez, M.A.; García-Peña, C. The Mini-mental State Examination revisited: Ceiling and floor effects after score adjustment for educational level in an aging Mexican population. Int. Psychogeriatr. 2010, 22, 72–81. Available online: https://pubmed.ncbi.nlm.nih.gov/19735592/ (accessed on 14 July 2022). [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; Rstudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 1 July 2023).
- Ortega-Vázquez, A.; Dorado, P.; Fricke-Galindo, I.; Jung-Cook, H.; Monroy-Jaramillo, N.; Martínez-Juárez, I.E.; Familiar-López, I.; Peñas-Lledó, E.; Llerena, A.; López-López, M. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. Pharmacogenomics J. 2015, 16, 286–292. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26122019 (accessed on 9 July 2015). [CrossRef]
- Fricke-Galindo, I.; Ortega-Vázquez, A.; Monroy-Jaramillo, N.; Dorado, P.; Jung-Cook, H.; Peñas-Lledó, E.; Llerena, A.; López-López, M. Allele and genotype frequencies of genes relevant to anti-epileptic drug therapy in Mexican-Mestizo healthy volunteers. Pharmacogenomics 2016, 17, 1913–1930. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. Available online: https://www.nature.com/articles/nature15393 (accessed on 15 July 2022).
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci. 2022, 14, 1120. [Google Scholar] [CrossRef]
- Rubin, L.; Ingram, L.A.; Resciniti, N.V.; Ashford-Carroll, B.; Leith, K.H.; Rose, A.; Ureña, S.; McCollum, Q.; Friedman, D.B. Genetic Risk Factors for Alzheimer’s Disease in Racial/Ethnic Minority Populations in the U.S.: A Scoping Review. Front. Public. Health 2021, 9, 2078. [Google Scholar] [CrossRef] [PubMed]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. Available online: https://www.nature.com/articles/s41588-022-01024-z (accessed on 6 March 2023). [CrossRef] [PubMed]
- Elali, A.; Rivest, S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol. 2013, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Liu, M.Y.; Sun, X.H.; Wei, M.J. Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: A meta-analysis. Sci. Rep. 2016, 6, 32708. Available online: https://www.nature.com/articles/srep32708 (accessed on 9 March 2023). [CrossRef]
- Ben Halla, S.; Tazzite, A.; Gazzaz, B.; Dehbi, H.; El Moutawakil, B. The impact of ABCB1 gene polymorphism (C3435T) and its expression on response to Donepezil in Moroccan patients with Alzheimer’s disease. Gene Rep. 2022, 26, 101443. [Google Scholar] [CrossRef]
- Yoon, H.; Myung, W.; Lim, S.W.W.; Kang, H.S.; Kim, S.; Won, H.H.; Carroll, B.J.; Kim, D.K. Association of the choline acetyltransferase gene with responsiveness to acetylcholinesterase inhibitors in alzheimer’s disease. Pharmacopsychiatry 2015, 48, 111–117. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25730470 (accessed on 4 March 2016). [CrossRef]
