Latent Tuberculosis Infection and COVID-19: Analysis of a Cohort of Patients from Careggi University Hospital (Florence, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population and Study Design
2.2. Data Collection
2.3. Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 2 November 2023).
- WHO Global Tuberculosis Report; WHO: Geneva, Switzerland, 2020; Volume XLIX, ISBN 9789240013131.
- Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-Estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef] [PubMed]
- Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent Mycobacterium tuberculosis Infection. N. Engl. J. Med. 2015, 372, 2127–2135. [Google Scholar] [CrossRef]
- Mack, U.; Migliori, G.B.; Sester, M.; Rieder, H.L.; Ehlers, S.; Goletti, D.; Bossink, A.; Magdorf, K.; Holscher, C.; Kampmann, B.; et al. LTBI: Latent Tuberculosis Infection or Lasting Immune Responses to M. Tuberculosis? A TBNET Consensus Statement. Eur. Respir. J. 2009, 33, 956–973. [Google Scholar] [CrossRef] [PubMed]
- O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P.R. The Immune Response in Tuberculosis. Annu. Rev. Immunol. 2013, 31, 475–527. [Google Scholar] [CrossRef] [PubMed]
- Piccazzo, R.; Paparo, F.; Garlaschi, G. Diagnostic Accuracy of Chest Radiography for the Diagnosis of Tuberculosis (TB) and Its Role in the Detection of Latent TB Infection: A Systematic Review. J. Rheumatol. Suppl. 2014, 91, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Jeong, D.H.; Yoo, B.; Lee, C.K.; Kim, Y.G.; Hong, S.; Shim, T.S.; Jo, K.W. The Usefulness of Routine Chest Radiograph Examinations in Patients Treated with TNF Inhibitors for Inflammatory Arthritis in South Korea. Respir. Med. 2018, 143, 109–115. [Google Scholar] [CrossRef]
- Singh, J.; Alam, A.; Samal, J.; Maeurer, M.; Ehtesham, N.Z.; Chakaya, J.; Hira, S.; Hasnain, S.E. Role of Multiple Factors Likely Contributing to Severity-Mortality of COVID-19. Infect. Genet. Evol. 2021, 96, 105101. [Google Scholar] [CrossRef]
- Zumla, A.; Marais, B.J.; McHugh, T.D.; Maeurer, M.; Zumla, A.; Kapata, N.; Ntoumi, F.; Chanda-Kapata, P.; Mfinanga, S.; Centis, R.; et al. COVID-19 and Tuberculosis-Threats and Opportunities. Int. J. Tuberc. Lung Dis. 2020, 24, 757–760. [Google Scholar] [CrossRef]
- Tadolini, M.; Codecasa, L.R.; García-García, J.M.; Blanc, F.X.; Borisov, S.; Alffenaar, J.W.; Andréjak, C.; Bachez, P.; Bart, P.A.; Belilovski, E.; et al. Active Tuberculosis, Sequelae and COVID-19 Co-Infection: First Cohort of 49 Cases. Eur. Respir. J. 2020, 56, 2001398. [Google Scholar] [CrossRef]
- Sarkar, S.; Khanna, P.; Singh, A.K. Impact of COVID-19 in Patients with Concurrent Co-Infections: A Systematic Review and Meta-Analyses. J. Med. Virol. 2021, 93, 2385–2395. [Google Scholar] [CrossRef]
- Global Tuberculosis NetworkTB/COVID-19 Global Study Group. Long-term outcomes of the global TB and COVID-19 coinfection cohort. Eur. Respir. J. 2023, in press. [Google Scholar] [CrossRef]
- Allué-Guardia, A.; Torrelles, J.B.; Sigal, A. Tuberculosis and COVID-19 in the Elderly: Factors Driving a Higher Burden of Disease. Front. Immunol. 2023, 14, 1250198. [Google Scholar] [CrossRef]
- Motta, I.; Centis, R.; D’Ambrosio, L.; García-García, J.M.; Goletti, D.; Gualano, G.; Lipani, F.; Palmieri, F.; Sánchez-Montalvá, A.; Pontali, E.; et al. Tuberculosis, COVID-19 and Migrants: Preliminary Analysis of Deaths Occurring in 69 Patients from Two Cohorts. Pulmonology 2020, 26, 233–240. [Google Scholar] [CrossRef]
- WHO. Clinical Management of COVID-19 Living Guidelines; WHO: Geneva, Switzerland, 2023.