- Sumirtanurdin, R.; Thalib, A.Y.; Cantona, K.; Abdulah, R. Effect of genetic polymorphisms on Alzheimer’s disease treatment outcomes: An update. Clin. Interv. Aging 2019, 14, 631. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6445219/ (accessed on 10 March 2023). [CrossRef]
- Hálová, A.; Janoutová, J.; Ewerlingová, L.; Janout, V.; Bonczek, O.; Zeman, T.; Gerguri, T.; Balcar, V.J.; Šerý, O. CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer’s disease in the Czech population. J. Biomed. Sci. 2018, 25, 41. Available online: https://pubmed.ncbi.nlm.nih.gov/29759072/ (accessed on 10 March 2023). [CrossRef]
- Clarelli, F.; Mascia, E.; Santangelo, R.; Mazzeo, S.; Giacalone, G.; Galimberti, D.; Fusco, F.; Zuffi, M.; Fenoglio, C.; Franceschi, M.; et al. CHRNA7 Gene and Response to Cholinesterase Inhibitors in an Italian Cohort of Alzheimer’s Disease Patients. J. Alzheimer’s Dis. 2016, 52, 1203–1208. Available online: http://www.ncbi.nlm.nih.gov/pubmed/27104904 (accessed on 9 March 2018). [CrossRef]
- Russo, P.; Kisialiou, A.; Moroni, R.; Prinzi, G.; Fini, M. Effect of Genetic Polymorphisms (SNPs) in CHRNA7 Gene on Response to Acetylcholinesterase Inhibitors (AChEI) in Patients with Alzheimer’s Disease. Curr. Drug Targets 2017, 18, 1179–1190. Available online: https://pubmed.ncbi.nlm.nih.gov/26424395/ (accessed on 10 March 2023). [CrossRef] [PubMed]
- Ancín, I.; Barabash, A.; Vázquez-Álvarez, B.; Santos, J.L.; Sánchez-Morla, E.; Martínez, J.L.; Aparicio, A.; Peláez, J.C.; Díaz, J.A. Evidence for association of the non-duplicated region of CHRNA7 gene with bipolar disorder but not with Schizophrenia. Psychiatr. Genet. 2010, 20, 289–297. Available online: https://pubmed.ncbi.nlm.nih.gov/20463630/ (accessed on 10 March 2023). [CrossRef] [PubMed]
- Calabrò, M.; Mandelli, L.; Crisafulli, C.; Sidoti, A.; Jun, T.Y.; Lee, S.J.; Han, C.; Patkar, A.A.; Masand, P.S.; Pae, C.U.; et al. Genes Involved in Neurodevelopment, Neuroplasticity, and Bipolar Disorder: CACNA1C, CHRNA1, and MAPK1. Neuropsychobiology 2016, 74, 159–168. Available online: https://pubmed.ncbi.nlm.nih.gov/28494468/ (accessed on 10 March 2023). [CrossRef] [PubMed]
- Carson, R.; Craig, D.; Hart, D.; Todd, S.; McGuinness, B.; Johnston, J.A.; O’Neill, F.A.; Ritchie, C.W.; Passmore, A.P. Genetic variation in the alpha 7 nicotinic acetylcholine receptor is associated with delusional symptoms in Alzheimer’s disease. Neuromolecular Med. 2008, 10, 377–384. Available online: https://pubmed.ncbi.nlm.nih.gov/18696274/ (accessed on 10 March 2023). [CrossRef]
- Weng, P.H.; Chen, J.H.; Chen, T.F.; Sun, Y.; Wen, L.L.; Yip, P.K.; Chu, Y.M.; Chen, Y.C. CHRNA7 Polymorphisms and Dementia Risk: Interactions with Apolipoprotein ε4 and Cigarette Smoking. Sci. Rep. 2016, 6, 27231. Available online: https://www.nature.com/articles/srep27231 (accessed on 10 March 2023). [CrossRef]
- Woodland, C.; Huang, T.T.; Gryz, E.; Bendayan, R.; Fawcett, J.P. Expression, Activity and Regulation of CYP3A in Human and Rodent Brain. Drug Metab. Rev. 2008, 40, 149–168. [Google Scholar] [CrossRef]
- Rosales-Rimache, J.; Machado-Pereyra, P.; Bendezu-Quispe, G. Relationship between Butyrylcholinesterase Activity and Cognitive Ability in Workers Exposed to Chlorpyrifos. Safety 2023, 9, 12. Available online: https://www.mdpi.com/2313-576X/9/1/12/htm (accessed on 6 March 2023). [CrossRef]
- Ovejero-benito, M.C.; Ochoa, D.; Enrique-benedito, T.; Del Peso-Casado, M.; Zubiaur, P.; Navares, M.; Román, M.; Abad-Santos, F. Pharmacogenetics of Donepezil and Memantine in Healthy Subjects. J. Pers. Med. 2022, 12, 788. Available online: https://pubmed.ncbi.nlm.nih.gov/35629210/ (accessed on 23 March 2023). [CrossRef]
- Chamnanphon, M.; Wainipitapong, S.; Wiwattarangkul, T.; Chuchuen, P.; Nissaipan, K.; Phaisal, W.; Tangwongchai, S.; Sukasem, C.; Wittayalertpanya, S.; Gaedigk, A.; et al. CYP2D6 Predicts Plasma Donepezil Concentrations in a Cohort of Thai Patients with Mild to Moderate Dementia. Pharmgenomics Pers. Med. 2020, 13, 543–551. Available online: https://www.dovepress.com/cyp2d6-predicts-plasma-donepezil-concentrations-in-a-cohort-of-thai-pa-peer-reviewed-fulltext-article-PGPM (accessed on 23 March 2023). [CrossRef]
Variable | Median (Interquartile Range (IQR)) |
---|---|
Age (years) | 64 (56–74) |
Age at onset (years) | 59 (51–69) |
Years of disease evolution | 5 (3–7) |
Years of education | 9 (5–14) |
Neuropsychological tests | |
Time 1 a | |
MMSE-1 | 17 (12–23) |
SVF-1 | 7 (4–11) |
PVF-1 | 3 (1–7) |
CLOCK-1 | 0 (0–2) |
GDS-1 | 4 (3–4) |
Lawton Brody-1 | 4 (0–4) |
Time 2 b | |
MMSE-2 | 15 (10–20) |
SVF-2 | 6 (3–10) |
PVF-2 | 3 (0–6) |
CLOCK-2 | 0 [0–1] |
GDS-2 | 4 [3–5] |
Lawton Brody-2 | 2 [0–4] |
Gender male/female n (%) | 43 (36.8)/74 (63.2) |
AD sporadic/familial | 49 (41.90)/68 (58.10) |
AD early/late onset | 72 (61.50)/45 (38.50) |
Co-morbidities | |
Depression | 81 (69.20) |
Hypertension | 39 (33.30) |
Diabetes mellitus | 18 (15.40) |
Treatment | |
Monotherapy (DPZ, GAL, RIV, or MEM) | 80 (68.40) |
DPZ + MEM | 20 (17.10) |
GAL + MEM | 12 (10.30) |
RIV + MEM | 5 (4.30) |
Co-treatment | |
Antidepressant | 81 (69.20) |
Antipsychotic | 32 (27.40) |
Responders/non-responders | 58 (49.60)/59 (50.40) |
ADR/no ADR | 16 (13.70)/101 (86.30) |
Gene | NCBI Reference | TaqMan Assay |
---|---|---|
ABCB1 | rs1128503 | C___7586662_10 |
rs2032582 | C_11711720C_30 C_11711720D_40 | |
rs1045642 | C__7586657_20 | |
ACHE | rs1799806 | C_27168953_30 |