- National Institute for Health and Care Excellence (NICE). Rapid Guideline NG191: Managing COVID-19; NICE: London, UK, 2023. [Google Scholar]
- Yeon, J.J.; Lee, K.S. Pulmonary Tuberculosis: Up-to-Date Imaging and Management. AJR Am. J. Roentgenol. 2008, 191, 834–844. [Google Scholar] [CrossRef]
- Adjei, S.; Hong, K.; Molinari, N.-A.M.; Bull-Otterson, L.; Ajani, U.A.; Gundlapalli, A.V.; Harris, A.M.; Hsu, J.; Kadri, S.S.; Starnes, J.; et al. Mortality Risk Among Patients Hospitalized Primarily for COVID-19 During the Omicron and Delta Variant Pandemic Periods—United States, April 2020–June 2022. MMWR 2022, 71, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Paggi, R.; Barbiero, A.; Manciulli, T.; Miftode, A.; Tilli, M.; Lagi, F.; Mencarini, J.; Borchi, B.; Pozzi, M.; Bartalesi, F.; et al. Characteristics of COVID-19 Vaccinated and Unvaccinated Patients Admitted to Careggi University Hospital, Florence, Italy. Intern. Emerg. Med. 2023, 18, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Najafi-Fard, S.; Goletti, D. Initial Immune Response after Exposure to Mycobacterium tuberculosis or to SARS-COV-2: Similarities and Differences. Front. Immunol. 2023, 14, 1244556. [Google Scholar] [CrossRef] [PubMed]
- Shariq, M.; Sheikh, J.A.; Quadir, N.; Sharma, N.; Hasnain, S.E.; Ehtesham, N.Z. COVID-19 and tuberculosis: The double whammy of respiratory pathogens. Eur Respir Rev. 2022, 31, 210264. [Google Scholar] [CrossRef]
- Gupta, N.; Ish, P.; Gupta, A.; Malhotra, N.; Caminero, J.A.; Singla, R.; Kumar, R.; Yadav, S.R.; Dev, N.; Agrawal, S.; et al. A Profile of a Retrospective Cohort of 22 Patients with COVID-19 and Active/Treated Tuberculosis. Eur. Respir. J. 2020, 56, 2003408. [Google Scholar] [CrossRef]
- Stochino, C.; Villa, S.; Zucchi, P.; Parravicini, P.; Gori, A.; Raviglione, M.C. Clinical Characteristics of COVID-19 and Active Tuberculosis Co-Infection in an Italian Reference Hospital. Eur. Respir. J. 2020, 56, 2001708. [Google Scholar] [CrossRef]
- Takahashi, H. Role of Latent Tuberculosis Infections in Reduced COVID-19 Mortality: Evidence from an Instrumental Variable Method Analysis. Med. Hypotheses 2020, 144, 110214. [Google Scholar] [CrossRef]
- Gupta, A.; Sural, S.; Gupta, A.; Rousa, S.; Koner, B.C.; Bhalotra, A.; Chawla, R. Positive QuantiFERON Test and the Severity of COVID-19 Disease: A Prospective Study. Indian J. Tuberc. 2021, 68, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Madan, M.; Baldwa, B.; Raja, A.; Tyagi, R.; Dwivedi, T.; Mohan, A.; Mittal, S.; Madan, K.; Hadda, V.; Tiwari, P.; et al. Impact of Latent Tuberculosis on Severity and Outcomes in Admitted COVID-19 Patients. Cureus 2021, 13, e19882. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, Y.; Fleming, J.; Wang, T.; Shen, S.; Wang, Y.; Fan, L.; Ma, J.; Gu, Y.; Chen, Y. Severe COVID-19 Cases with a History of Active or Latent Tuberculosis. Int. J. Tuberc. Lung Dis. 2020, 24, 747–749. [Google Scholar] [CrossRef]
- Redelman-Sidi, G. Could BCG Be Used to Protect against COVID-19? Nat. Rev. Urol. 2020, 17, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Curtis, N.; Sparrow, A.; Ghebreyesus, T.A.; Netea, M.G. Considering BCG Vaccination to Reduce the Impact of COVID-19. Lancet 2020, 395, 1545–1546. [Google Scholar] [CrossRef] [PubMed]
- Escobar, L.E.; Molina-Cruz, A.; Barillas-Mury, C. BCG Vaccine Protection from Severe Coronavirus Disease 2019 (COVID-19). Proc. Natl. Acad. Sci. USA 2020, 117, 17720–17726. [Google Scholar] [CrossRef]
- Wickramasinghe, D.; Wickramasinghe, N.; Kamburugamuwa, S.A.; Arambepola, C.; Samarasekera, D.N. Correlation between Immunity from BCG and the Morbidity and Mortality of COVID-19. Trop. Dis. Travel Med. Vaccines 2020, 6, 17. [Google Scholar] [CrossRef]
- Moorlag, S.J.C.F.M.; van Deuren, R.C.; van Werkhoven, C.H.; Jaeger, M.; Debisarun, P.; Taks, E.; Mourits, V.P.; Koeken, V.A.C.M.; de Bree, L.C.J.; ten Doesschate, T.; et al. Safety and COVID-19 Symptoms in Individuals Recently Vaccinated with BCG: A Retrospective Cohort Study. Cell Rep. Med. 2020, 1, 100073. [Google Scholar] [CrossRef]
- Does BCG Vaccination Protect against Acute Respiratory Infections and COVID-19? A Rapid Review of Current Evidence—The Centre for Evidence-Based Medicine. Available online: https://www.cebm.net/covid-19/does-bcg-vaccination-protect-against-acute-respiratory-infections-and-covid-19-a-rapid-review-of-current-evidence/ (accessed on 31 October 2023).