rs17884589 | C_34446515_10 | |
rs10953305 | C_2607820_20 | |
BCHE | rs1803274 | C_27479669_20 |
rs1355534 | C_8834703_20 | |
CHAT | rs2177370 | C_224405_10 |
rs3793790 | C_122323_20 | |
CYP3A5 | rs776746 (CYP3A5*3) | C_26201809_30 |
rs10264272 (CYP3A5*6) | C__30203950_10 | |
NR1I2 | rs2461817 | C__15803606_20 |
rs7643645 | C___1834250_10 | |
rs3814055 | C__27504984_30 | |
rs2276707 | C__15882324_10 | |
rs3814058 | C__11231740_10 | |
CHRNA7 | rs6494223 | C___1483016_10 |
POR | rs1057868 | C___8890131_30 |
Variable | Non-Responders n = 58 (%) | Responders n = 59 (%) | p-Value |
---|---|---|---|
Age, yrs | 61.5 ([55–71.5) | 67 (57–76) | 0.081 |
Onset age, yrs | 56 (50.3–66.8) | 60 (53.5–69.5) | 0.148 |
Scholarship, yrs | 9 (6–14) | 9 (4–15) | 0.363 |
Sex | |||
Male | 20 (34.5) | 23 (39.0) | 0.702 |
Female | 38 (65.5) | 36 (61.0) | |
AD type | |||
Sporadic | 20 (34.5) | 29 (49.1) | 0.135 |
Familial | 38 (65.5) | 30 (50.8) | |
Onset AD | |||
Early | 38 (65.5) | 34 (57.6) | 0.449 |
Late | 20 (34.5) | 25 (42.4) | |
Co-treatment | 0.333 | ||
Monotherapy | 36 (62.1) | 43 (72.9) | 0.240 |
DPZ + MEM | 13 (22.4) | 7 (11.9) | 0.148 |
GAL + MEM | 5 (8.6) | 7 (11.9) | 0.762 |
RIV + MEM | 4 (6.9) | 2 (3.4) | 0.439 |
Comorbidities | |||
Depression | 40 (69.0) | 42 (71.2) | 0.842 |
SAH | 16 (27.6) | 23 (39.0) | 0.240 |
T2DM | 7 (12.1) | 11 (18.6) | 0.443 |
Antidepressant | |||
Citalopram | 20 (34.5) | 24 (40.7) | 0.514 |
Escitalopram | 5 (8.6) | 9 (1.5) | |
None | 20 (34.5) | 16 (27.1) | |
Other | 13 (22.4) | 10 (16.9) | |
Antipsychotic | 19 (32.8) | 13 (22.0) | 0.218 |
Neuropsychological tests | |||
MMSE1 | 17 (12–22) | 17 (13–22) | 0.511 |
SVF1 | 7 (3–10) | 7 (4–12) | 0.494 |
PVF1 | 3 (1–6) | 4 (1–8.5) | 0.180 |
CLOCK1 | 0 (0–1) | 0 (0–2) | 0.283 |
GDS1 | 4 (3–5) | 3 (3–4) | 0.008 |
Lawton–Brody 1 | 2 (0–4) | 4 (2–6) | 0.005 |
KATZ1 | |||
A-B | 27 (46.5) | 42 (71.2) | 0.022 |
C-D | 27 (46.5) | 15 (25.4) | |
E-F | 4 (7.0) | 2 (3.4) | |
MMSE2 | 10 (7–16) | 20 (13–24) | <0.001 |
SVF2 | 4 (0–7) | 7 (4–12) | <0.001 |
PVF2 | 1 (0–3) | 4 (1–8) | 0.001 |
CLOCK2 | 0 (0–0) | 0 (0–1) | 0.003 |
GDS2 | 4 (4–5) | 3 (3–4) | <0.001 |
Lawton–Brody 2 | 0 (0–2) | 3 (2–6) | <0.001 |
KATZ2 | |||
A-B | 20 (34.5) | 40 (67.8) | 0.001 |
C-D | 27 (46.5) | 14 (23.7) | |
E-F | 11 (19.0) | 5 (8.5) |
Gene | Variant | MAF/AD | MAF/MM | Reference | p Value | OR (95% CI) |
---|---|---|---|---|---|---|
APOE | rs7412 (ε4) | 0.106 | 0.085 | [36] | 0.523 | - |
ABCB1 | rs1128503 | 0.492 | 0.49 | [33] | 0.985 | - |
rs1045642 | 0.613 | 0.49 | 0.014 | 1.34 (1.10–2.43) | ||
rs2032582 (A/T) | 0.040/0.395 | 0.07/0.42 | 0.221 | - | ||
ACHE | rs1799806 | 0.239 | 0.172 | Present work | 0.07 | - |
rs17884589 | 0.261 | 0.147 | 0.001 | 2.08 (1.33–3.25) | ||
rs10953305 | 0.194 | 0.243 | 0.223 | - | ||
BCHE | rs1803274 | 0.142 | 0.11 | Present work | 0.298 | - |
rs1355534 | 0.231 | 0.312 | 0.066 | - | ||
CHAT | rs2177370 | 0.397 | 0.285 | Present work | 0.01 | 1.65 (1.12–2.43) |
rs3793790 | 0.213 | 0.140 | 0.032 | 1.66 (1.04–2.66) | ||
CHRNA7 | rs6494223 | 0.333 | 0.471 | Present work | <0.001 | 0.56 (0.41–0.77) |
POR | rs1057868 | 0.275 | 0.259 | Present work | 0.704 | - |
CYP3A5 | rs776746 | 0.135 | 0.263 | [34] | 0.003 | 0.44 (0.25–0.77) |
rs10264272 | 0.025 | 0.005 | 0.094 | - | ||
NR1I2 | rs2461817 | 0.391 | 0.348 | [34] | 0.288 | - |
rs7643645 | 0.446 | 0.387 | 0.153 | - | ||
rs2276707 | 0.141 | 0.175 | 0.284 | - | ||
rs3814055 | 0.429 | 0.407 | 0.398 | - | ||
rs3814058 | 0.141 | 0.175 | 0.284 | - |
Genetic Variant (Allele/Genotype) | MAF Non-Responders | MAF Responders | p Value | p Value Adjusted for Sex |
---|---|---|---|---|
Donepezil | n = 22 | n = 22 | ||
APOE rs7412 (ε4) | 0.068 | 0.105 | 0.839 | 0.768 |
ABCB1 | ||||
rs1128503 | 0.500 | 0.500 | 1.000 | 0.969 |
rs1045642 | 0.476 | 0.316 | 0.144 | 0.185 |
rs2032582 (A/T) | 0.500 | 0.395 | 0.345 | 0.420 |
ACHE | ||||
rs1799806 | 0.273 | 0.159 | 0.195 | 0.992 |
rs17884589 | 0.182 | 0.250 | 0.437 | 0.769 |
rs10953305 | 0.295 | 0.136 | 0.070 | 0.999 |
BCHE | ||||
rs1803274 | 0.114 | 0.250 | 0.097 | 0.680 |
rs1355534 | 0.227 | 0.182 | 0.597 | 0.844 |
CHAT | ||||
rs2177370 | 0.341 | 0.409 | 0.509 | 0.391 |
rs3793790 | 0.227 | 0.182 | 0.597 | 0.900 |
CHRNA7 | ||||
rs6494223 | 0.318 | 0.386 | 0.503 | 0.161 |
POR | ||||
rs1057868 | 0.318 | 0.159 | 0.080 | 0.513 |
CYP3A5 | ||||
rs776746 | 0.114 | 0.159 | 0.534 | 0.484 |
rs10264272 | 0.023 | 0.045 | 0.557 | 0.541 |
NR1I2 | ||||
rs2461817 | 0.341 | 0.454 | 0.276 | 0.488 |
rs7643645 | 0.432 | 0.545 | 0.286 | 0.529 |
rs3814055 | 0.386 | 0.523 | 0.199 | 0.301 |
rs2276707 | 0.091 | 0.114 | 0.725 | 0.767 |
rs3814058 | 0.091 | 0.114 | 0.725 | 0.767 |
Galantamine | n = 9 | n = 8 | ||
APOE rs7412 (ε4) | 0.062 | 0.250 | 0.330 | 0.362 |
ABCB1 | ||||
rs1128503 | 0.500 | 0.500 | 1.000 | 0.566 |
rs1045642 | 0.357 | 0.429 | 0.144 | 0.699 |
rs2032582 (A/T) | 0.357 | 0.429 | 0.699 | 0.420 |
ACHE | ||||
rs1799806 | 0.143 | 0.437 | 0.079 | 0.286 |
rs17884589 | 0.429 | 0.312 | 0.510 | 0.304 |
rs10953305 | 0.000 | 0.125 | 0.171 | 0.999 |
BCHE | ||||
rs1803274 | 0.071 | 0.000 | 0.277 | NA |
rs1355534 | 0.286 | 0.437 | 0.389 | 0.836 |
CHAT | ||||
rs2177370 | 0.437 | 0.437 | 1.000 | 1.000 |
rs3793790 | 0.125 | 0.187 | 0.626 | 0.714 |
CHRNA7 | ||||
rs6494223 | 0.312 | 0.437 | 0.645 | 0.871 |
POR | ||||
rs1057868 | 0.312 | 0.437 | 0.465 | 0.871 |
CYP3A5 | ||||
rs776746 | 0.143 | 0.125 | 0.886 | 0.906 |
rs10264272 | 0.000 | 0.000 | NA | NA |
Rivastigmine | n = 5 | n = 3 | ||