Characteristics | Negative (n = 162) | Positive (n = 15) | Sequelae (n = 36) | p-Value |
---|---|---|---|---|
Male (n, %) | 86 (53.1) | 9 (60.0) | 25 (69.4) | p = 0.193 |
Age (mean ± SD) | 61.3 ± 18.9 | 62.7 ± 20.9 | 75.8 ± 13.0 | p < 0.001 |
Italian nationality (n, %) | 120 (74.1) | 8 (53.3) | 32 (88.9) | p = 0.023 |
CCI (mean ± SD) | 2.8 ± 2.5 | 2.7 ± 2.6 | 4.9 ± 2.6 | p < 0.001 |
IT before hospital admission (n, %) | 11 (6.8) | 2 (13.3) | 4 (11.1) | p = 0.502 |
Steroid therapy (n, %) | 116 (71.6) | 11 (73.3) | 25 (69.4) | p = 0.952 |
Tocilizumab therapy (n, %) | 9 (5.6) | 1 (6.7) | 2 (5.6) | p = 0.984 |
ICU admission (n, %) | 23 (14.2) | 4 (26.7) | 6 (16.7) | p = 0.425 |
In-hospital deaths (n, %) | 15 (9.3) | 2 (13.3) | 18 (50) | p < 0.001 |
OTI | 8 (4.9) | 1 (6.7) | 6 (16.7) | p = 0.045 |
Death and/or OTI (n, %) | 22 (13.6) | 2 (13.3) | 19 (52.8) | p < 0.001 |
HR | p-Value | [95% CI] | |
---|---|---|---|
In-hospital death | |||
Sex | 1.13 | p = 0.755 | 0.53–2.39 |
CCI | 1.16 | p = 0.007 | 1.04–1.30 |
Pos group belonging | 1.55 | p = 0.567 | 0.35–6.92 |
Seq group belonging | 3.00 | p = 0.008 | 1.34–6.73 |
IT before hospital admission | 0.65 | p = 0.484 | 0.19–2.20 |
Steroid therapy | 1.91 | p = 0.266 | 0.61–5.98 |
Tocilizumab therapy | 0.67 | p = 0.622 | 0.14–3.23 |
OTI | |||
Sex | 2.66 | p = 0.220 | 0.56–12.82 |
CCI | 0.88 | p = 0.266 | 0.69–1.11 |
Pos group belonging | 3.93 | p = 0.237 | 0.41–38.06 |
Seq group belonging | 4.48 | p = 0.072 | 0.87–22.99 |
IT before hospital admission | 6.65 | p = 0.023 | 1.29–34.29 |
Steroid therapy | 0.72 | p = 0.726 | 0.12–4.42 |
Tocilizumab therapy | 3.72 | p = 0.104 | 0.76–18.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotti, F.; Sponchiado, F.; Lagi, F.; Moroni, C.; Paggi, R.; Kiros, S.T.; Miele, V.; Bartoloni, A.; Mencarini, J.; The COCORA Working Group. Latent Tuberculosis Infection and COVID-19: Analysis of a Cohort of Patients from Careggi University Hospital (Florence, Italy). Infect. Dis. Rep. 2023, 15, 758-765. https://doi.org/10.3390/idr15060068
Mariotti F, Sponchiado F, Lagi F, Moroni C, Paggi R, Kiros ST, Miele V, Bartoloni A, Mencarini J, The COCORA Working Group. Latent Tuberculosis Infection and COVID-19: Analysis of a Cohort of Patients from Careggi University Hospital (Florence, Italy). Infectious Disease Reports. 2023; 15(6):758-765. https://doi.org/10.3390/idr15060068
Chicago/Turabian StyleMariotti, Francesca, Francesco Sponchiado, Filippo Lagi, Chiara Moroni, Riccardo Paggi, Seble Tekle Kiros, Vittorio Miele, Alessandro Bartoloni, Jessica Mencarini, and The COCORA Working Group. 2023. "Latent Tuberculosis Infection and COVID-19: Analysis of a Cohort of Patients from Careggi University Hospital (Florence, Italy)" Infectious Disease Reports 15, no. 6: 758-765. https://doi.org/10.3390/idr15060068
APA StyleMariotti, F., Sponchiado, F., Lagi, F., Moroni, C., Paggi, R., Kiros, S. T., Miele, V., Bartoloni, A., Mencarini, J., & The COCORA Working Group. (2023). Latent Tuberculosis Infection and COVID-19: Analysis of a Cohort of Patients from Careggi University Hospital (Florence, Italy). Infectious Disease Reports, 15(6), 758-765. https://doi.org/10.3390/idr15060068