APOE rs7412 (ε4) | 0.200 | 0.000 | 0.696 | NA |
ABCB1 | ||||
rs1128503 | 0.500 | 0.333 | 0.492 | 1.000 |
rs1045642 | 0.429 | 0.167 | 0.260 | 0.618 |
rs2032582 (A/T) | 0.400 | 0.167 | 0.699 | 0.676 |
ACHE | ||||
rs1799806 | 0.214 | 0.167 | 0.807 | 0.718 |
rs17884589 | 0.286 | 0.167 | 0.573 | 0.987 |
rs10953305 | 0.286 | 0.167 | 0.573 | 1.000 |
BCHE | ||||
rs1803274 | 0.214 | 0.167 | 0.807 | 0.811 |
rs1355534 | 0.071 | 0.167 | 0.515 | 0.547 |
CHAT | ||||
rs2177370 | 0.429 | 0.333 | 0.690 | 0.997 |
rs3793790 | 0.357 | 0.167 | 0.394 | 0.934 |
CHRNA7 | ||||
rs6494223 | 0.312 | 0.437 | 0.645 | 0.871 |
Memantine | n = 22 | n = 26 | ||
CHRNA7 | ||||
rs6494223 | 0.319 | 0.337 | 0.813 | 0.731 |
NR1I2 | ||||
rs2461817 | 0.419 | 0.370 | 0.517 | 0.731 |
rs7643645 | 0.419 | 0.402 | 0.827 | 0.371 |
rs3814055 | 0.351 | 0.413 | 0.417 | 0.480 |
rs2276707 | 0.122 | 0.174 | 0.349 | 0.955 |
rs3814058 | 0.122 | 0.174 | 0.349 | 0.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zúñiga-Santamaría, T.; Pérez-Aldana, B.E.; Fricke-Galindo, I.; González-González, M.; Trujillo-de los Santos, Z.G.; Boll-Woehrlen, M.C.; Rodríguez-García, R.; López-López, M.; Yescas-Gómez, P. Variants in Neurotransmitter-Related Genes Are Associated with Alzheimer’s Disease Risk and Cognitive Functioning but Not Short-Term Treatment Response. Neurol. Int. 2025, 17, 65. https://doi.org/10.3390/neurolint17050065
Zúñiga-Santamaría T, Pérez-Aldana BE, Fricke-Galindo I, González-González M, Trujillo-de los Santos ZG, Boll-Woehrlen MC, Rodríguez-García R, López-López M, Yescas-Gómez P. Variants in Neurotransmitter-Related Genes Are Associated with Alzheimer’s Disease Risk and Cognitive Functioning but Not Short-Term Treatment Response. Neurology International. 2025; 17(5):65. https://doi.org/10.3390/neurolint17050065
Chicago/Turabian StyleZúñiga-Santamaría, Tirso, Blanca Estela Pérez-Aldana, Ingrid Fricke-Galindo, Margarita González-González, Zoila Gloria Trujillo-de los Santos, Marie Catherine Boll-Woehrlen, Rosalía Rodríguez-García, Marisol López-López, and Petra Yescas-Gómez. 2025. "Variants in Neurotransmitter-Related Genes Are Associated with Alzheimer’s Disease Risk and Cognitive Functioning but Not Short-Term Treatment Response" Neurology International 17, no. 5: 65. https://doi.org/10.3390/neurolint17050065
APA StyleZúñiga-Santamaría, T., Pérez-Aldana, B. E., Fricke-Galindo, I., González-González, M., Trujillo-de los Santos, Z. G., Boll-Woehrlen, M. C., Rodríguez-García, R., López-López, M., & Yescas-Gómez, P. (2025). Variants in Neurotransmitter-Related Genes Are Associated with Alzheimer’s Disease Risk and Cognitive Functioning but Not Short-Term Treatment Response. Neurology International, 17(5), 65. https://doi.org/10.3390/neurolint17050065